# The Structural Decomposition of Energy Consumption Based on a Hybrid Rectangular Input-Output Framework – Japan's Case –

By Shigemi Kagawa<sup>\*</sup> and Hajime Inamura<sup>\*\*</sup>

#### Abstract

This paper proposes a hybrid model, based on a rectangular input-output framework, to evaluate the effects of the changes in the energy demand structure, the non-energy input-output structure, and the non-energy final demand on energy intensities and total energy requirements. The demand structure of input-output system is decomposed into the structure of energy sectors and other sectors. The effects of change in the structures are analyzed by industry side and commodity side. A hybrid rectangular input-output framework expressed in both monetary terms and physical terms (terra calorie) is introduced to relax the effects of dynamic change of energy prices on the input structure in physical terms. The hybrid model was applied to estimate the energy intensities and the total energy requirements contributed by energy-supply industries. Moreover, the sources of changes in the energy intensities and the total energy requirements between 1985 and 1990 are analyzed by applying structural decomposition analysis to the Major findings are as follows; hybrid model. The total energy requirement in Japan has increased mainly because of the changes in non-energy final demand, the second, the changes in energy demand structure and the third, the changes in non-energy input structure, while the product-mix changes have reverse effects, that is, saving of energy. The results also proved a practical use of the proposed method.

Keywords: hybrid rectangular IO framework, structural decomposition analysis

<sup>\*</sup> Doctoral Candidate, Graduate School of Information Sciences, Tohoku University

<sup>\*\*</sup> Professor, Graduate School of Information Sciences, Tohoku University Aoba, Aoba-ku, Sendai, 980, JAPAN, phone: +81-22-2177497, fax: +81-22-2177494

## 1. Introduction

The Life Cycle Assessment (LCA) for production, consumption, and waste disposal has been discussed in both social and political aspects. Only qualitative and subjective discussion has been made because of lack of quantitative and objective information on the life cycle flow from the cradle to the grave.

The conventional input-output model is often employed for LCA to estimate energy requirements and loads on environment brought from production processes throughout the entire economic system. The structural decomposition analysis (SDA) has been rapidly developed for impact analysis of LCA and applied to the real world. Rose and Chen (1991) greatly contributed to the theoretical expansion of SDA, and showed an application.

Lin and Polenske (1995) analyzed the effects of the final demand shifts and production technology changes on the China's energy use structure. They evaluated the effects of energy and non-energy input changes on the intermediate energy requirements connecting the hybrid IO method (see Bullard & Herendeen, 1975) with SDA. Weber and Schnabl (1998) proposed a mathematical formulation to decompose the economic system into energy and non-energy demand structure by applying the hierarchy system with feedback loops for non-energy sectors to the hybrid IO model.

Bullard et al., Rose et al., Lin et al., and Weber et al. greatly extended the conventional IO analysis for the environmental evaluation, however most studies with commodity-by-commodity framework have essential problems due to the assumption of product-mix. First, it is very difficult to analyze the effects of product-mix changes on energy consumption and emission from production activities (Afrasiabi & Casler, 1991). If the share of primary and secondary products of an industry changes, its input structure should change through the production processes. It also affects the energy requirements and environmental loads. Second, since the market price of by-products, recycle materials, and/or waste disposal is unstable and sometimes does not exist, it is difficult to analyze the effects of the material flow changes on the energy requirements and environmental loads (Inamura & Kagawa, 1998).

The problems mentioned above are kept in mind, the purposes of this paper are as follows;

- (1) To propose the hybrid rectangular IO model (HRIO) expressed in both monetary term and physical term.
- (2) To conduct the sensitivity analysis to estimate the effects of the changes in energy demand structure, non-energy input structure, non-energy product-mix, and non-energy final demand by applying the hierarchy system to the hybrid model.
- (3) To analyze Japan's energy consumption structural changes between 1985 and 1990.

# 2. Formulation of the Basic Framework

The rectangular Input-Output framework (SNA type) is used to solve the problems described before. The basic framework of the model is shown in Table 1.

|              | Commodities.               | Industries.                | F. D.                     | T. D.                     |
|--------------|----------------------------|----------------------------|---------------------------|---------------------------|
| Commodities. |                            | $\mathbf{U}_{\mathbf{ij}}$ | $\mathbf{f}_{\mathbf{i}}$ | $\mathbf{q}_{\mathbf{i}}$ |
| Industries.  | $\mathbf{V}_{\mathbf{ij}}$ |                            |                           | $\mathbf{g}_{\mathrm{i}}$ |
| V. A.        |                            | Уj                         |                           |                           |
| T. S.        | qj                         | $\mathbf{g}_{\mathrm{j}}$  |                           |                           |

 Table 1. Basic Framework of the Model

# Where

 $V_{ij}$  = output (make) matrix of industries i producing commodities j

- $\mathbf{U}_{ij}$  = input (use) matrix of commodities i required by industries j
- $\mathbf{q}_{i}$  = column vector of domestic output of commodities i
- $\mathbf{g}_{i}$  = column vector of domestic output of industries i
- $\mathbf{f}_i = \text{column vector of final demand of commodities i}$
- $\mathbf{y}_{j}$  = row vector of value added of industries j

**T.D.** = total demand

**F.D.** = final demand

**T.S.** = total supply

**V.A.**= value added

**n** = number of industry sectors and/or commodity sectors

The model is formulated under the assumption of a commodity technology. First, the technological coefficient matrix A is defined based on the conventional commodity-by-commodity table.

$$A = a_{ij} = x_{ij} \,/\, q_j$$

(1)

Where  $\mathbf{x}_{ij}$  denotes an intermediate input requirement of commodities i required in order to produce commodities j.  $\mathbf{q}_j$  is a domestic output of commodities j. The output coefficient matrix, **C** is stated as eq. (2).

$$\mathbf{C}^{t} = \mathbf{c}_{ij} = \mathbf{v}_{ij} / \mathbf{g}_{i}$$

(2)

Where  $\mathbf{t}$  is transposition.  $\mathbf{B}$ , which expresses the input structure in the rectangular

(i, j = 1, 2, 3, ..., n)

IO system, is given by using eq. (1) and (2) under the assumption of a commodity technology:  $\mathbf{A} = \mathbf{BC}^{-1}$ , that is,

 $\mathbf{B} = \mathbf{A}\mathbf{C}$ 

(3)

The input matrix U can be easily calculated from equation (4).

 $\mathbf{U} = \mathbf{B}\mathbf{\hat{g}}$ 

(4)

Where  $\hat{\mathbf{g}}$  is the diagonal matrix with the elements of domestic output vector  $\mathbf{g}$ . Next, considering the balance between the inputs and the outputs in the rectangular framework, the following relationships are reduced.

$$q = Bg + f = BC^{-1}q + f = (I - BC^{-1})^{-1}f$$

(5)

 $g = C^{-1}(I - BC^{-1})f = (I - C^{-1}B)^{-1}C^{-1}f$ 

(6)

Where **I** denotes a  $n \times n$  unit matrix. From eq. (5) and (6), the domestic output of each commodity and/or industry induced by the final demand can be estimated respectively. Eq. (5) and (6) are well known as a production formula in the static rectangular IO system.

## 3. Formulation of Hybrid Rectangular Framework

A hybrid rectangular input-output framework expressed in both a monetary term and a physical term, is used to escape from the effects of the dynamic changes of energy prices on the input structure in physical term. Industry sector and commodity sector of the framework shown in Table 1 are decomposed into an energy sector ( $\mathbf{e}$ ) and a non-energy sector ( $\mathbf{ne}$ ), respectively. The energy sector has a unit of million yen (**MY**) and those of non-energy sector is terra calorie (**TC**). The input coefficient matrix **B** and the output coefficient matrix **C** can be formulated as follows.

$$B = \frac{e}{ne} \begin{bmatrix} \frac{e}{B_{11}(TC/TC)} & \frac{B_{12}(TC/MY)}{B_{21}(MY/TC)} \\ B_{21}(MY/TC) & \frac{B_{22}(MY/MY)}{B_{22}(MY/MY)} \end{bmatrix}$$
(7)  
$$C^{t} = \frac{e}{ne} \begin{bmatrix} \frac{e}{C_{11}(TC/TC)} & \frac{ne}{C_{12}(MY/TC)} \\ C_{21}(TC/MY) & C_{22}(MY/MY) \end{bmatrix}$$
(8)

- $B_{11}$  = input coefficient sub-matrix of energy commodities required by energy-supply industries
- $B_{12}$  = input coefficient sub-matrix of energy commodities required by other industries
- $\mathbf{B}_{21}$  = input coefficient sub-matrix of non-energy commodities required by energy- supply industries
- $\mathbf{B}_{22}$  = input coefficient sub-matrix of non-energy commodities required by other industries
- $C_{11}$  = output coefficient sub-matrix of energy-supply industries producing energy commodities
- $C_{12}$  = output coefficient sub-matrix of energy-supply industries producing non-energy commodities
- $C_{21}$  = output coefficient sub-matrix of other industries producing energy commodities
- $C_{22}$  = output coefficient sub-matrix of other industries producing non-energy commodities

**B** and **C** have to follow the assumption of a commodity technology:  $\mathbf{A} = \mathbf{B}\mathbf{C}^{-1}$ . Here, **A** is the hybrid technological coefficient matrix as suggested by Beutel et al. (1984). By substituting eq. (7) and (8) into eq. (5) and (6), the total input requirements by commodity (**q**) and industry (**g**) can be estimated respectively. It is difficult to identify the differences between the energy requirements produced by the energy-supply industries and the other industries under the conventional IO system, while the rectangular IO system can easily identify from eq. (5) and (6).

In order to compare the demand structure of energy sectors and non-energy sectors, the well-known Matiroshka principle is applied to the rectangular IO system. The demand structure of input-output system is decomposed into the demand structure of energy sectors and non-energy sectors.

First, **B** and  $C^{-1}$  given by eq. (7) and (8) are decomposed as:

$$\underbrace{\begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix}}_{(9) \mathbf{B}} = \underbrace{\begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{0} \end{bmatrix}}_{\mathbf{B}_{e}} + \underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{22} \end{bmatrix}}_{\mathbf{B}_{ne}}$$

$$\underbrace{\begin{bmatrix} [C^{-1}]_{11} & [C^{-1}]_{12} \\ [C^{-1}]_{21} & [C^{-1}]_{22} \end{bmatrix}}_{(10)} = \underbrace{\begin{bmatrix} [C^{-1}]_{11} & [C^{-1}]_{12} \\ [C^{-1}]_{21} & 0 \end{bmatrix}}_{[C^{-1}]_{e}} + \underbrace{\begin{bmatrix} 0 & 0 \\ 0 & [C^{-1}]_{22} \end{bmatrix}}_{[C^{-1}]_{ne}}$$

Here  $C^{-1}$  represents a market share structure under the assumption of a commodity technology. Also  $C^{-1}$  can be expressed by the following sub-matrices.

- $[C^{-1}]_{11}$  = market share sub-matrix of energy commodities produced by energy-supply industries
- $[C^{-1}]_{12}$  = market share sub-matrix of non-energy commodities produced by energy-supply industries
- $[C^{-1}]_{21}$  = market share sub-matrix of energy commodities produced by other industries
- $[C^{-1}]_{22}$  = market share sub-matrix of non-energy commodities produced by other industries

Eq. (9) and (10) are substituted into (5) and (6) respectively and Matiroshka principle is applied, then the following system is formulated.

$$q = (I - BC^{-1})^{-1}f = (L_0B[C^{-1}]_e + I)(L_1B_e[C^{-1}]_{ne} + I)(I - B_{ne}[C^{-1}]_{ne})^{-1}f$$
(11)  

$$g = (L_2B[C^{-1}]_e + C^{-1})(L_1B_e[C^{-1}]_{ne} + I)(I - B_{ne}[C^{-1}]_{ne})^{-1}f$$
(12)  

$$L_0 = (I - BC^{-1})^{-1}$$
(13)  

$$L_1 = (I - B[C^{-1}]_{ne})^{-1}$$
(14)

$$L_2 = (I - C^{-1}B)^{-1}C^{-1}$$

(15)

From eq. (11) and (12), the total energy requirements induced by inter-industry transactions among non-energy sectors can be estimated. Moreover, it is possible to evaluate quantitatively the differences between the demand structure of energy sectors and other sectors.

