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Abstract

For the dynamic input output-model with consumption functions
realistic su�cient conditions for growth equilibria are given as well
as sharp bounds for their number and the growth rates. When in-
vestment sectors are aggregated formulae for the growth rate and its
change with respect to perturbations in the underlying matrices are
derived without computing eigenvectors. For the general model the
di�erential of the growth rate is given and compared with a result
for the model without consumption functions. It is shown that its
sensitivity with respect to changes (or errors) in the matrices is ex-
tremely a�ected by consumption. Two methods for approximating
growth equilibria are suggested and interpreted economically.
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1 Introduction

In this paper, the dynamic input output-model (see Leontief (1953)) ex-
tended by consumption functions will be studied as a balanced growth model.
In case of proportional equilibrium growth at a constant rate γ, Leontief's
model reads

(I − A− γB)x = 0, γ > 0, x ≥ 0 (1)

where A ≥ 0 and B ≥ 0 denote n× n matrices of current input and capital
coe�cients, respectively, and x is a semi-positive n× 1 vector of outputs.
In the literature, the usual approach transforms the dynamic input output-
model into

((I − A)B−1 − γI)x = 0, γ > 0x ≥ 0 (2)

which yields the growth rates as eigenvalues of (I − A)B−1.
This approach, however, has two de�ciencies. Firstly, B usually has zero
rows because several sectors do not produce capital goods. Therefore, B is
not invertible unless the model is reduced by suitable aggregation into one
with a non-singular matrix B′. Secondly, B′−1 is supposed to have entries
with di�erent sign so that the theorems of Frobenius and Perron cannot be
applied.
The problems with B′−1 are circumvented by considering

(I − γL(A)B)x = 0, γ > 0, x ≥ 0 (3)

which is equivalent to the original model under the usual assumption λ1(A) <
1 which implies that Leontief inverse L(A) := (I − A)−1 exists and is non-
negative. λ1(A) denotes the Frobenius root (dominant root) of A.
When linear sectoral consumption functions depending on national income
are introduced, the previous model of balanced growth is modi�ed as follows

(I − A− cv − γB)x = 0, γ > 0, x ≥ 0 (4)

where c and v, respectively, are semipositive n × 1 and 1 × n vectors of
marginal propensities to consume and value added coe�cients, respectively
(see, for instance, Schumann (1975), Holub/Schnabl (1994)). It is assumed
that

∑
ci < 1; the other variables are value terms. Therefore, in the ex-

tended model A has to be replaced by (A + cv). The Leontief inverse
L(A + cv) equals L(A) · L(C) where C = ce because of v = e(I − A); e
denotes a 1× n row vector of ones.
The growth rates of model (4) to be examined in the following are reciprocal
eigenvalues of W := L(A)L(C)B with associated semi-positive eigenvectors
x which are equilibrium outputs. Therefore, growth rates will be studied
in the following by considering the eigenvalues of the "growth matrix" W
or preferably of W̃ = BL(A)L(C) which has the same characteristic roots
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but di�erent eigenvectors Bx. The latter matrix facilitates the investigation
since it has as many zero rows as B.
From the economic point of view the element dij =

∑
ν biνlνj of D := BL(A)

gives the total increase in capital output of sector i induced via augmented
current input needs in the whole economy per additional unit of �nal demand
for commodities of sector j. The matrix D may be called accelerator matrix
since it links net investment (necessary for extending capacities) to �nal
demand via production increases due to the Leontief multiplier. D is the
multisectoral analogon of Harrod's accelerator b which gives investment per
unit of additional income (or �nal demand)(cf. Harrod (1939)).

2 Existence of Equilibria and Bounds for

Growth Rates

A growth equilibrium (γ,x) with γ > 0, x ≥ 0 exists if and only if the growth
matrix W or W̃ = BL(A)L(C) has a positive Frobenius root λ1, since W
has a corresponding eigenvector x1 ≥ 0. It is well-known that for a n × n
matrix M ≥ 0

min M.j ≤ λ1(M) ≤ max M.j and λ1(M) =
∑

M.jx
1
j (5)

where M.j denotes the j-th column sum of M and x1 is normed by
∑

x1
i = 1.