Considering the components of the following matrix from eq. (12),

$$\mathbf{R}_{\rm g} = (\mathbf{L}_2 \mathbf{B} [\mathbf{C}^{-1}]_{\rm e} + \mathbf{C}^{-1}) (\mathbf{L}_1 \mathbf{B}_{\rm e} [\mathbf{C}^{-1}]_{\rm ne} + \mathbf{I})$$

(16)

 $\mathbf{R}_{g}$  can further be expressed as eq. (17).

$$\mathbf{R}_{g} = \begin{bmatrix} (\mathbf{R}_{g})_{11} & (\mathbf{R}_{g})_{12} \\ \hline (\mathbf{R}_{g})_{21} & (\mathbf{R}_{g})_{22} \end{bmatrix}$$

(17)

Where

- $(\mathbf{R}_{g})_{11}$  = energy output sub-matrix of energy-supply industries induced by final demand of energy sectors
- $(\mathbf{R}_{g})_{12}$  = energy output sub-matrix of energy-supply industries induced by transactions among non-energy sectors
- $(\mathbf{R}_{g})_{21}$  = non-energy output sub-matrix of energy-supply industries induced by final demand of energy sectors
- $(\mathbf{R}_{g})_{22}$  = non-energy output sub-matrix of energy-supply industries induced by transactions between non-energy sectors

Here,  $\mathbf{W}$  is defined as eq. (18).

$$\mathbf{W} = \begin{bmatrix} \mathbf{0} & \vdots & (\mathbf{R}_g)_{12} \end{bmatrix}$$

(18)

The direct and indirect energy inputs W are required not only to produce the energy goods that are absorbed into the production processes of the non-energy sectors, but also to produce the non-energy goods (services) that are absorbed into the processes of the energy inputs. The energy requirements E contributed by energy-supply industries (ESI) can be formulated from eq. (12) and (18).

$$\mathbf{E}|_{\mathrm{FSI}} = \mathbf{W}(\mathbf{I} - \mathbf{B}_{\mathrm{ne}}[\mathbf{C}^{-1}]_{\mathrm{ne}})^{-1}\mathbf{f}$$

(19)

The final demand **f** can be standardized as  $\mathbf{f}_{ne}^{s}$  whose element vector of each non-energy commodity is one. By substituting  $\mathbf{f}_{ne}^{s}$  into eq. (19), the energy intensity of each non-energy commodity can be estimated as eq. (20).

$$\mathbf{E}^{s}\Big|_{\mathrm{ESI}} = \mathbf{W}(\mathbf{I} - \mathbf{B}_{\mathrm{ne}}[\mathbf{C}^{-1}]_{\mathrm{ne}})^{-1}\mathbf{f}_{\mathrm{ne}}^{s}$$

(20)

The total energy requirements can be obtained by substituting the current non-energy final demand  $\mathbf{f}_{ne}^{c}$  into eq. (19).

$$\mathbf{E}^{c}|_{ESI} = \mathbf{W}(\mathbf{I} - \mathbf{B}_{ne}[\mathbf{C}^{-1}]_{ne})^{-1}\mathbf{f}_{ne}^{c}$$

(21)

Eq. (21) is used to estimate the current energy requirements that are direct and indirectly induced by the production processes among non-energy sectors.

In the next chapter, the impacts of changes in the energy demand structure, the non-energy input-output structure, and the non-energy final demand on energy intensities and total energy requirements are discussed. The structural decomposition techniques are derived from eq. (20) and (21).

#### 4. Structural Decomposition of Hybrid Rectangular Model: 1985-1990

## 4.1. Structural decomposition analysis of energy intensity

In this chapter, the structural decomposition analysis of hybrid rectangular IO model is developed to evaluate the effects of the changes in the energy demand structure W, the non-energy final demand  $f_{ne}$ , the non-energy input structure  $B_{ne}$ , and the non-energy market share structure  $[C^{-1}]_{ne}$  on the energy intensities and the total energy requirements.

Suppose  $[C^{-1}]_{ne}$  is a unit matrix, the production formula of eq. (20) and (21) can be rewritten as  $W(I - B_{ne})^{-1} f_{ne}^{s}$ ,  $W(I - B_{ne})^{-1} f_{ne}^{c}$  respectively. Namely,  $B_{ne}$  coincides with a hybrid technological coefficient matrix  $A_{ne}$  in the conventional Leontief system. It means that each industry produces only a primary product, and the industry can be replaced as a product. Here, the product-mix problem does not exist. Suppose  $[C^{-1}]_{ne}$  is not a unit matrix, however, the input structure of an industry should change through the production processes of secondary products. It also affects the energy intensities and the energy requirements.  $[C^{-1}]_{ne}$  represents the degree of non-energy product-mix. The effects of the dynamic product-mix changes on the energy intensities and the energy requirements are analyzed both in 1985 and 1990.

From eq. (20), the energy intensities  $\mathbf{E}^{s}|_{ESI}$  in 1985 and 1990 can be estimated as eq. (22) and (23).

$$\begin{split} \mathbf{E}^{s} \Big|_{\text{ESI}}^{85} &= \mathbf{W}^{85} (\mathbf{I} - \mathbf{B}_{\text{ne}}^{85} [\mathbf{C}^{-1}]_{\text{ne}}^{85})^{-1} \mathbf{f}_{\text{ne}}^{s} \\ (22) \\ \mathbf{E}^{s} \Big|_{\text{ESI}}^{90} &= \mathbf{W}^{90} (\mathbf{I} - \mathbf{B}_{\text{ne}}^{90} [\mathbf{C}^{-1}]_{\text{ne}}^{90})^{-1} \mathbf{f}_{\text{ne}}^{s} \end{split}$$

Where the superscripts **85**, **90** denote the time period. The changes in energy intensities  $\Delta \mathbf{E}^{s}|_{\text{FSI}}$  in the five years can be formulated as eq. (24).

$$\Delta \mathbf{E}^{s}\Big|_{\mathrm{ESI}} = \left\{ \mathbf{W}^{90} (\mathbf{I} - \mathbf{B}^{90}_{\mathrm{ne}} [\mathbf{C}^{-1}]^{90}_{\mathrm{ne}})^{-1} - \mathbf{W}^{85} (\mathbf{I} - \mathbf{B}^{85}_{\mathrm{ne}} [\mathbf{C}^{-1}]^{85}_{\mathrm{ne}})^{-1} \right\} \mathbf{f}^{s}_{\mathrm{ne}}$$
(24)

From the structural decomposition of eq. (24), the two different types of decomposition forms can be written as eq. (25).

$$\Delta \mathbf{E}^{s}\Big|_{\mathrm{ESI}} = \Delta W \mathbf{L}_{3}^{85} + W^{90} \Delta \mathbf{L}_{3}$$

$$@ @ @ \Delta \Delta W \mathbf{D}_{3}^{90} + W^{85} \Delta \mathbf{L}_{3}$$
(25)

 $L_{3}^{85} = (\mathbf{I} - \mathbf{B}_{ne}^{85} [\mathbf{C}^{-1}]_{ne}^{85})^{-1}$ (26)  $L_{3}^{90} = (\mathbf{I} - \mathbf{B}_{ne}^{90} [\mathbf{C}^{-1}]_{ne}^{90}) \mathbf{D}$ (27)

Where,  $\Delta WL_3^{85}$  and  $\Delta WL_3^{90}$  on the right-hand side of eq. (25) denote the effects of the changes in energy demand structure contributed by energy-supply industries on the energy intensities. Similarly,  $W^{90}\Delta L_3$  and  $W^{85}\Delta L_3$  express the effects of the non-energy production technology changes.

Moreover, considering the decomposition techniques of the effects of the technology changes,  $\Delta L_3$  can be decomposed into the effects of the non-energy input structural changes ( $\Delta B_{ne}$ ) and the non-energy product-mix changes ( $\Delta [C^{-1}]_{ne}$ ) respectively.

$$\Delta \mathbf{L}_{3} = (\mathbf{I} - \mathbf{B}_{ne}^{90} [\mathbf{C}^{-1}]_{ne}^{90}) \mathbf{\mathbf{\Phi}} - \mathbf{\mathbf{\mathscr{A}}} [\mathbf{\mathbf{\Omega}} - \mathbf{B}_{ne}^{85} [\mathbf{C}^{-1}]_{ne}^{85}) \mathbf{\mathbf{\Phi}}$$

$$= \mathbf{L}_{3}^{85} \mathbf{B}_{ne}^{85} \Delta [\mathbf{C}^{-1}]_{ne} \mathbf{L}_{3}^{90} + \mathbf{\mathbf{\mathcal{A}}}_{3}^{85} \Delta \mathbf{B}_{ne} [\mathbf{C}^{-1}]_{ne}^{90} \mathbf{L}_{3}^{90}$$

$$= \mathbf{L}_{3}^{85} \Delta \mathbf{B}_{ne} [\mathbf{C}^{-1}]_{ne}^{85} \mathbf{L}_{3}^{90} + \mathbf{L}_{3}^{85} \mathbf{B}_{ne}^{90} \Delta [\mathbf{C}^{-1}]_{ne} \mathbf{L}_{3}^{90}$$
(28)

Substituting eq. (28) into eq. (25), we can obtain the four different decomposition forms as:

$$\begin{split} \Delta \mathbf{E}^{s} \Big|_{\mathrm{ESI}} &= \Delta W \mathbf{L}_{3}^{85} + W^{90} \mathbf{L}_{3}^{85} \Delta \mathbf{B}_{\mathrm{ne}} [\mathbf{C}^{-1}]_{\mathrm{ne}}^{85} \mathbf{L}_{3}^{90} + W^{90} \mathbf{L}_{3}^{85} \mathbf{B}_{\mathrm{ne}}^{90} \Delta [\mathbf{C}^{-1}]_{\mathrm{ne}} \mathbf{L}_{3}^{90} \\ &= \Delta W \mathbf{L}_{3}^{85} + W^{90} \mathbf{L}_{3}^{85} \mathbf{B}_{\mathrm{ne}}^{85} \Delta [\mathbf{C}^{-1}]_{\mathrm{ne}} \mathbf{L}_{3}^{90} + W^{90} \mathbf{L}_{3}^{85} \Delta \mathbf{B}_{\mathrm{ne}} [\mathbf{C}^{-1}]_{\mathrm{ne}}^{90} \mathbf{L}_{3}^{90} \\ &= W^{85} \mathbf{L}_{3}^{85} \Delta \mathbf{B}_{\mathrm{ne}} [\mathbf{C}^{-1}]_{\mathrm{ne}}^{85} \mathbf{L}_{3}^{90} + W^{85} \mathbf{L}_{3}^{85} \mathbf{B}_{\mathrm{ne}}^{90} \Delta [\mathbf{C}^{-1}]_{\mathrm{ne}} \mathbf{L}_{3}^{90} + \Delta W \mathbf{L}_{3}^{90} \\ &= W^{85} \mathbf{L}_{3}^{85} \mathbf{B}_{\mathrm{ne}}^{85} \Delta [\mathbf{C}^{-1}]_{\mathrm{ne}} \mathbf{L}_{3}^{90} + W^{85} \mathbf{L}_{3}^{85} \Delta \mathbf{B}_{\mathrm{ne}} [\mathbf{C}^{-1}]_{\mathrm{ne}}^{90} \mathbf{L}_{3}^{90} + \Delta W \mathbf{L}_{3}^{90} \end{split}$$

$$(29)$$

The average effects  $\Delta \mathbf{E}^{s}|_{ESI}^{-}$  on the energy intensities can be derived from eq. (29).

$$\Delta \mathbf{E}^{s} \Big|_{\mathrm{ESI}}^{-} = 1/2 \Big\{ \Delta W \mathbf{L}_{3}^{85} + \Delta W \mathbf{L}_{3}^{90} \Big\} \\ + 1/4 \Big\{ W^{90} \mathbf{L}_{3}^{85} \Delta \mathbf{B}_{\mathrm{ne}} + W^{85} \mathbf{L}_{3}^{85} \Delta \mathbf{B}_{\mathrm{ne}} \Big\} \Big[ \mathbf{C}^{-1} \big]_{\mathrm{ne}}^{85} \mathbf{L}_{3}^{90} + [\mathbf{C}^{-1} \big]_{\mathrm{ne}}^{90} \mathbf{L}_{3}^{90} \Big\} \\ + 1/4 \Big\{ W^{90} \mathbf{L}_{3}^{85} + W^{85} \mathbf{L}_{3}^{85} \Big\} \Big\{ \mathbf{B}_{\mathrm{ne}}^{90} \Delta [\mathbf{C}^{-1} \big]_{\mathrm{ne}} \mathbf{L}_{3}^{90} + \mathbf{B}_{\mathrm{ne}}^{85} \Delta [\mathbf{C}^{-1} \big]_{\mathrm{ne}} \mathbf{L}_{3}^{90} \Big\}$$
(30)

The first term on the right-hand side of eq. (30) means the average effects of the changes in energy demand structure contributed by energy-supply industries, while the second denotes the average effects of the changes in input structure connected by transaction among non-energy sectors. The third term represents the average effects of the changes in the product-mix structure connected by the transactions among non-energy sectors. If the entry of energy sector is  $\mathbf{m}$ , each term in equation (30) can be rewritten as the matrix forms.

$$\Delta \mathbf{E}^{s} \Big|_{\mathbf{ESI}}^{-} = \begin{bmatrix} \mathbf{e}_{11}^{(\Delta W)} & \cdots & \mathbf{e}_{1,n-m}^{(\Delta W)} \\ \vdots & & \vdots \\ \mathbf{e}_{m1}^{(\Delta W)} & \cdots & \mathbf{e}_{m,n-m}^{(\Delta W)} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{11}^{(\Delta Bne)} & \cdots & \mathbf{e}_{1,n-m}^{(\Delta Bne)} \\ \vdots & & \vdots \\ \mathbf{e}_{m1}^{(\Delta Bne)} & \cdots & \mathbf{e}_{m,n-m}^{(\Delta Bne)} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{11}^{(\Delta C^{-1}]ne)} & \cdots & \mathbf{e}_{1,n-m}^{(\Delta [C^{-1}]ne)} \\ \vdots & & \vdots \\ \mathbf{e}_{m1}^{(\Delta [C^{-1}]ne)} & \cdots & \mathbf{e}_{m,n-m}^{(\Delta [C^{-1}]ne)} \end{bmatrix}$$
(31)

Where  $\mathbf{e}_{ij}^{(\Delta W)}$  denotes the average effects of the energy demand structural changes on the energy requirements. The energy requirements are contributed by energy-supply industries i as a result of direct and indirect transaction among other industries induced by the final demand of non-energy commodities j. The  $\mathbf{e}_{ij}^{(\Delta Bne)}$  and  $\mathbf{e}_{ij}^{(\Delta [C^{-1}]ne)}$ describes the average effects of the non-energy input structural changes and the non-energy product-mix changes respectively. Here,  $\hat{\mathbf{W}}$  is defined as the following  $n \times n$  diagonal matrix.

$$\hat{\mathbf{W}} = \begin{bmatrix} \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \sum_{i=1}^{m} \{(\mathbf{R}_{g})_{12}\}_{i1} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \sum_{i=1}^{m} \{(\mathbf{R}_{g})_{12}\}_{i,n-m} \end{bmatrix}$$
(32)

By replacing W in eq. (29) and/or (30) with  $\hat{\mathbf{W}}$  in eq. (32), the important transactions among non-energy sectors can be identified as:

$$\Delta \mathbf{E}^{s} \Big|_{\mathrm{ESI}}^{-} = \begin{bmatrix} \mathbf{d}_{11}^{(\Delta \hat{\mathbf{W}})} & \cdots & \mathbf{d}_{1,n-m}^{(\Delta \hat{\mathbf{W}})} \\ \vdots & \ddots & \vdots \\ \mathbf{d}_{n-m,1}^{(\Delta \hat{\mathbf{W}})} & \cdots & \mathbf{d}_{n-m,n-m}^{(\Delta \hat{\mathbf{W}})} \end{bmatrix} + \begin{bmatrix} \mathbf{d}_{11}^{(\Delta B_{ne})} & \cdots & \mathbf{d}_{1,n-m}^{(\Delta B_{ne})} \\ \vdots & \ddots & \vdots \\ \mathbf{d}_{n-m,1}^{(\Delta B_{ne})} & \cdots & \mathbf{d}_{n-m,n-m}^{(\Delta B_{ne})} \end{bmatrix} + \begin{bmatrix} \mathbf{d}_{11}^{(\Delta (C^{-1}]_{ne})} & \cdots & \mathbf{d}_{1,n-m}^{(\Delta (C^{-1}]_{ne})} \\ \vdots & \ddots & \vdots \\ \mathbf{d}_{n-m,1}^{(\Delta (C^{-1}]_{ne})} & \cdots & \mathbf{d}_{n-m,n-m}^{(\Delta (C^{-1}]_{ne})} \end{bmatrix}$$
(33)

Where  $\mathbf{d}_{kl}^{(\Delta \hat{\mathbf{W}})}$  denotes the average effects of the energy demand structural changes on the energy requirements absorbed into direct and indirect economic transactions between non-energy commodities k and l. The  $\mathbf{d}_{kl}^{(\Delta B_{ne})}$  and  $\mathbf{d}_{kl}^{(\Delta [C^{-1}]_{ne})}$  describe the average effects of the non-energy input structural changes and the non-energy product-mix changes on the energy requirements absorbed into economic transactions between non-energy commodities k and l respectively. The total effect of each component  $\Delta \mathbf{E}^{s}|_{ESI}^{-}$  is estimated by eq. (34).

$$\begin{split} \Delta \mathbf{E}^{s} \Big|_{\text{ESI}}^{-} &= \sum_{j=1}^{n-m} \sum_{i=1}^{m} \mathbf{e}_{ij}^{(\Delta W)} + \sum_{j=1}^{n-m} \sum_{i=1}^{m} \mathbf{e}_{ij}^{(\Delta B_{ne})} + \sum_{j=1}^{n-m} \sum_{i=1}^{m} \mathbf{e}_{ij}^{(\Delta [C^{-1}]_{ne})} \\ &= \sum_{l=1}^{n-m} \sum_{k=1}^{n-m} \mathbf{d}_{kl}^{(\Delta \widehat{W})} + \sum_{l=1}^{n-m} \sum_{k=1}^{n-m} \mathbf{d}_{kl}^{(\Delta B_{ne})} + \sum_{l=1}^{n-m} \sum_{k=1}^{n-m} \mathbf{d}_{kl}^{(\Delta [C^{-1}]_{ne})} \\ (34) \end{split}$$

### 4.2. Structural decomposition analysis of total energy requirement

In addition, the total energy requirements can decompose by extending the formulation of the SDA described before. From eq. (21), (26) and (27), the total energy requirements  $\mathbf{E}^{e}|_{ESI}$  in 1985 and 1990 can be estimated as eq. (35) and (36).

$$\mathbf{E}^{c}\Big|_{\rm ESI}^{85} = \mathbf{W}^{85} \mathbf{L}_{3}^{85} \hat{\mathbf{f}}_{\rm ne}^{85}$$
(35)

 $\mathbf{E}^{c}\Big|_{ESI}^{90} = \mathbf{W}^{90}\mathbf{L}_{3}^{90}\hat{\mathbf{f}}_{ne}^{90}$ (36)

Where  $\hat{\mathbf{f}}_{ne}^{85}$  and  $\hat{\mathbf{f}}_{ne}^{90}$  denote the diagonal matrix with the elements of the final demand in 1985 and 1990. The changes in the total energy requirements during the five years can be estimated by eq. (37).

$$\Delta \mathbf{E}^{c}|_{\rm ESI} = \mathbf{W}^{90} \mathbf{L}_{3}^{90} \hat{\mathbf{f}}_{\rm ne}^{90} - \mathbf{W}^{85} \mathbf{L}_{3}^{85} \hat{\mathbf{f}}_{\rm ne}^{85}$$
(37)

Considering a growth path of the total energy requirements from eq. (37), the six types of different decomposition forms can be written as eq. (38).

$$\begin{aligned} \Delta \mathbf{E}^{c} \Big|_{\mathrm{ESI}} &= \Delta W \mathbf{L}_{3}^{85} \mathbf{f}_{\mathrm{ne}}^{85} + W^{90} \mathbf{L}_{3}^{8} \Delta \mathbf{f}_{\mathrm{ne}} + W^{90} \Delta \mathbf{L}_{3} \mathbf{f}_{\mathrm{ne}}^{90} \\ &= \Delta W \mathbf{L}_{3}^{85} \mathbf{\hat{f}}_{\mathrm{ne}}^{85} + W^{90} \Delta \mathbf{L}_{3} \mathbf{\hat{f}}_{\mathrm{ne}}^{85} + W^{90} \mathbf{L}_{3}^{90} \Delta \mathbf{\hat{f}}_{\mathrm{ne}} \\ &= W^{85} \Delta \mathbf{L}_{3} \mathbf{\hat{f}}_{\mathrm{ne}}^{85} + \Delta W \mathbf{L}_{3}^{90} \mathbf{\hat{f}}_{\mathrm{ne}}^{85} + W^{90} \mathbf{L}_{3}^{90} \Delta \mathbf{\hat{f}}_{\mathrm{ne}} \\ &= W^{85} \Delta \mathbf{L}_{3} \mathbf{\hat{f}}_{\mathrm{ne}}^{85} + W^{85} \mathbf{L}_{3}^{90} \Delta \mathbf{\hat{f}}_{\mathrm{ne}} + \Delta W \mathbf{L}_{3}^{90} \mathbf{\hat{f}}_{\mathrm{ne}}^{90} \\ &= W^{85} \mathbf{L}_{3}^{85} \Delta \mathbf{\hat{f}}_{\mathrm{ne}} + \Delta W \mathbf{L}_{3}^{85} \mathbf{\hat{f}}_{\mathrm{ne}}^{90} + W^{90} \Delta \mathbf{L}_{3} \mathbf{\hat{f}}_{\mathrm{ne}}^{90} \\ &= W^{85} \mathbf{L}_{3}^{85} \Delta \mathbf{\hat{f}}_{\mathrm{ne}} + W^{85} \Delta \mathbf{L}_{3} \mathbf{\hat{f}}_{\mathrm{ne}}^{90} + \Delta W \mathbf{L}_{3}^{90} \mathbf{\hat{f}}_{\mathrm{ne}}^{90} \end{aligned}$$

Where  $\Delta \hat{\mathbf{f}}_{ne}$  denotes the changes in the non-energy final demand during the five years. Substituting eq. (28) into eq. (38), we can further obtain the 12 decomposition forms. The average effects of the changes in  $\Delta W$ ,  $\Delta \hat{\mathbf{f}}_{ne}$ ,  $\Delta \mathbf{B}_{ne}$  and  $\Delta [\mathbf{C}^{-1}]_{ne}$  on the total energy requirements can be also estimated as the matrix forms.