A corresponding statement holds for the row sums. The assertion can be
extended to other possible eigenvalues λi > 0 of W with associated eigen-
vectors xi ≥ 0 (these eigenvalues will be denoted by λ+

i ), but not for the
row sums (cf. Kogelschatz (1977, p. 80)).
So, column sums of W and W̃ are evaluated where

L(C) = (I − ce)−1 = (I +
1

s
ce) =

1

s
(sI + ce) (6)

with s := 1−
∑

ck is helpful; the latter matrix is the transpose of a stochastic
matrix. The column sums of W̃ have a simple form which leads further

W̃.j = D.j + δ for every j with δ =
1

s

∑
D.kck =

1

s
eDc. (7)

A similar statement for W does not hold. The additive constant δ captures
total investment induced via Keynesian and Leontief multiplier process per
unit of �nal demand. Hence, W̃.j = 1

s
(sD.j +

∑
k ckD.k) is a weighted mean

of the D.k multiplied by 1
s
and δ is 1−s

s
times a weighted mean of the D.k

with weights ck

1−s
.

Therefore,

1− s

s
min D.k ≤ δ ≤ 1− s

s
max D.k (8)
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and

1

s
min D.k ≤ W̃.j ≤

1

s
max D.k for every j (9)

and

λ1(W̃ ) ≥ λ+
i (W̃ ) ≥ δ. (10)

If B has k non-zero rows j ∈ K = {1, ..., k} then W̃ has at most k positive
eigenvalues which can be computed by a k× k matrix W̃k. The eigenvectors
Bx(i) ≥ 0 of W̃ associated with λ+

i have at most k positive components
which may be chosen adding up to one. Considering (5) for this case yields
λ+

i as a weighted mean of W̃.j = D.j + δ for j ∈ K only. If, in addition,
products of these k investment sectors were not consumed then in (8) min
and max could be taken over j 6∈ K. The latter assumption is not made for
the following. Hence,

1

s
min D.j ≤ δ + min

j∈K
D.j ≤ λ+

i (W̃ ) ≤ δ + max
j∈K

D.j ≤
1

s
max D.j. (11)

The constant δ is positive if and only if there is a cj > 0 with D.j > 0, i.e.,
if there is a consumption good j which induces investment in some sector i.
Min D.j is positive if min B.j > 0 since D ≥ B due to L(A) ≥ I.
Summarizing we have

Proposition 1

a) Balanced growth in model (4) is possible

i) if any production for consumption requires investment or
ii) if every investment sector needs capital input.

b) The number of equilibrium growth rates γi is restricted by the number
of sectors producing capital goods.

c) Bounds for the equilibrium growth rates γi are

s
max D.j

≤ 1
δ+maxj∈K D.j

≤ γi ≤ 1
δ+minj∈K D.j

≤ min
(

1
δ
, s

min D.j

)
(12)

provided δ = eDc/s > 0 and min D.j > 0, respectively.

The su�cient conditions for equilibrium growth are no restriction in reality.
From a theoretical point of view the �rst is full�lled if W̃ is not completely
decomposable into two groups of sectors: investment and consumption in-
dustries. However, the conditions are not necessary since λ1(D) > 0 already
implies λ1(W̃ ) > 0 because of W̃ ≥ D ≥ B. For instance, since λ1(M) ≥ mii

holds, dii > 0 for some i ∈ K su�ces which means that some investment
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sector needs its own product or �nal demand for sector i induces (in)direct
investment in i. Similar conditions were derived by Kogelschatz (1992, p. 10)
in a di�erent approach.
The outer bounds in (12) are plausible from Harrod's �nding γ = s

b
since

the D.j are sectoral accelerators or capital coe�cients bj. The sharper inner
bounds are mainly determined by δ which blows up a weighted mean of D.j

by the Keynesian multiplier and hence is comparatively large.
The inner bounds in (11) and (12) cannot be improved since they coincide
for the case of equal column sums D.j for all j ∈ K. If they are not equal
then strict inequalities hold due to (5) for λ1 of irreducible W which implies
x > 0 and for W̃ , hence, x̃j > 0 for j ∈ K.
Also the number of equilibrium growth rates in b) cannot be reduced as the
following example shows. Let A, B be diagonal matrices, ci = 0 for i ≥ 2,
such that w̃ii > 0 are di�erent for i ∈ K. Then there may be k growth
equilibria (1/w̃ii, x