$$\Delta \mathbf{E}^{\mathbf{c}}\Big|_{\mathrm{ESI}}^{-} = \begin{bmatrix} \mathbf{e}_{11}^{\mathbf{c}} & \cdots & \mathbf{e}_{1,n-m}^{\mathbf{c}} \\ \vdots & \vdots \\ \mathbf{e}_{m1}^{\mathbf{c}} & \cdots & \mathbf{e}_{m,n-m}^{\mathbf{c}} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{11}^{\mathbf{c}} & \cdots & \mathbf{e}_{1,n-m}^{\mathbf{c}} \\ \vdots & \vdots \\ \mathbf{e}_{m1}^{\mathbf{c}} & \cdots & \mathbf{e}_{m,n-m}^{\mathbf{c}} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{11}^{\mathbf{c}} & \cdots & \mathbf{e}_{1,n-m}^{\mathbf{c}} \\ \vdots & \vdots \\ \mathbf{e}_{m1}^{\mathbf{c}} & \cdots & \mathbf{e}_{m,n-m}^{\mathbf{c}} \end{bmatrix}$$

$$\overset{\text{@}}{=} \begin{bmatrix} \mathbf{e}_{11}^{\mathbf{c}} & \cdots & \mathbf{e}_{m,n-m}^{\mathbf{c}} \\ \mathbf{e}_{11}^{\mathbf{c}} & \cdots & \mathbf{e}_{m,n-m}^{\mathbf{c}} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{11}^{\mathbf{c}} & \cdots & \mathbf{e}_{m,n-m}^{\mathbf{c}} \\ \mathbf{e}_{m1}^{\mathbf{c}} & \cdots & \mathbf{e}_{m,n-m}^{\mathbf{c}} \end{bmatrix}$$

$$\overset{\text{(39)}}{=} \mathbf{e}_{m1}^{\mathbf{c}} & \mathbf{e}_{m1}^{\mathbf{c}} & \cdots & \mathbf{e}_{mn-m}^{\mathbf{c}} \end{bmatrix}$$

Where  $e_{ij}^{(\Delta W)}$  denotes the average effects of the energy demand structural changes on the total energy requirements. The total energy requirements are contributed by

energy-supply industries i as a result of direct and indirect transaction among other industries induced by the final demand of non-energy commodities j. The  $e_{ij}^{(\Delta f_{ne})}$ ,  $e_{ij}^{(\Delta f_{ne})}$  and  $e_{ij}^{(\Delta f_{ne})}$  describes the average effects of the non-energy final demand changes, non-energy input structural changes, and the non-energy product-mix changes respectively. By replacing W in eq. (38) with  $\hat{W}$  in eq. (32), the important transactions among non-energy sectors can be identified as:

$$\Delta \mathbf{E}^{c} \Big|_{ESI}^{-} = \begin{bmatrix} \mathbf{d}_{11}^{\prime(\Delta \hat{W})} & \cdots & \mathbf{d}_{1,n-m}^{\prime(\Delta \hat{W})} \\ \vdots & \vdots \\ \mathbf{d}_{n-m1}^{\prime(\Delta \hat{W})} & \cdots & \mathbf{d}_{n-m,n-m}^{\prime(\Delta \hat{W})} \end{bmatrix} + \begin{bmatrix} \mathbf{d}_{11}^{\prime(\Delta f_{ne})} & \cdots & \mathbf{d}_{1,n-m}^{\prime(\Delta f_{ne})} \\ \vdots & \vdots \\ \mathbf{d}_{n-m1}^{\prime(\Delta \hat{W})} & \cdots & \mathbf{d}_{n-m,n-m}^{\prime(\Delta \hat{B}_{ne})} \end{bmatrix} + \begin{bmatrix} \mathbf{d}_{11}^{\prime(\Delta f_{ne})} & \cdots & \mathbf{d}_{n-m,n-m}^{\prime(\Delta f_{ne})} \\ \vdots & \vdots \\ \mathbf{d}_{n-m1}^{\prime(\Delta \hat{B}_{ne})} & \cdots & \mathbf{d}_{n-m,n-m}^{\prime(\Delta \hat{B}_{ne})} \\ \vdots & \vdots \\ \mathbf{d}_{n-m1}^{\prime(\Delta \hat{B}_{ne})} & \cdots & \mathbf{d}_{n-m,n-m}^{\prime(\Delta \hat{B}_{ne})} \end{bmatrix} + \begin{bmatrix} \mathbf{d}_{11}^{\prime(\Delta (C^{-1})_{ne})} & \cdots & \mathbf{d}_{n-m,n-m}^{\prime(\Delta (C^{-1})_{ne})} \\ \vdots & \vdots \\ \mathbf{d}_{n-m1}^{\prime(\Delta (C^{-1})_{ne})} & \cdots & \mathbf{d}_{n-m,n-m}^{\prime(\Delta (C^{-1})_{ne})} \end{bmatrix} \end{bmatrix}$$
(40)

Where  $\mathbf{d'}_{kl}^{(\Delta W)}$  denotes the average effects of the energy demand structural changes on the total energy requirements absorbed into direct and indirect economic transactions between non-energy commodities k and l. The  $\mathbf{d'}_{kl}^{(\Delta fne)}$ ,  $\mathbf{d'}_{kl}^{(\Delta Bne)}$  and  $\mathbf{d'}_{kl}^{(\Delta [C^{-1}]ne)}$ describe the average effects of the non-energy final demand changes, non-energy input structural changes, and the non-energy product-mix changes on the total energy requirements absorbed into economic transactions between non-energy commodities k and l respectively. The total effect of each component can be finally written like eq. (34).

$$\Delta \mathbf{E}^{c}\Big|_{\mathrm{ESI}}^{-} = \sum_{j=1}^{n-m} \sum_{i=1}^{m} \mathbf{e}^{\prime}_{ij}^{(\Delta W)} + \sum_{j=1}^{n-m} \sum_{i=1}^{m} \mathbf{e}^{\prime}_{ij}^{(\Delta \hat{f}_{ne})} + \sum_{j=1}^{n-m} \sum_{i=1}^{m} \mathbf{e}^{\prime}_{ij}^{(\Delta B_{ne})} + \sum_{j=1}^{n-m} \sum_{i=1}^{m} \mathbf{e}^{\prime}_{ij}^{(\Delta [C^{-1}]_{ne})}$$

$$= \sum_{l=1}^{n-m} \sum_{k=1}^{n-m} \mathbf{d}^{\prime}_{kl}^{(\Delta \hat{W})} + \sum_{l=1}^{n-m} \sum_{k=1}^{n-m} \mathbf{d}^{\prime}_{kl}^{(\Delta \hat{f}_{ne})} + \sum_{l=1}^{n-m} \sum_{k=1}^{n-m} \mathbf{d}^{\prime}_{kl}^{(\Delta B_{ne})} + \sum_{l=1}^{n-m} \sum_{k=1}^{n-m} \mathbf{d}^{\prime}_{kl}^{(\Delta [C^{-1}]_{ne})}$$

$$(41)$$

In this paper, the hybrid rectangular IO table in 1985 and 1990 was actually estimated by using the basic data, the average effects were analyzed. In the next chapter, the application of basic data is easily explained.

## 5. Application of Basic Data

Sets of basic data for this analysis are listed below:

- (1) Energy intensities based on the Input-Output Analysis in 1985 and 1990 (provided by National Institute for Environmental Studies, Environmental Agency of Japan.)
- (2) Output matrices: by industry×commodity (so called V table) in 1985 and 1990
- (3) Traditional I-O tables: by commodity×commodity (so called X table) in 1985 and 1990
- (4) Output table of by-products in 1985 and 1990

Here, (2), (3), (4) are provided by Management and Coordination Agency of Japan.

First, the inputs of energy goods in X table (column  $527 \times row 411$ : basic sector classification) were changed from monetary term (million yen) into physical term (terra calorie) by using the amount of energy inputs in physical term estimated by National Institute for Environmental Studies. The amount of imports is included in X table, and therefore it seems that the energy goods like a crude petroleum and so on, which depend on the import in practice, are completely produced in Japan. Furthermore, the outputs and the inputs of by-products were eliminated from X table in order to avoid the inverse flows of productive processes resulting from their negative inputs.

Since the sectors in V table (column  $108 \times$  row 108) does not correspond to the basic sector classification, the outputs of energy goods of industries cannot be changed from monetary term into physical term in detailed sectors. Therefore, by distributing the domestic energy outputs in physical terms given from the aggregated X table (column  $108 \times$  row 108) in proportion to the market share in monetary term estimated from V table, the outputs of the energy goods of industries can be estimated in practical. Furthermore, we aggregated both X table and V table from 108 sectors to 94 sectors and the estimated U table by using the basic model under the assumption of a commodity technology. The energy sectors were aggregated from 19 fuels and/or materials in Energy intensities based on the Input-Output Analysis to 6 sectors (Coal mining & lignite, Crude petroleum & natural gas, Petroleum refinery products, Coal products, Electricity, Gas supply & steam & hot water supply) as shown in Table 2. The other 88 sectors were dealt with as the non-energy sectors.

In this study, Both V and U in 1985 and 1990 were converted by using the base year price in 1990. From the estimated V and U, we obtained a hybrid rectangular IO table and analyzed by means of the hybrid methodology discussed in chapter 4.

| Tuble 2. Energy Sector Clussification |                                   |  |  |  |  |  |
|---------------------------------------|-----------------------------------|--|--|--|--|--|
| No. Name of fuel and material         | No. Name of energy sector         |  |  |  |  |  |
| 01. Coking coal                       | 01. Coal mining & Lignite         |  |  |  |  |  |
| 02. Steam coal, Lignite & Anthracite  |                                   |  |  |  |  |  |
| 03. Crude petroleum                   | 02. Crude petroleum & Natural gas |  |  |  |  |  |
| 04. Natural gas                       |                                   |  |  |  |  |  |
| 05. Jet fuel oil                      | 03. Petroleum refinery products   |  |  |  |  |  |
| 06. Gasoline                          |                                   |  |  |  |  |  |
| 07. Naphtha                           |                                   |  |  |  |  |  |
| 08. Kerosene                          |                                   |  |  |  |  |  |
| 09. Light oil                         |                                   |  |  |  |  |  |
| 10. Heavy oil A                       |                                   |  |  |  |  |  |
| 11. Heavy oil BC                      |                                   |  |  |  |  |  |
| 12. LPG                               |                                   |  |  |  |  |  |
| 13. Coke                              | 04. Coal products                 |  |  |  |  |  |
| 14. Coke oven gas                     |                                   |  |  |  |  |  |
| 15. Blast furnace gas                 |                                   |  |  |  |  |  |
|                                       |                                   |  |  |  |  |  |

Table 2. Energy Sector Classification

| 16. Electricity              | 05. Electricity                          |
|------------------------------|------------------------------------------|
| 17. Self-power generation    |                                          |
| 18. Gas supply               | 06. Gas supply, Steam & Hot water supply |
| 19. Steam & Hot water supply |                                          |
|                              |                                          |

# 6. Results

#### 6.1. Structural decomposition of energy intensities: 1985-1990

We analyzed the effects of the changes in economic structure between 1985 and 1990 on the energy intensities by means of the hybrid structural decomposition analysis.

Table 3 shows the effects estimated by using eq. (31). From the results, it was indicated that the energy intensities of each non-energy commodity have fluctuated as a whole due to the changes in non-energy production technology. During this period, especially, the energy intensity of chemical fertilizer (No.30) most greatly increased by 28% (23.473 Gcal). Considering the sources of the change, we can easily comprehend that the large increase is because of the change in the energy demand structure rather than the production technology changes from the chemical fertilizer's row in Table. 3. In the same way, the energy intensities of air transport (No.75) and ocean transport & coastal transport (No.74) greatly increased by 24% (13.893 Gcal) and 13% (9.520 Gcal), respectively because of the changes in the energy demand structure.

Table 4 shows the contributions of energy-supply industries to the effects on the energy intensities of the above-mentioned three non-energy commodities. The column of total change in table 4 indicates that crude petroleum & natural gas industry and petroleum refinery products industry are main contributors of the changes in the energy intensities of these commodities (No.30, No.74, No.75).

On the other hand, as is also seen from Table 3, the energy intensity of non-ferrous metals (No.46) markedly decreased by 46% (41.503 Gcal) mainly because of the changes in energy demand structure. Subsequently, the energy intensities of pig iron & crude steel (No.43) and steels (No.44) greatly decreased by 9% (20.042 Gcal) and 15% (19.346 Gcal), respectively. The large decreases were mainly brought from the non-energy input structural changes. The main reason was that the input structural changes acted in the direction of large reduction in the demand of pig iron & crude steel (No.43) and road transport (No.73) and ocean transport & coastal transport (No.74) as a result.