(i)). Evidently, this example can be extended to upper
triangular matrices A and B which corresponds to complete decomposability
of the economy. In this case, the number of equilibria is restricted by the
number of bii > 0 which implies w̃ii > 0; in particular, no growth equilibrium
exists if here B (and hence W̃ ) has only zeroes in the diagonal.

3 Sensitivity of Growth Rates

For k = 1 and k = 2 explicit formulae for the growth rates can be given.
Obviously, one or two sectors producing investment commodities can be
achieved by aggregation which is assumed to have been performed before,
since aggregation usually a�ects growth rates (cf.,e.g., Dietzenbacher (1991,
p. 248f)). The other sectors produce consumption goods.
For k = 1 we get for the eigenvalue

λ1(W̃ ) = d11 + δ = d11 +
1

s

∑
d1jcj

=
∑

b1jlj1 +
1

s

∑
j

∑
ν

b1jljνcν

=
∑

j

b1j

∑
ν

ljν(δ1ν +
cν

s
) (13)

or

λ1(W̃ ) = eBL(A)L(C)e1 (14)

where e1 denotes the �rst unit column vector which is a right eigenvector x
of W̃ associated with λ1; the vector e may be replaced by a left eigenvector
y with �rst component chosen as one. More generally, (14) holds for all k,
if e1 and e are replaced by eigenvectors x and y normalized by yx = 1. But,

4



the advantage of considering k = 1 and k = 2 lies in the fact that x and y
need not be computed.
From dλ1(W̃ ) follows the change in the associated growth rate γ1 = 1

λ1(W )

by

dγ1(W̃ ) = −(
1

λ1(W̃ )
)2dλ1(W̃ ). (15)

If investment sectors are aggregated (k = 1) then according to (14)

dλ1(W̃ ) = e[dBL(A)L(C) + BdL(A)L(C) + BL(A)dL(C)]e1 (16)

with dL(A) = L(A)dAL(A) and dL(C) analogously which due to its special
form (6) can be evaluated as

dL(C) =
1

s
L(C)(dc)e =

1

s

(
1− ds

s
c + dc

)
e (17)

with ds = 1− edc. Hence,

dλ1(W̃ ) = e[(dB + BL(A)dA)L(A)L(C)

+BL(A)L(C)dCL(C)]e1

= e[(dB + BL(A)dA)L(A)

(
e1 +

1

s
c

)
+BL(A)

1

s

(
1− ds

s
c + dc

)
]

= e[(dB + DdA)L(A)

(
e1 +

1

s
c

)
+D

1

s

(
1− ds

s
c + dc

)
]. (18)

For the special case n = 1 this can be simpli�ed as follows

dλ1(W̃ ) =
1

s

[
dB(1− A)−1 + B(1− A)−1

(
(1− A)−1dA +

1

s
dc

)]
. (19)

Furthermore, by (14)

dλ1 = λ1(
1

B
dB + (1− A)−1dA +

1

s
dC)

and with (15)

dγ1 = −γ1(
1

B
dB + (1− A)−1dA + (1− C)−1dC) (20)
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which coincides with dγ for Harrod's growth rate γ = s
b