The total change in Table 5 illustrates that crude petroleum & natural gas industry and electricity industry are main contributors to the decrease in the energy intensity of non-ferrous metals. In the same way, considering the contributions to the decreases in the energy intensities of pig iron & crude steel and steels, the non-energy input structural changes acted in the direction of reduction of the use of coal mining & lignite and coal products.

Although the effects of the non-energy product-mix structural changes were a small value on the whole, it was indicated that the changes decreased the energy intensities on

average. Especially, the energy intensity of industrial organic chemicals (No.32) most greatly declined by 2.977 Gcal mainly because of the changes in non-energy product-mix.

|                 |                                                  | (Gcal per million yen) |          |         |             |                        |         |
|-----------------|--------------------------------------------------|------------------------|----------|---------|-------------|------------------------|---------|
|                 |                                                  | Energy in              | ntensity | E       | ffects on e | energy inter           | nsity   |
| No.             | 88-non-energy commodity                          | 1985                   | 1990     | △ W     | △ Bne       | △ [C <sup>-1</sup> ]ne | Total   |
| 07.             | Agriculture                                      | 10.859                 | 12.527   | 1.558   | 0.036       | 0.076                  | 1.669   |
| 08.             | Livestock-raising & Sericulture                  | 15.586                 | 13.206   | 0.701   | -2.628      | -0.452                 | -2.379  |
| 09.             | Agricultural services                            | 21.418                 | 25.224   | 4.167   | -0.292      | -0.070                 | 3.806   |
| 10.             | Forestry                                         | 11.833                 | 15.702   | 4.636   | -0.984      | 0.217                  | 3.869   |
| 11.             | Fisheries & Culture                              | 47.668                 | 52.938   | 6.178   | 1.654       | -2.562                 | 5.270   |
| 12.             | Metal ores                                       | 33.275                 | 29.292   | -2.911  | -0.810      | -0.262                 | -3.982  |
| 13.             | Non-ferrous metal ores                           | 12.842                 | 13.810   | 1.341   | -0.489      | 0.117                  | 0.969   |
| 14.             | Slaughtering & Meat processing                   | 15.369                 | 12.605   | 0.336   | -2.687      | -0.411                 | -2.762  |
| 15.             | Livestock-raising foods                          | 19.357                 | 21.043   | 3.288   | -1.540      | -0.063                 | 1.685   |
| 16.             | Sea foods                                        | 24.737                 | 31.523   | 3.848   | 4.103       | -1.165                 | 6.786   |
| 17              | Grain milling & Flour                            | 14 080                 | 14 381   | 1 621   | -1 496      | 0 175                  | 0.300   |
| 18              | Preserved agricultural foodstuffs etc.           | 20.943                 | 22 328   | 2 304   | -0 724      | -0 195                 | 1 384   |
| 19              | Sugar etc. & Other foods                         | 17 937                 | 19 190   | 3 849   | -2 646      | 0.051                  | 1.255   |
| 20              | Beverages                                        | 18.002                 | 17.664   | -0.067  | -0.064      | -0.207                 | -0.337  |
| 20.             | Feeds & Organic fertilizers                      | 22 905                 | 10 001   | -0.007  | -6.451      | -0.207                 | -0.557  |
| $\frac{21}{22}$ | Tobaço                                           | 5 125                  | 5 574    | 0.201   | -0.431      | -0.108                 | -2.917  |
| 22.             | Febricated textile products                      | 27 505                 | 20.766   | 0.201   | 2 009       | 0.105                  | 0.450   |
| 23.             | Waaring apparel & Other textile products         | 22,810                 | 20.550   | 1 220   | 2.000       | -0.109                 | 2.202   |
| 24.             | Timber & Wasdam and dusts                        | 22.819                 | 20.330   | -1.520  | -0.840      | -0.102                 | -2.208  |
| 25.             | Finite & Wooden products                         | 13.199                 | 10.145   | 2.875   | 0.050       | 0.022                  | 2.940   |
| 26.             | Furniture & Fixtures                             | 17.305                 | 19.148   | 0.229   | 1.84/       | -0.230                 | 1.840   |
| 27.             | Pulp & Paper                                     | 62.363                 | 67.664   | -4.202  | 9.389       | 0.110                  | 5.303   |
| 28.             | Processed paper products                         | 42.522                 | 32.778   | -6.445  | -3.051      | -0.247                 | -9.743  |
| 29.             | Printing & Publishing                            | 15.847                 | 18.668   | -0.127  | 2.931       | 0.017                  | 2.822   |
| 30.             | Chemical fertilizer                              | 84.040                 | 107.514  | 34.501  | -11.415     | 0.386                  | 23.473  |
| 31.             | Industrial inorganic chemicals                   | 103.205                | 100.705  | 0.809   | -2.522      | -0.788                 | -2.501  |
| 32.             | Industrial organic chemicals                     | 195.200                | 194.478  | 5.953   | -3.698      | -2.977                 | -0.722  |
| 33.             | Resins                                           | 134.744                | 123.613  | -4.103  | -6.565      | -0.463                 | -11.131 |
| 34.             | Chemical fibers                                  | 101.851                | 97.827   | 4.363   | -8.335      | -0.052                 | -4.024  |
| 35.             | Final chemical products                          | 41.600                 | 38.119   | -1.638  | -0.914      | -0.931                 | -3.482  |
| 36.             | Plastic products                                 | 49.063                 | 52.933   | -0.582  | 4.994       | -0.542                 | 3.871   |
| 37.             | Rubber products                                  | 52.145                 | 54.347   | 2.253   | 0.373       | -0.425                 | 2.201   |
| 38.             | Leather, Leather products & Fur skins            | 14.863                 | 16.970   | 0.672   | 1.674       | -0.239                 | 2.107   |
| 39.             | Glass & Glass products                           | 47.864                 | 45.574   | -2.655  | 1.342       | -0.978                 | -2.290  |
| 40.             | Cement & Cement products                         | 39.407                 | 36.747   | -2.361  | -0.183      | -0.113                 | -2.657  |
| 41.             | Pottery, China & earthenware                     | 30.598                 | 30.981   | 0.271   | 0.420       | -0.305                 | 0.385   |
| 42.             | Miscellaneous ceramic, Stone & Clay products     | 46.058                 | 43.962   | -3.832  | 2.086       | -0.349                 | -2.096  |
| 43.             | Pig iron & Crude steel                           | 217.712                | 197.670  | 6.644   | -27.083     | 0.398                  | -20.042 |
| 44.             | Steels                                           | 130.744                | 111.398  | 4.165   | -22.053     | -1.457                 | -19.346 |
| 45.             | Steel products                                   | 73.129                 | 64.737   | -2.389  | -5.514      | -0.490                 | -8.393  |
| 46.             | Non-ferrous metals                               | 90.257                 | 48.755   | -36.203 | -5.369      | 0.068                  | -41.503 |
| 47.             | Non-ferrous metal products                       | 36.330                 | 30.993   | -11.281 | 5.815       | 0.130                  | -5.337  |
| 48.             | Metal products for construction, architecture    | 30.848                 | 31.462   | -0.743  | 1.852       | -0.496                 | 0.614   |
| 49.             | Other metal products                             | 37.695                 | 36.304   | -0.587  | -0.496      | -0.308                 | -1.391  |
| 50.             | General industrial machinery                     | 24.369                 | 23.725   | -0.834  | 0.290       | -0.099                 | -0.642  |
| 51.             | Special industrial machinery                     | 21.854                 | 20.743   | -1.417  | -0.059      | 0.364                  | -1.111  |
| 52.             | Other general machines                           | 20.439                 | 26.859   | 1.084   | 5.894       | -0.558                 | 6.420   |
| 53.             | Office machines & Machinery for service industry | 23.914                 | 16.998   | -1.859  | -5.126      | 0.067                  | -6.918  |
| 54              | Household electric appliance                     | 26.261                 | 20.343   | -1.413  | -3.234      | -1.273                 | -5.919  |
| 55              | Electric & Communication equipment               | 26.703                 | 16.503   | -5.730  | -4.467      | -0.005                 | -10.201 |
| 56              | Heavy electrical equipment                       | 21.540                 | 20.495   | -1.337  | 0.343       | -0.052                 | -1.046  |

 Table 3. Structural decomposition analysis of change in energy intensity

|     |                                            | Energy in | ntensity | Effe    | ects on ene | ergy Intensi           | ty      |
|-----|--------------------------------------------|-----------|----------|---------|-------------|------------------------|---------|
| No. | 88-non-energy commodity                    | 1985      | 1990     | △ W     | △ Bne       | ▲ [C <sup>-1</sup> ]ne | Total   |
| 57. | Other electrical equipment                 | 20.853    | 23.355   | -1.470  | 4.469       | -0.496                 | 2.503   |
| 58. | Motor vehicles                             | 26.007    | 24.309   | -1.543  | 0.242       | -0.397                 | -1.698  |
| 59. | Ships & Its Repair                         | 28.878    | 28.848   | 0.256   | -0.011      | -0.279                 | -0.033  |
| 60. | Other transport equipment & Its Repair     | 21.751    | 25.217   | 0.526   | 2.822       | 0.117                  | 3.465   |
| 61. | Scientific instruments                     | 16.249    | 15.409   | -0.332  | -0.419      | -0.092                 | -0.842  |
| 62. | Miscellaneous manufacturing products       | 23.140    | 21.114   | -0.803  | -1.192      | -0.032                 | -2.026  |
| 63. | Residential & Non-Residential construction | 15.191    | 15.601   | -0.197  | 0.738       | -0.131                 | 0.411   |
| 64. | Repair of construction                     | 18.774    | 20.446   | 0.568   | 1.259       | -0.154                 | 1.673   |
| 65. | Civil engineering                          | 18.305    | 17.880   | 0.670   | -1.013      | -0.082                 | -0.426  |
| 66. | Water supply                               | 33.817    | 38.007   | 3.797   | 0.424       | -0.031                 | 4.190   |
| 67. | Waste disposal services                    | 9.108     | 10.680   | 0.620   | 0.944       | 0.009                  | 1.573   |
| 68. | Wholesale trade & Retail trade             | 6.014     | 7.067    | 0.567   | 0.739       | -0.253                 | 1.053   |
| 69. | Financial service & Insurance              | 3.404     | 3.425    | 0.342   | -0.359      | 0.039                  | 0.022   |
| 70. | Real estate rental service                 | 2.874     | 5.684    | 2.403   | 0.411       | -0.004                 | 2.810   |
| 71. | House rent                                 | 1.937     | 2.338    | 0.207   | 0.201       | -0.005                 | 0.402   |
| 72. | Railway transport                          | 22.590    | 19.854   | -0.956  | -2.628      | 0.849                  | -2.734  |
| 73. | Road transport                             | 24.917    | 28.269   | 3.328   | -0.196      | 0.220                  | 3.352   |
| 74. | Ocean transport & Coastal transport        | 72.239    | 81.759   | 8.154   | 1.517       | -0.151                 | 9.520   |
| 75. | Air transport                              | 56.731    | 70.622   | 14.403  | -0.519      | 0.009                  | 13.893  |
| 76. | Storage facility service                   | 12.219    | 13.914   | 0.994   | 0.541       | 0.159                  | 1.694   |
| 77. | Services relating to transport             | 9.197     | 10.942   | 0.842   | 0.914       | -0.010                 | 1.745   |
| 78. | Telecommunication                          | 5.980     | 5.418    | 0.015   | -0.590      | 0.015                  | -0.561  |
| 79. | Broadcasting                               | 8.521     | 8.937    | -0.677  | 1.098       | -0.007                 | 0.415   |
| 80. | Education                                  | 7.654     | 7.259    | -0.438  | 0.025       | 0.018                  | -0.395  |
| 81. | Research                                   | 12.563    | 16.998   | 1.847   | 2.568       | 0.021                  | 4.435   |
| 82. | Medical service, Health & Hygiene          | 15.908    | 17.649   | 0.266   | 1.659       | -0.184                 | 1.741   |
| 83. | Other public services                      | 5.920     | 8.197    | 0.552   | 1.746       | -0.020                 | 2.278   |
| 84. | Advertising services                       | 9.964     | 12.586   | -0.043  | 2.588       | 0.075                  | 2.621   |
| 85. | Information services                       | 5.979     | 5.895    | -0.214  | 0.120       | 0.010                  | -0.084  |
| 86. | Goods rental & leasing                     | 2.785     | 4.814    | 0.379   | 1.640       | 0.008                  | 2.027   |
| 87. | Repair of motor vehicles and machine       | 13.878    | 14.485   | 0.584   | -0.613      | 0.637                  | 0.608   |
| 88. | Other business services                    | 9.347     | 6.217    | -1.408  | -1.749      | 0.027                  | -3.130  |
| 89. | Amusement and recreation services          | 11.106    | 11.593   | 0.235   | 0.334       | -0.080                 | 0.488   |
| 90. | Eating and drinking place                  | 12.525    | 13.708   | 0.296   | 0.988       | -0.101                 | 1.183   |
| 91. | Hotel and other lodging places             | 11.944    | 14.406   | 1.229   | 1.323       | -0.090                 | 2.461   |
| 92. | Other personal services                    | 10.018    | 11.285   | 0.398   | 0.931       | -0.060                 | 1.268   |
| 93. | Activities not elsewhere classified        | 33.570    | 31.812   | -2.811  | 1.162       | -0.110                 | -1.758  |
| 94. | Office supplies                            | 8.530     | 10.208   | 1.147   | 0.525       | 0.007                  | 1.679   |
| 95. | Average (**)                               | 32.685    | 32.258   | 0.473   | -0.703      | -0.198                 | -0.428  |
| 96. | Max (* *)                                  | 217.712   | 197.670  | 34.501  | 9.389       | 0.849                  | 23.473  |
| 97. | Min (**)                                   | 1.937     | 2.338    | -36.203 | -27.083     | -2.977                 | -41.503 |