= s
B/(1−A)

since
Harrod's accelerator b corresponds to D = BL(A).
The more general case with k investment sectors can be treated by a theorem
on the di�erential of a simple eigenvalue (cf. Chatelin (1993, p. 151), Deif
(1992, p. 225) similarly) which states

dλ1(M) = ydMx (21)

with normalized eigenvectors (yx = 1), which is possible since yx 6= 0 for a
simple eigenvalue (cf. Horn/Johnson (1985, p. 371)). For the complicated
case of an eigenvalue with algebraic multiplicity ≥ 2 and the sensitivity of
eigenvector x which will not be treated here see Chatelin (1993) and Deif
(1992).
The sensitivity analysis is performed for the dominant eigenvalue λ1(W )
which is known to be a simple one for an irreducible matrix W (cf. Horn/John-
son (1985, p. 508)).It also su�ces if (A + B + cv) is irreducible as a look at
model (4) shows, where for γ > 0 the pair (λ = 1, x) is an eigensystem of
(A + γB + cv). For reducible W the results can be extended to other sim-
ple eigenvalues λ+

i provided that the pertubation preserves semipositivity of
eigenvector x(i) which even for small changes is not guaranteed, because of
possible zero components. However, for W irreducible x1 > 0 is maintained
if W remains irreducible.
Application of statement (21) to W̃ which has the same (simple) eigenvalues,
although irreducibility may no longer hold, yields

dλ1(W̃ ) = ỹ[(dB + BL(A)dA)L(A)L(C) + BL(A)L(C)dCL(C)]Bx (22)

where ũBx = ũx̃ = 1 with ũ = uB and x̃ = Bx denoting left and right hand
eigenvector of W̃ . If there are k investment sectors only k × k submatrices
of the three matrices in brackets with k non-zero rows a�ect dλ1 since Bx
has only k non-zero components. In particular, dλ1 and dγ1 are not directly
in�uenced by changes of the capital coe�cients in consumption industries.
An indirect impact may result from changed depreciation if captured in dA.
From

λ1x = L(A)L(C)Bx, BL(A)L(C)Bx = λ1Bx, λ1ũ = ũBL(A)L(C) (23)

with λ1 = λ1(W ) = λ1(W̃ ) it follows that

dλ1 = λ1ũ[dB + BL(A)dA + dCL(C)B]x (24)
= ũ[(dB + BL(A)dA)λ1 + λ2

1dC(I − A)]x

= ũ[λ1dB + λ2
1((I − C)dA + dC(I − A))]x. (25)

With dγ1 = −(λ1)
−2dλ1 we obtain:

Proposition 2 If the growth matrix W has a simple eigenvalue λ > 0 with
associated eigenvectors x ≥ 0, u normalized by ux = 1 then a change of dW
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a�ects the growth rate γ � provided λ + dλ > 0, x + dx ≥ 0 � as follows

dγ = −ũ[γdB + (I − C)dA + dC(I − A)]x (26)
= −γũ[dB + B(I − A)−1dA + dC(I − C)−1B]x (27)

where dC(I − C)−1 = 1
s
(dc)e = 1

s
dC by (6). If B is invertible then

dγ = −γũ[(dB + B(I − A)−1dA)B−1 + dC(I − C)−1]x̃ (28)

where x̃ := Bx, ũ := uB are corresponding eigenvectors of W̃ .
In particular, the assumptions of the proposition are ful�lled (with x, u > 0)
if either W or (A + B + cv) is irreducible before and after perturbation.

Obviously, (27) also reveals the relative change of γ. The di�erential of the
growth rate γ in (26) depends on dampening interactions between A and
C. This does not hold for the absolute and relative change of γ in (27),
where A and C are connected with B (and its column sums, resp.). If B
is invertible then according to (28) the three matrices are nearly separated
where the changes in A and C are augmented by their Leontief inverses the
latter resulting in Keynes' multiplier and the former undergoing a similarity
transformation with B.
For Harrod's model these results can be simpli�ed because of ũx = 1

B
ũx̃ = 1

B
as follows

dγ = − 1

B
(γdB + (1− C)dA + (1− A)dC) (29)

= −γ(
1

B
dB + (1− A)−1dA + (1− C)−1dC) (30)

in accordance with (20).
A result similar to (26) was given by Brody (1970, p. 127f) for model (1).
By a �rst order approximation he obtained

dγ ≈ − 1

uBx
u(γdB + dA)x (31)

from γ = u(I − A)x/uBx.
Introducing consumption functions extremely changes the relative impor-
tance of changes (or errors) in A and B as a look at the fully aggregated
model shows. A realistic order of empirical values is given by γ ≈ .03,
C ≈ .9, A ≈ .6. For the given �gures Brody's result suggests that changes
in A have ≈ 30 times the e�ect on dγ as those in B of the same amount.
Brody appreciates the extreme relation of impacts as very useful since mea-
surement of the stock matrix B causes severe di�culties. Still nowadays data
for B are hardly available, not even for Germany. However, with consump-
tion functions the factor 30 is changed to ≈ 3 according to (29). Neglecting
consumption overestimates the in�uence of changes in current input on the
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growth rate by the factor 1/s. The greatest impact in the three matrices
on the growth rate is expected to come from C since the value added coef-
�cient usually is greater than the propensity to save and the growth rate.
Furthermore, in contrast to A and B a single entry of C cannot vary alone
since all entries of a row are the same. Therefore, perturbations in the three
matrices should be compared row by row. For equal relative changes of the
entries dB becomes more in�uential since on average B � A,C. For the
relative change of γ a similar order of impacts holds as (30) shows.
Whereas proposition 2 is applicable for small changes the method suggested
at the beginning of this section may also be useful for greater changes �
provided γ +∆γ > 0, x+∆x ≥ 0 � because the vectors e and e1 can still be
taken and ∆L(A) and ∆L(C) can be determined in many interesting cases
such as row changes.

4 Approximation of Growth Equilibrium

It is assumed that λ1 < 1 and that (A + B + Cv) is irreducible. Let λ1 > 0
denote the dominant eigenvalue of W̃ (and W ) and z (and x resp.) a right
eigenvector of W̃ (and W ) associated with λ1 where z ≥ 0 and x ≥ 0 are
normed such that

∑
zi = 1 and

∑
xi = 1. Since Bx is an eigenvector of W̃

z = Bx
eBx

is a normed one.

4.1 Approximation by successive iteration

It follows from λ1z = W̃z with W̃ = D(I + 1
s
ce) that

λ1z =
1

s
D(sz + c) (32)

where the components of vector y = (sz + c) add up to one. Hence, zi

is a weighted mean of the elements of row i of (sλ1)
−1D with weights yj

independent of i. Furthermore,

(λ1I −D)z = λ1(I − γ1D)z =
1

s
Dc (33)

Since λ1(D) < λ(W̃ ) =: λ1 because of D < W̃ for c 6= 0, it follows that
λ−1

1 D has a dominant eigenvalue smaller than one. Hence, (E − λ−1
1 D)−1

exists, is non-negative and equals the Neumann series:

z =
1

s
γ1(I − γ1D)−1Dc

=
1

s
γ1D(I + γ1D + (γ1D)2 + . . . )c

=
1

s
γ1D(I − γ1D)−1c (34)

= s−1[(I − γ1D)−1 − I]c
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Here is helpful if there are k < n investment sectors because B, D and the
matrix in the last brackets have only k non-zero rows. Therefore, it su�ces
to consider a k × k matrix Dk in order to determine the k possible positive
components of z. Substituting the last expression for z in the vector of
weights yields normed equilibrium income

y = sz + c = (I − γ1D)−1c (35)

From the equilibrium investment vector z it is possible to determine equilib-
rium output vector x by z = Bx if B is invertible. However, B is supposed
to have rows of zeroes if there are sectors not producing for investment.
But, this di�culty can be coped with by looking at (34) and (35). Inserting
D = BL(A) shows

x = α
1

s
γ1L(A)(I − γ1D)−1c = α

1

s
γ1(I − γ1L(A)B)−1L(A)c

= α
1

s
γ1L(A)(I + γ1D + (γ1D)2 + . . . )c = αL(A)y (36)

where α is a dispensable norming factor such that the following vector adds
up to one.
The last equation reveals that equilibrium output relations are determined
by x̌ = L(A)c which would be the output vector of the static input output-
model if c were �nal demand (per unit of income) premultiplied by the matrix
(I−γ1W )−1 which is the Leontief inverse of the growth matrix W = L(A)B
multiplied by the growth rate γ1.
The Leontief inverse (I − γ1D)−1 represents the multiplier process of invest-
ment (accelerator process) of an economy growing at rate γ1. (I−γ1D)−1 1

s
c

represents equilibrium income vector y induced per unit of �nal demand.
In order to examine the in�uence of γ1D it is useful to go back to (34).
Let u be a left eigenvector of W̃ , then

uDL(C) = λ1u or

uγ1D = u(I − ce) (37)