|     |                      | _                                     | Ei        | ffects on en | ergy intens                      | ity          |
|-----|----------------------|---------------------------------------|-----------|--------------|----------------------------------|--------------|
| No. | Non-energy commodity | Energy-supply industry                | $\land W$ | △ Bne        | $\triangle$ [C <sup>-1</sup> ]ne | Total Change |
| 30. | Chemical fertilizer  | Coal mining & Lignite:                | -0.224    | -0.898       | -0.034                           | -1.156       |
|     |                      | Crude petroleum & Natural gas:        | 17.052    | -5.197       | 0.245                            | 12.100       |
|     |                      | Petroleum refinery products:          | 14.546    | -3.767       | 0.231                            | 11.010       |
|     |                      | Coal products:                        | 5.979     | 0.072        | 0.019                            | 6.070        |
|     |                      | Electricity:                          | -3.137    | -1.593       | -0.073                           | -4.803       |
|     |                      | Gas supply, Steam & Hot water supply: | 0.286     | -0.032       | -0.002                           | 0.252        |
|     |                      | Total:                                | 34.501    | -11.415      | 0.386                            | 23.473       |
| 75. | Air transport        | Coal mining & Lignite:                | -0.054    | -0.007       | 0.001                            | -0.060       |
|     |                      | Crude petroleum & Natural gas:        | 7.966     | -0.207       | 0.002                            | 7.761        |
|     |                      | Petroleum refinery products:          | 6.023     | -0.143       | 0.000                            | 5.880        |
|     |                      | Coal products:                        | -0.033    | 0.006        | 0.000                            | -0.027       |
|     |                      | Electricity:                          | 0.477     | -0.158       | 0.005                            | 0.324        |
|     |                      | Gas supply, Steam & Hot water supply: | 0.023     | -0.009       | 0.000                            | 0.014        |
|     |                      | Total:                                | 14.403    | -0.519       | 0.009                            | 13.893       |
| 74. | Ocean transport &    | Coal mining & Lignite:                | -0.159    | 0.024        | 0.023                            | -0.112       |
|     | Coastal transport    | Crude petroleum & Natural gas:        | 5.023     | 0.728        | -0.105                           | 5.646        |
|     |                      | Petroleum refinery products:          | 3.431     | 0.594        | -0.098                           | 3.927        |
|     |                      | Coal products:                        | -0.055    | -0.003       | 0.017                            | -0.041       |
|     |                      | Electricity:                          | -0.110    | 0.166        | 0.011                            | 0.067        |
|     |                      | Gas supply, Steam & Hot water supply: | 0.024     | 0.008        | 0.000                            | 0.032        |
|     |                      | Total:                                | 8.154     | 1.517        | -0.151                           | 9.520        |

**Table 4.** Contribution of each energy-supply industry to the effect on the energy intensity: typical examples of major increase in energy intensity (Gcal per million yen)

Source: Author's calculations.

**Table 5.** Contribution of each energy-supply industry to the effect on the energy intensity: typical examples of major decrease of energy intensity (Gcal per million yen)

|     |                        |                                       | E                     | ffects on en | ergy intens                      | ity          |
|-----|------------------------|---------------------------------------|-----------------------|--------------|----------------------------------|--------------|
| No. | Non-energy commodity   | Energy-supply industry                | ${}^{\vartriangle}$ W | △ Bne        | $\triangle$ [C <sup>-1</sup> ]ne | Total Change |
| 46. | Non-ferrous metals     | Coal mining & Lignite:                | -3.075                | 0.115        | 0.067                            | -2.893       |
|     |                        | Crude petroleum & Natural gas:        | -10.366               | -2.799       | 0.026                            | -13.139      |
|     |                        | Petroleum refinery products:          | -6.904                | -2.239       | 0.035                            | -9.108       |
|     |                        | Coal products:                        | -1.598                | 0.221        | 0.039                            | -1.338       |
|     |                        | Electricity:                          | -14.260               | -0.654       | -0.100                           | -15.014      |
|     |                        | Gas supply, Steam & Hot water supply: | -0.001                | -0.012       | 0.001                            | -0.012       |
|     |                        | Total:                                | -36.203               | -5.369       | 0.068                            | -41.503      |
|     |                        |                                       |                       |              |                                  |              |
| 43. | Pig iron & Crude steel | Coal mining & Lignite:                | 2.161                 | -9.400       | 0.128                            | -7.111       |
|     |                        | Crude petroleum & Natural gas:        | 1.859                 | -4.454       | 0.081                            | -2.514       |
|     |                        | Petroleum refinery products:          | -0.310                | -2.984       | 0.048                            | -3.246       |
|     |                        | Coal products:                        | 1.969                 | -7.043       | 0.092                            | -4.982       |
|     |                        | Electricity:                          | 0.957                 | -3.169       | 0.047                            | -2.165       |
|     |                        | Gas supply, Steam & Hot water supply: | 0.008                 | -0.034       | 0.002                            | -0.024       |
|     |                        | Total:                                | 6.644                 | -27.083      | 0.398                            | -20.042      |
|     |                        |                                       |                       |              |                                  |              |
| 44. | Steels                 | Coal mining & Lignite:                | 0.996                 | -7.828       | -0.658                           | -7.490       |
|     |                        | Crude petroleum & Natural gas:        | 1.671                 | -3.477       | -0.097                           | -1.903       |
|     |                        | Petroleum refinery products:          | -0.375                | -2.290       | -0.044                           | -2.709       |
|     |                        | Coal products:                        | 0.327                 | -5.910       | -0.504                           | -6.087       |
|     |                        | Electricity:                          | 1.361                 | -2.511       | -0.155                           | -1.305       |
|     |                        | Gas supply, Steam & Hot water supply: | 0.185                 | -0.037       | 0.000                            | 0.148        |

Total:

### 6.2. Structural decomposition of total energy requirements: 1985-1990

In this secton, we analyzed the effects of the changes in energy demand structure, non-energy final demand, and non-energy production technology on the total energy requirements by using eq. (37) etc. Table 6 shows the effects by non-energy commodities. Table 7 describes the contributions of energy-supply industries to the total effects corresponding to the final row in Table 6. Table 8 and 9 similarly present the contributions to the effects of the typical commodities in which large increase and decrease are shown in Table 6. We further analyzed the effects on the total energy requirements absorbed into the transactions between non-energy sectors. Figures 1, 2, 3 and 4 present the major effects in the transactions between non-energy sectors.

The important findings from the results are explained below.

#### 6.2.1. Total effects of structural changes

First, as is seen from the total effects of the final row in Table 6, the total energy requirements greatly increased by 1,346,819 Tcal mainly because of the changes in non-energy final demands. The final demand changes grealy promoted the contributions of the crude petroleum industry and the electricity industry (see Table 7).

In contrast, the total effect of the changes in non-energy product-mix decreased by 54,490 Tcal and the structural changes led to energy savings between 1985 and 1990. The contributions of crude petroleum & natural gas industry and petroleum refinery product industry especially decreased by 21,674 Tcal and 16,396 Tcal respectively as a result of the product-mix changes (see Table 7).

### 6.2.2. Sources of significant increase in total energy requirement

Table 6 indicates that the total energy requirement of each commodity has greatly fluctuated in the positive direction or the negative direction during only five years. Especially, the energy requirement of residential & non-residential construction (No.63) greatly increased by 268,669 Tcal because of the changes in non-energy final demand and the non-energy input structure. Subsequently, the energy requirements of civil engineering (No.65) and motor vehicles (No.58) increased by 137,218 Tcal and 120,236 Tcal respectively because of the changes in non-energy final demand. From the total change in Table 8, the rate of the contribution of the crude petroleum & natural gas industry was very high as 30%, 45%, and 37% respectively and the industry was a main contributor of these commodities (No.63, No.65, No.58).

From the 63<sup>rd</sup> column of left-hand side matrix in Figure 2, we can find that the remarkable increase in the energy requirement of residential & non-residential construction was mainly induced through the direct and indirect transactions of itself, industrial organic chemicals (No.32), cement & cement products (No.40), pig iron & crude steel (No.43), steels (No.44) and road transport (No.73) as a result of the changes

in non-energy final demand. Figure 2 similarly illustrates that the large increase of civil engineering was caused by the transactions of itself, cement & cement products (No.40), pig iron & crude steel (No.43) while that of motor vehicles was caused through the transactions of itself, industrial organic chemicals (No.32), pig iron & crude steel (No.43). Taken altogether, Figure 2 illustrates significant increase in the energy inputs required for the intermediate inputs of industrial organic chemicals, pig iron & crude steel steel that are induced by the change of the final demand of the electric equipment such as household electric appliance (No.54), electric & communication equipment (No.55).

We can, in the same way, obtain more information about key transactions with the major effects of  $\Delta W$ ,  $\Delta B_{ne}$ ,  $\Delta [C^{-1}]_{ne}$  on the total energy requirements from the left-hand side matrix in Figures 1, 3, and 4. For example, considering the energy requirements of medical service, health & hygiene (No.82) which showed the largest effect of the changes in non-energy input sturcture ( $\Delta B_{ne}$ ), it turned out that the large increase was caused by the transactions of industrial organic chemicals (No.32) from the left-hand side matrix in Figure 3.

#### 6.2.3. Sources of significant decrease in total energy requirement

In Table 6, the total energy requirement of steels (No.44) greatly decreased by 118,251 because of the changes in non-energy final demand and non-energy input structure. Subsequently, the energy requirements of pulp & paper (No.27) and other electrical equipment (No.57) decreased by 74,924 Tcal and 50,598 Tcal respectively mainly because of the final demand shifts. From total change in Table 9, coal mining & lignaite industry and coal products industry mainly contributed to the significant reduction of the total energy requirement of steels. We can similarly find the major contributors to the total change in the energy requirements of pulp & paper and other electrical equipment.