Hence, for an aggregated model λ−1
1 D corresponds to s. Inserting (37) into

equation (33), premultiplied by u, yields with regard to
∑

zi = 1

λ1ucez =
1

s
uDc

λ1 =
1
s
uDc

uc
(38)

A �rst proxy of u is e which is an exact left eigenvector of the matrix E :=
1
s
Dce di�ering from W̃ by D. Hence, a �rst proxy of λ1 results as

λ̃1 =
1

s
eD

c

ec
(39)
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and of the growth rate γ1 by the reciprocal value. Hence, γ1 comes close to
the ratio of the propensity to save and a weighted mean of sectoral accelera-
tors eD with relative propensities to consume as weights. This interpretation
may be regarded as an obvious extension of Harrod's �nding. Indeed, for a
fully aggregated model both formulae coincide. A better proxy of u is given
by the column sums of W̃

ũ = eD(I +
1

s
ce) = eW̃ (40)

which would be an exact left eigenvector of ((W̃eT )(eW̃ )). Inserting this
proxy into (38) yields a better proxy of λ1:

λ̃1 =
eD(I + 1

s
ce)Dc

seD(I + 1
s
ce)c

=
eD(I + 1

s
ce)Dc

eD(s + ec)c

=
1

eDc

(
(eDc)2

s
+ eD2c

)
=

1

s
eD

(
c + s

1

eDc
Dc

)
= δ +

eD2c

sδ
(41)

The vector in the last brackets adds up to one, hence it is a weight vector.
The interpretation is not as evident as with the �rst proxy. However, Dc/eDc
is the relative investment induced by c and a proxy of a normed eigenvector z
of W̃ which stands for equilibrium investment. Since a share s of equilibrium
income y is invested the weight vector can be interpreted as a proxy of
equilibrium income vector y. Therefore, the growth rate γ1 again is a ratio
of s and a weighted mean of sectoral accelerators eD with improved weights
given by approximate equilibrium income y. The proxy (41) of λ1 coincides
with applying the di�erential formula to E with eigenvectors e and Dc

eDc
where

4W̃ = D.
Finally, equilibrium vector y is given by

y = (I − A)x = β
1

s
(I − γ1D)−1c = β

1

s
(I + γ1D + γ2

1D
2 + · · · )c (42)

or simply by the normed vector y = sz + c from (35) or as eigenvector of
L(C)DL(A) corresponding to λ1. Hence, (I−γ1D)−1 may be called dynamic
income multiplier matrix which is applied to initial �nal demand (or income)
vector of c or to consumption augmented by the Keynesian income multiplier
to 1

s
c. Both processes seem to be separable, however, γ1 depends on D and

c.
Hence, equilibrium output results from x = L(A)y which means that xi is a
weighted mean of row i of L(A) with weights yj independent of i. Similarly,
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zi is a weighted mean of row i of D with the same weights. Finally, yi can
be regarded as a weighted mean of row i of (I − γ1D)−1 or approximately
of I + γ1D with weight vector c. Therefore, similar rows in these 3 matrices
induce similar eigenvector components.
The easy computation procedure runs as follows:
Start with a proxy of λ1 by (41) or (39), then compute a proxy of z by (34)
and immediately of y and x by (35) and (36). An iteration is possible by
de�ning a new λ̃1 := s−1eDỹ according to (32).