As is seen from the 44<sup>th</sup> column of right-hand side in Figures 2 and 3, the large decrease of steels was mainly brought through the transactions of pig iron & crude steel (No.43). Also, the decrease of the total energy requirement of other electrical equipment was mainly caused by the transactions of itself, industrial organic chemicals (No.32), pig iron & crude steel (No.43) and non-ferrous metals (No.46).

#### 6.2.4. Effects of changes in non-energy product-mix

The changes in non-energy product-mix have negative effects, that is, saving of energy in contrast with non-energy input structure and/or non-energy final demand. (see Table 6 and/or Figure 4). The  $32^{nd}$  and  $43^{rd}$  row of the right-hand side in Figure 4 describes that the structural changes especially brought about the reductions in energy inputs required for transactions of industrial organic chemicals (No.32) and pig iron & crude steel (No.43).

|     |                                                  |         | Effects | on total energ | y requirement          |              |
|-----|--------------------------------------------------|---------|---------|----------------|------------------------|--------------|
| No. | 88-non-energy commodity                          | ∆ W     | △ fne   | △ Bne          | ▲ [C <sup>-1</sup> ]ne | Total Change |
| 07. | Agriculture                                      | 1,680   | 9,439   | 54             | 81                     | 11,255       |
| 08. | Livestock-raising & Sericulture                  | 254     | 970     | -963           | -165                   | 96           |
| 09. | Agricultural services                            | 340     | 657     | -24            | -6                     | 968          |
| 10. | Forestry                                         | -2,328  | 2,033   | 490            | -109                   | 86           |
| 11. | Fisheries & Culture                              | 1,786   | 8,085   | 482            | -746                   | 9,607        |
| 12. | Metal ores                                       | 2,991   | 5,955   | 835            | 265                    | 10,046       |
| 13. | Non-ferrous metal ores                           | -334    | -964    | 122            | -29                    | -1,205       |
| 14. | Slaughtering & Meat processing                   | 218     | -5,528  | -1,646         | -252                   | -7,207       |
| 15. | Livestock-raising foods                          | 6,386   | 3,773   | -2,995         | -123                   | 7,041        |
| 16. | Sea foods                                        | 13,388  | -4,203  | 14,270         | -4,052                 | 19,403       |
| 17. | Grain milling & Flour                            | 4,833   | -1,082  | -4,460         | 522                    | -187         |
| 18. | Preserved agricultural foodstuffs etc            | 11,002  | 40,067  | -3,506         | -938                   | 46,625       |
| 19. | Sugar etc & Other foods                          | 13,481  | -39,039 | -9,199         | 183                    | -34,574      |
| 20. | Beverages                                        | -333    | 20,997  | -320           | -1,027                 | 19,317       |
| 21. | Feeds & Organic fertilizers                      | 184     | 125     | -327           | -5                     | -24          |
| 22. | Tobacco                                          | 539     | -1,095  | 390            | 276                    | 111          |
| 23. | Fabricated textile products                      | 916     | -15,895 | 4,148          | -390                   | -11,222      |
| 24. | Wearing apparel & Other textile products         | -6,620  | 19,798  | -4,241         | -512                   | 8,425        |
| 25. | Timber & Wooden products                         | -1,626  | -4,686  | -24            | -12                    | -6,348       |
| 26. | Furniture & Fixtures                             | 440     | 5,372   | 3,567          | -445                   | 8,934        |
| 27. | Pulp & Paper                                     | -2,764  | -78,681 | 6,443          | 78                     | -74,924      |
| 28. | Processed paper products                         | -1,549  | 60,663  | -672           | -65                    | 58,377       |
| 29. | Printing & Publishing                            | -213    | -5,893  | 4,911          | 29                     | -1,166       |
| 30. | Chemical fertilizer                              | 67      | -4,751  | -14            | 2                      | -4,697       |
| 31. | Industrial inorganic chemicals                   | -23     | 3,806   | 68             | 21                     | 3,872        |
| 32. | Industrial organic chemicals                     | 109     | 12,671  | -71            | -56                    | 12,654       |
| 33. | Resins                                           | -839    | 10,220  | -1,341         | -94                    | 7,946        |
| 34. | Chemical fibers                                  | 828     | -6,076  | -1,576         | -10                    | -6,835       |
| 35. | Final chemical products                          | -4,386  | 34,470  | -2,442         | -2,496                 | 25,146       |
| 36. | Plastic products                                 | -398    | 4,205   | 3,401          | -369                   | 6,839        |
| 37. | Rubber products                                  | 1,778   | 388     | 295            | -335                   | 2,126        |
| 38. | Leather, Leather products & Fur skins            | 503     | 387     | 1,254          | -179                   | 1,965        |
| 39. | Glass & Glass products                           | -417    | -3,239  | 211            | -153                   | -3,598       |
| 40. | Cement & Cement products                         | -86     | -1,323  | -7             | -4                     | -1,420       |
| 41. | Pottery, China & earthenware                     | 75      | -1,414  | 116            | -84                    | -1,306       |
| 42. | Miscellaneous ceramic, Stone & Clay products     | -1,167  | -1,213  | 637            | -106                   | -1,850       |
| 43. | Pig iron & Crude steel                           | 795     | 91,109  | -3,407         | 49                     | 88,546       |
| 44. | Steels                                           | 7,246   | -85,006 | -37,981        | -2,511                 | -118,251     |
| 45. | Steel products                                   | -82     | -875    | -190           | -17                    | -1,164       |
| 46. | Non-ferrous metals                               | 47,422  | -56,357 | 7,236          | -97                    | -1,796       |
| 47. | Non-ferrous metal products                       | -6,849  | -8,464  | 3,672          | 81                     | -11,560      |
| 48. | Metal products for construction, architecture    | -152    | 670     | 376            | -101                   | 793          |
| 49. | Other metal products                             | -861    | -5,839  | -727           | -455                   | -7,881       |
| 50. | General industrial machinery                     | -4,609  | 34,709  | 1,549          | -533                   | 31,116       |
| 51. | Special industrial machinery                     | -13.057 | 52.637  | -571           | 3.348                  | 42.357       |
| 52. | Other general machines                           | 2,443   | 5,446   | 13,294         | -1.258                 | 19.926       |
| 53. | Office machines & Machinery for service industry | -4,291  | 25,304  | -11,779        | 158                    | 9,392        |
| 54. | Household electric appliance                     | -10,512 | 69,451  | -23,896        | -9.449                 | 25.595       |
| 55. | Electric & Communication equipment               | -60,523 | 219,430 | -47,360        | -27                    | 111,520      |
| 56. | Heavy electrical equipment                       | -4,902  | 26,272  | 1,175          | -190                   | 22.355       |
| 57. | Other electrical equipment                       | -3.221  | -57.521 | 11.364         | -1.220                 | -50.598      |
| 58  | Motor vehicles                                   | -27.064 | 150.125 | 4,102          | -6.928                 | 120 236      |
| 59  | Shins & Its Repair                               | 449     | -11 338 | -8             | -478                   | -11 375      |

**Table 6.** Structural decomposition analysis of change in total energy requirement (Tcal)

|     |                                           |         | Effects of | n total energy | requirement   |              |
|-----|-------------------------------------------|---------|------------|----------------|---------------|--------------|
| No. | 88-non-energy commodity                   | ∆ W     | △ fne      | △ Bne          | $[C^{-1}]$ ne | Total Change |
| 60. | Other transport equipment & Its Repair    | 630     | 8,795      | 3,409          | 141           | 12,975       |
| 61. | Scientific instruments                    | -1,006  | 10,554     | -1,269         | -276          | 8,003        |
| 62. | Miscellaneous manufacturing products      | -2,478  | 7,178      | -3,677         | -97           | 926          |
| 63. | Residential, Non-Residential construction | -8,800  | 251,335    | 31,823         | -5,688        | 268,669      |
| 64. | Repair of construction                    | 15      | -777       | 33             | -4            | -733         |
| 65. | Civil engineering                         | 17,586  | 149,086    | -27,276        | -2,178        | 137,218      |
| 66. | Water supply                              | 5,734   | 13,476     | 638            | -48           | 19,800       |
| 67. | Waste disposal services                   | 763     | -1,008     | 1,161          | 11            | 927          |
| 68. | Wholesale trade & Retail trade            | 28,753  | 35,032     | 37,418         | -12,805       | 88,397       |
| 69. | Financial service & Insurance             | 2,330   | 10,036     | -2,443         | 263           | 10,187       |
| 70. | Real estate rental service                | 1,902   | -835       | 325            | -3            | 1,389        |
| 71. | House rent                                | 7,218   | 16,264     | 7,002          | -180          | 30,304       |
| 72. | Railway transport                         | -3,075  | 7,417      | -8,451         | 2,729         | -1,380       |
| 73. | Road transport                            | 18,790  | 56,842     | -1,113         | 1,236         | 75,756       |
| 74. | Ocean transport & Coastal transport       | 17,252  | -45,611    | 3,205          | -318          | -25,473      |
| 75. | Air transport                             | 13,529  | 25,137     | -495           | 8             | 38,179       |
| 76. | Storage facility service                  | 394     | 361        | 215            | 63            | 1,033        |
| 77. | Services relating to transport            | 1,149   | 3,302      | 1,247          | -14           | 5,685        |
| 78. | Telecommunication                         | 41      | 2,383      | -1,629         | 40            | 836          |
| 79. | Broadcasting                              | -294    | 683        | 477            | -3            | 864          |
| 80. | Education                                 | -7,446  | 22,584     | 462            | 302           | 15,902       |
| 81. | Research                                  | 982     | 2,671      | 1,365          | 11            | 5,029        |
| 82. | Medical service, Health & Hygiene         | 6,518   | 67,372     | 40,751         | -4,529        | 110,113      |
| 83. | Other public services                     | 1,591   | 1,563      | 5,036          | -57           | 8,134        |
| 84. | Advertising services                      | 9       | -481       | -517           | -15           | -1,004       |
| 85. | Information services                      | 8       | -755       | -4             | 0             | -752         |
| 86. | Goods rental & leasing                    | 157     | 2,277      | 680            | 3             | 3,117        |
| 87. | Repair of motor vehicles and machine      | 1,190   | 7,673      | -1,283         | 1,316         | 8,897        |
| 88. | Other business services                   | -1,666  | 12,030     | -2,069         | 31            | 8,326        |
| 89. | Amusement and recreation services         | 2,750   | 43,729     | 3,940          | -953          | 49,466       |
| 90. | Eating and drinking place                 | 5,170   | 20,295     | 17,284         | -1,771        | 40,978       |
| 91. | Hotel and other lodging places            | 6,483   | 11,880     | 6,976          | -476          | 24,864       |
| 92. | Other personal services                   | 2,995   | 4,819      | 6,998          | -454          | 14,357       |
| 93. | Activities not elsewhere classified       | 594     | -32,574    | -170           | 21            | -32,128      |
| 94. | Office supplies                           | 22,361  | 11,748     | 10,230         | 134           | 44,473       |
| 95. | Average (* *)                             | 1,171   | 14,128     | 625            | -619          | 15,305       |
| 96. | Max (* *)                                 | 47,422  | 251,335    | 40,751         | 3,348         | 268,669      |
| 97. | Min (* *)                                 | -60,523 | -85,006    | -47,360        | -12,805       | -118,251     |
| 98. | Total (* *)                               | 103,078 | 1,243,239  | 54,992         | -54,490       | 1,346,819    |