4.2 Approximation by a matrix of rank one

In an alternative approach to approximate λ1 and associated eigenvectors
we start with a proxy of W̃ by a matrix of rank one constructed from its
vectors r (and q) of row sums (and column sums):

ˆ̃W =
(W̃eT )(eW̃ )

σ
=

rqT

σ
with σ := eW̃eT = er = qT eT (43)

Note that e has been de�ned as a row vector, other row vectors are indi-
cated by a superscript T . For this matrix of rank one the exact dominant
eigenvalue is simply given by

λ̂1 =
(eW̃ )(W̃eT )

σ
=

qT r

er
(44)

and corresponding right and left eigenvectors are

ẑ =
(W̃eT )

σ
=

r

er
, û = (eW̃ ) = qT , û′ :=

σ

qT r
û, (45)

where ẑ adds up to one and, furthermore, û′ẑ = 1 is achieved.
Obviously, λ̂1 is a weighted mean of the column (row) sums of W̃ with the
relative row (column) sums as weights.
Since W̃ = D + 1

s
Dce, where the second matrix has identical column sums,

it can be expected that, in particular, û is a good proxy of u and, therefore,
also λ̂1 of λ1.
Row and column sums of W̃ can be expressed by those of D:

û = eW̃ = 1
s
eDce + eD = δe + eD = e(δI + D) (46)

σẑ = W̃eT = n
s
Dc + DeT = D(n

s
c + eT ) = nD(1

s
c + eT

n
)

ẑ = W̃eT

eW̃ eT =
D(c+ s

n
eT )

eD(c+ s
n

eT )
= Dŷ

eDŷ
(47)
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where the term in brackets is a �rst proxy of the normed equilibrium income
vector y if investment were uniformly distributed. Therefore,

λ̂1 = δ + eD
D(c + s

n
eT )

eD(c + s
n
eT )

= δ + eDẑ

=
1

s
eD

[
c + sD

c + s
n
eT

eD(c + s
n
eT )

]
=

1

s
eD(c + s

Dŷ

eDŷ
). (48)

However, a better proxy of λ1 can be achieved if 1
n
eT is replaced by �rst

round normed investment Dc
eDc

:

λ̂1

′
= 1

s
eD
[
c + sD

c+ sDc
eDc

eD(c+ sDc
eDc

)

]
= 1

s
eD
[
c + s Dŷ′

eDŷ′

]
= 1

s
eD(c + sẑ′) (49)

Both proxies of λ1 have the form 1
s
times a weighted mean of sectoral ac-

celerators eD with normed sectoral income proxies as weights. Hence, the
growth rate γ1 is approximated by the ratio of saving rate s and an income
weighted mean of sectoral accelators in analogy with Harrod`s result.
An improved proxy of λ1 can be obtained by proposition 2 on the variation
of a simple eigenvalue λ of a perturbed matrix M which states the following
�rst order approximation

λ1(M + ∆M) = λ1(M) + u∆Mx

where u and x are left and right eigenvectors of M such that ux = 1. For
a matrix of rank one with λ1 > 0, λ1 is a simple eigenvalue since it has the
eigenvalue 0 with multiplicity (n− 1).
Hence, for M = ˆ̃W and ∆M = W̃ − ˆ̃W : λ̃1 := λ̂1 + ∆λ̂1 with
∆λ̂1 := û′(W̃ − ˆ̃W )ẑ.
Hence, with û′ẑ = 1 and û′ ˆ̃Wẑ = λ̂1 by (43), (44)

λ̃1 = û′W̃ ẑ =
eW̃ 3eT

eW̃ 2eT
=

qT W̃ r

qT r
=

e(δI + D)D(I + 1
s
ce)r

e(δI + D)r
(50)

where δ := 1
s
eDc. Further iterations are possible.

This proxy of λ which can be easily computed seems to show a very good
performance. Only one matrix product, D2, has to be calculated. Further-
more,

λ̃1 =
e(δI + eD)D(r + 1

s
c)

e(δI + D)r
=

1

s

e(δI + eD)D(c + sr)

e(δI + D)r

=
e(δI + eD)ẑ1

e(δI + D)ẑ0
=

qT ẑ1

qT ẑ0
, (51)

where ẑ0 := r = Dû
eDû

and ẑ1 := D (c+sẑ0)
s

= Dû1, respectively, denote the
initial investment vector for û := c + s eT

n
and the �rst period investment
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vector (induced by the Keynesian multiplier and the accelerator process).
The last ratio shows that λ̃1 may be interpreted as a Laspeyres index of
(sectoral) investment weighted by sectoral accelerators qT . This index for
subsequent periods is expected to converge to λ1. An improvement of λ̃1 can
be achieved by starting with ẑ

′0 := Dû′ = D(c + s Dc
eDc

) instead of ẑ0 = Dû.