# **Table 7.** Contribution of each energy-supply industry to the total effect on the total energy requirement (Tcal)

|                | Changes in total energy requirement   |         |           |         |                                  |              |
|----------------|---------------------------------------|---------|-----------|---------|----------------------------------|--------------|
|                | Energy-supply industry                | △ W     | △ fne     | △ Bne   | $\triangle$ [C <sup>-1</sup> ]ne | Total Change |
| 98. Total (**) | Coal mining & Lignite:                | -21,551 | 176,264   | -31,709 | -5,976                           | 117,027      |
|                | Crude petroleum & Natural gas:        | 116,657 | 412,918   | 46,360  | -21,674                          | 554,261      |
|                | Petroleum refinery products:          | -58,224 | 285,795   | 29,128  | -16,396                          | 240,303      |
|                | Coal products:                        | -8,415  | 99,398    | -27,428 | -3,463                           | 60,092       |
|                | Electricity:                          | 74,080  | 254,805   | 36,836  | -6,685                           | 359,036      |
|                | Gas supply, Steam & Hot water supply: | 531     | 14,059    | 1,806   | -295                             | 16,101       |
|                | Total:                                | 103,078 | 1,243,239 | 54,992  | -54,490                          | 1,346,819    |
|                |                                       |         |           |         |                                  |              |

|     |                      | _                                     |           | Effects on t | otal energy | requiremen                       | ıt           |
|-----|----------------------|---------------------------------------|-----------|--------------|-------------|----------------------------------|--------------|
| No. | Non-energy commodity | Energy-supply industry                | $\land W$ | △ fne        | △ Bne       | $\triangle$ [C <sup>-1</sup> ]ne | Total Change |
| 63. | Residential &        | Coal mining & Lignite:                | -3,420    | 49,855       | 10,220      | -1,900                           | 54,755       |
|     | Non-Residential      | Crude petroleum & Natural gas:        | 1,761     | 73,725       | 4,841       | -1,054                           | 79,272       |
|     | construction         | Petroleum refinery products:          | -13,847   | 50,847       | 1,713       | -752                             | 37,962       |
|     |                      | Coal products:                        | -1,196    | 29,984       | 7,863       | -1,448                           | 35,202       |
|     |                      | Electricity:                          | 9,001     | 44,024       | 6,971       | -531                             | 59,465       |
|     |                      | Gas supply, Steam & Hot water supply: | -1,100    | 2,900        | 215         | -3                               | 2,013        |
|     |                      | Total:                                | -8,800    | 251,335      | 31,823      | -5,688                           | 268,670      |
| 65. | Civil engineering    | Coal mining & Lignite:                | -5,916    | 31,201       | -14,608     | -807                             | 9,870        |
|     |                      | Crude petroleum & Natural gas:        | 19,498    | 43,590       | -1,251      | -349                             | 61,487       |
|     |                      | Petroleum refinery products:          | 8,422     | 30,140       | -961        | -249                             | 37,352       |
|     |                      | Coal products:                        | -1,829    | 15,557       | -9,964      | -599                             | 3,165        |
|     |                      | Electricity:                          | -2,699    | 27,926       | -557        | -177                             | 24,494       |
|     |                      | Gas supply, Steam & Hot water supply: | 112       | 672          | 64          | 1                                | 849          |
|     |                      | Total:                                | 17,586    | 149,086      | -27,276     | -2,178                           | 137,218      |
| 58. | Motor vehicles       | Coal mining & Lignite:                | -1,504    | 23,671       | -5,330      | -1,920                           | 14,917       |
|     |                      | Crude petroleum & Natural gas:        | -6,533    | 46,896       | 5,567       | -1,629                           | 44,300       |
|     |                      | Petroleum refinery products:          | -14,306   | 31,587       | 3,335       | -1,139                           | 19,477       |
|     |                      | Coal products:                        | -1,297    | 15,565       | -5,026      | -1,406                           | 7,835        |
|     |                      | Electricity:                          | -2,923    | 31,049       | 5,252       | -817                             | 32,561       |
|     |                      | Gas supply, Steam & Hot water supply: | -501      | 1,358        | 304         | -16                              | 1,145        |
|     |                      | Total:                                | -27,064   | 150,125      | 4,102       | -6,928                           | 120,235      |
|     |                      |                                       |           |              |             |                                  |              |

**Table 8.** Contribution of each energy-supply industry to the effect on the total energy requirement: typical examples of major increase in energy requirement (Tcal)

# **Table 9.** Contribution of each energy-supply industry to the effect on the total energy requirement: typical examples of major decrease of energy requirement (Tcal)

|     | Effects on total energy requirement |                                       |           |         |         | nt                               |              |
|-----|-------------------------------------|---------------------------------------|-----------|---------|---------|----------------------------------|--------------|
| No. | Non-energy commodity                | Energy-supply industry                | $\land W$ | △ fne   | △ Bne   | $\triangle$ [C <sup>-1</sup> ]ne | Total Change |
| 44. | Steels                              | Coal mining & Lignite:                | 1,727     | -32,785 | -13,494 | -1,134                           | -45,686      |
|     |                                     | Crude petroleum & Natural gas:        | 2,907     | -10,505 | -5,973  | -166                             | -13,736      |
|     |                                     | Petroleum refinery products:          | -644      | -5,738  | -3,947  | -75                              | -10,405      |
|     |                                     | Coal products:                        | 571       | -25,098 | -10,187 | -869                             | -35,583      |
|     |                                     | Electricity:                          | 2,365     | -10,685 | -4,316  | -266                             | -12,902      |
|     |                                     | Gas supply, Steam & Hot water supply: | 321       | -195    | -63     | 0                                | 63           |
|     |                                     | Total:                                | 7,246     | -85,006 | -37,981 | -2,511                           | -118,252     |
| 27. | Pulp & Paper                        | Coal mining & Lignite:                | 4         | -6,388  | 524     | 2                                | -5,859       |
|     |                                     | Crude petroleum & Natural gas:        | -1,359    | -31,803 | 2,577   | 43                               | -30,541      |
|     |                                     | Petroleum refinery products:          | -3,040    | -22,376 | 1,827   | 33                               | -23,556      |
|     |                                     | Coal products:                        | -143      | -1,251  | 95      | -4                               | -1,303       |
|     |                                     | Electricity:                          | 1,698     | -16,546 | 1,390   | 4                                | -13,454      |
|     |                                     | Gas supply, Steam & Hot water supply: | 75        | -317    | 30      | 0                                | -212         |
|     |                                     | Total:                                | -2,764    | -78,681 | 6,443   | 78                               | -74,924      |
| 57. | Other electrical                    | Coal mining & Lignite:                | -324      | -7,779  | 3,033   | -182                             | -5,251       |
|     | equipment                           | Crude petroleum & Natural gas:        | -493      | -18,689 | 2,087   | -436                             | -17,531      |
|     |                                     | Petroleum refinery products:          | -1,512    | -12,352 | 979     | -320                             | -13,206      |
|     |                                     | Coal products:                        | -183      | -4,789  | 2,236   | -119                             | -2,855       |
|     |                                     | Electricity:                          | -700      | -13,428 | 3,040   | -161                             | -11,249      |
|     |                                     | Gas supply, Steam & Hot water supply: | -9        | -484    | -11     | -3                               | -506         |
|     |                                     | Total:                                | -3,221    | -57,521 | 11,364  | -1,220                           | -50,598      |



Figure 1. Major effect of  $\Delta W$  on total energy requirement between non-energy sectors



Figure 2. Major effect of  $\Delta f_{ne}$  on total energy requirement between non-energy

#### sectors



Figure 3. Major effect of  $\Delta B_{ne}$  on total energy requirement between non-energy sectors



Figure 4. Major effect of  $\Delta$ [C<sup>-1</sup>]<sub>ne</sub> on total energy requirement between non-energy sectors

#### 7. Conclusions

We conducted a SDA method based on the hybrid rectangular input-output model. It is not only to escape from the effects of the drastic changes of energy prices on the input structure in physical terms, but also to analyze the impacts of the changes in non-energy product-mix. Our method made clear the mutual relationships between the energy demand structure and the non-energy product-mix by applying a hierarchical method to the hybrid rectangular IO model.

The major findings of this paper can be summarized as follows;

- (1) The energy intensities of each non-energy commodity have fluctuated on the whole because of the changes in the energy demand structure and the non-energy production technology between 1985 to 1990.
- (2) The total energy requirement in Japan has greatly increased mainly because of the changes in non-energy final demand, the second, the changes in energy demand structure and the third, the changes in non-energy input structure.
- (3) The product-mix changes have reverse effects, that is, saving of energy.
- (4) The above results proved a practical use of the proposed method.

In this paper, although an emphasis is placed on energy requirements, it is natural that emissions ( $CO_2$ ,  $NO_x$ ,  $SO_x$ ) from the productive activities should be considered in the same way. The framework of the rectangular system shown in this paper can be very convenient for analyses. So, we are now conducting a research work to determine the Life Cycle Assessment for production, consumption and waste disposal by using extended hybrid rectangular IO model based on the assumption of a commodity technology.

#### References

Leontief, W. (1986) Input-Output Economics, Oxford University Press, New York.

- Chenery, H. B. & Clark, P. G. (1959) Interindustry Economics, *Ipswich Book Co. Ltd.*, Ipswich, Suffolk.
- Rose, A. (1977) A Simulation Model for The Economic Assessment of Alternative Air Pollution Regulations, *Regional Science*, 17, pp. 327-344.
- Rose, A. (1983) Modeling The Microeconomic Impact of Air Pollution Abatement, *Regional Science*, 23.
- Rose, A. Benavides, J. Lim, D. & Frias, O. (1996) Global Warming Policy, Energy, and the Chinese Economy, *Resource and Energy Economics*, 18, pp. 31-63.
- Chen, C. Y. & Rose, A. (1990) A structural decomposition analysis of energy demand in Taiwan, *The Energy Journal*, 11, pp. 127-146.
- Rose, A. & Casler, S. (1996) Input-Output Structural Decomposition Analysis: A Critical Appraisal, *Economic Systems Research*, 8, pp. 33-62.

- Bullard, C. W. & Herendeen, R. A. (1975) The energy cost of goods and services, *Energy Policy*, 3, pp. 268-278.
- Bullard, C. W. et al. (1978) Net energy analysis handbook for combining process and input-output analysis, *Resources and Energy*, 1, pp. 267-313.
- Forssell, O. & Polenske, K. R. (1998) Introduction: Input-Output and the Environment, *Economic Systems Research*, 10, pp. 91-97.
- Inamura, H. & Kagawa, S. (1998) Evaluation of Air Pollution Control Measures Based on a Rectangular Input-Output Analysis, *International Input-Output Association Papers*, New York, May.
- Betts, J. R. (1989) Two Exact, Non-Arbitrary and General Methods of Decomposing Temporal Change, *Economics Letters*, 30, pp. 151-156.
- Barker, T. (1990) Sources of Structural Change for the UK Service Industries 1979-84, *Economic Systems Research*, 2, pp. 173-183.
- Buccellato, C. (1990) Input-Output Analysis, Technological Change and Relations between Industry and Services, *Economic Systems Research*, 2, pp. 53-63.
- Afrasiabi, A. & Casler, S. D. (1991) Product-Mix and Technological Change within the Leontief Inverse, *Journal of Regional Science*, 31, pp. 147-160.
- Cassetti, M. (1995) A New Method for the Identification of Patterns in Input-Output Matrices, *Economic Systems Research*, 7, pp. 363-381.
- Schnabl, H. (1993) The Evolution of Production Structures Analyzed by a Multi-Layer Procedure, *Economic Systems Research*, 6, pp. 51-68.
- Schnabl, H. (1995) The Subsystem-MFA: A Qualitative Method for Analyzing National Innovation Systems -The Case of Germany, *Economic Systems Research*, 7, pp. 383-395.
- Weber, C. & Schnabl, H. (1998) Environmentally Important Intersectoral Flows: Insights from Main Contributions Identification and Minimal Flow Analysis, *Economic Systems Research*, 10, pp.337-355.
- Wier, M. (1998) Sources of Change in Emissions from Energy: A Structural Decomposition Analysis, *Economic Systems Research*, 10, pp. 99-111.
- Dietzenbacher, E. & Los, B. (1998) Structural Decomposition Techniques: Sense and Sensitivity, *Economic Systems Research*, 10, pp. 307-323.
- Lin, X. & Polenske, K. R. (1995) Input-Output Anatomy of China's Energy Use Changes in the 1980s, *Economic Systems Research*, 7, pp. 67-84.
- Cronin, F. J. & Gold, M. (1998) Analytical Problems in Decomposing the System-wide Effects of Sectoral Technical Change, *Economic Systems Research*, 10, pp. 325-335.