Also the di�erential of the eigenvectors can be computed according to the
quoted literature. Furthermore, there exist better rank one approximations
of W̃ which, however, need more computation and reveal less interpretation.

5 Application

The following example of a dynamic input output-model is taken from
Holub/Schnabl (1994, p. 439 f.).

A =

(
.2 .25 .25
.2 0 .5
.2 .5 0

)
, B =

(
0 0 4
0 1 0
.5 0 0

)
and c =

(
.4
.2
.2

)
Evidently, (A + B + C) is an irreducible matrix. Hence, there is only one
equilibrium (λ, x) with x > 0. Computations yield λ = 27.4653, γ = .0364,
x = (.3977, .3024, .2999), z = (.7053, .1778, .1169), y = (.5411, .2356, .2234)
and u = (.3114, .3332, .3554) as left eigenvector of W̃ . Here vectors are
normed by components adding up to one. By proposition 1 the bounds
for the growth rate γ = .0364 and their absolute and relative errors are
evaluated from eD = (4.16̄, 6.083̄, 8.083̄) and δ = 22.5 as:

.0247 ≤ .0327 ≤ γ ≤ .0375 ≤ min(.04̄, .048)

error − .0117 ≤ −.0037 ≤ 0 ≤ .009 ≤ min(.069, .105)

rel. error − .32 ≤ −.102 ≤ 0 ≤ .03 ≤ min(.221, .3187)

The length of the interval for γ by the outer bounds is .0233 whereas that
by the inner bounds is reduced to .0048 or 20% of the former one.
Furthermore, the absolute relative error of the outer and inner bound de-
creases from .32 to .10 (or .065 for the mean of the two inner bounds). This
is a considerable improvement by a quick computation.
The further advantage of the inner bounds that min D.j and max D.j are to
be taken over only k investment sectors is not made use of in this example
because here n = k.
A change in the positive entries of row two of the three matrices by .02 each
results according to proposition 2 in a change of dγ = −.012.
If instead of equal absolute changes now equal relative changes are consid-
ered dB gets more in�uential since its entries are roughly 5 times greater
than those of the other matrices.
In order to approximate λ by proposition 2 start with the simple matrix
E := 1

s
Dce with eigenvalue δ = 22.5, left and right eigenvector u(E) =

13



(1, 1, 1) and z(E) = Dc
eDc

= (.71̄, .17̄, .1̄). Applying the formula for the di�er-
ential of λ1 to ∆W̃ = W̃ − E = D yields λ̃1 = 27.4426. Although 4W̃ is
not small the result is good because the eigenvectors are rather stable. A
twofold reason can be seen in E which has equal columns and constitutes
the dominating part of W̃ since it is roughly (1− s)/s times greater than D.

The �rst suggested method from section 4 with start value λ0
1 = 28.125 by

(39) has the following approximations λ̃1 = 27.4622, z̃1 = (.7061, .1779, .1161)

when starting with �rst order approximation (I + λ̃−1
1 Dk) of (I − λ̃−1

1 Dk)
−1

and beginning with its second order approximation λ̃1 = 27.4643, z̃1 =
(.7056, .1778, .1166). Proxies for the vectors x and y are obtained by x̃ =
(.3974, .3026, .3001) and ỹ = (.5401, .2359, .2239). Note that x̃ and ỹ now
denote approximations of output x and income y. Further improvements of
these good proxies can be achieved by iteration or by computing the Leontief
inverse (I − λ̃−1

1 Dk)
−1 or by a better start value.

The approximation of W̃ by a matrix ˆ̃W of rank one yields λ̂1 = 27.4273 with
right and left eigenvectors ẑ = (.7146, .1786, .1068) and û = (.3107, .3330,

.3563) by (44). A �rst approximation results in λ̃1 = 27.4668 by (50) which
coincides with applying the di�erential formula to ∆W̃ = W̃ − ˆ̃W .
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