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Abstract

For a stochastic input matrix with beta distributed input coef-
ficients lower bounds of the Leontief inverse are investigated with
respect to densities and first moments.

1 Introduction

Input-output models are used to be based on a deterministic input ma-
trix A. However, the observed values of inputs should be seen as reali-
sations of random variables since inputs are affected by random effects,
e. g. weather, prices, factor substitution, technical progress, product and
process mix. In the literature, only a small number of contributions start
from a stochastic input matrix and draw some conclusions concerning the
stochastic Leontief inverse L(A), for instance, on bounds of its expected
values based on Jensen’s inequality. However, it is a hard problem to
derive the distributions of the elements of L(A), even if the input coeffi-
cients are supposed to be normally distributed which is mainly assumed.

In this paper, the input coefficients are assumed to be beta dis-
tributed. The standard beta distribution has the domain of the input
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coefficients, the interval [0, 1]. It depends on two parameters which allow
for a high degree of flexibility. In particular, great skewness is admitted.
These properties seem to be adequate for modelling the distribution of
the large number of very small input coefficients.

To derive the distributions of L(A) seems to be out of reach. How-
ever, for good lower bounds of L(A) the densities will be given for its
diagonal elements and the first two moments for the other elements. The
latter result is achieved by applying an approximation of the density of
a product of beta random variables proposed by Fan (1991).

A first proxy of the parameters of the beta distributions may be com-
puted even from a single input-output table.

2 Properties of the Beta Distribution

Density of the standard beta distribution Be(r, s):

fX(x) =
1

B(r, s)
xr−1(1− x)s−11[0,1](x) for r, s > 0,

where B(r, s) denotes the beta function (B(r, s) = Γ(r) Γ(s)
Γ(r+s)

).

X ∼ Be(r, s) =⇒ 1−X ∼ Be(s, r)

Moments:

E(X) = µX =
r

r + s
, E(X2) =

r(r + 1)

(r + s)(r + s + 1)
=

µX

1 + s/(r + 1)
,

V ar(X) = σ2
X =

rs

(r + s)2(r + s + 1)
=

µX (1− µX)

r + s + 1
.

If r, s > 1, then V ar(X) < 1/12 and fX is unimodal with mode

m =
r − 1

r + s− 2
.
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Figure 1: r = 2, s = 18 ⇒ µX = 0.1
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Figure 2: r = 4, s = 16 ⇒ µX = 0.2
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Distribution of Y = (1−X)−1

fY (y) =
1

y2

1

B(r, s)

(
1− 1

y

)r−1 (
1

y

)s−1

1[1,∞)(y)

E(Y ) =
r + s− 1

s− 1
= 1 +

r

s− 1

V ar(Y ) =
r (r + s− 1)

(s− 1)2(s− 2)
= µY (µY − 1)

1

s− 2
,

E(Y 2) =
(r + s− 1)(r + s− 2)

(s− 1)(s− 2)
=

(
1 +

r

s− 1

)(
1 +

r

s− 2

)
,

provided that s > 2, which implies V ar(X) < 1/16. In the sequel, for the
beta parameter s it will be assumed s > 2, whenever V ar(Y ) or E(Y 2)
is mentioned.

Taylor-approximation of moments for Y = (1−X)−1

(second order approximation at µX)

E(Y ) ≈ 1

1− µX

(
1 +

r

s (r + s + 1)

)
≤ 1

1− µX

(
1 +

µX

s

)

V ar(Y ) ≈ σ2
X

(
1 +

r

s

)4

≥ r

s2
(1 + µX) .

The figures show two beta densities X with corresponding trans-
formed distributions of Y = 1/(1 − X) which will be relevant for the
densities of the diagonal coefficients of the Leontief inverse. Remarkable
is the skewness of fX which seems adequate for the great number of very
small input coefficients. A normal density does not seem to fit to this
situation, even if truncated, because of its symmetry.

3 Approximation and Moments of the Leon-

tief Inverse

If all the elements Aij of the input matrix A have beta distributions, it
seems impossible to determine the densities of the elements Lij of the
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Leontief inverse L(A), since they depend on a ratio of two determinants
which are sums of products of the Aij.

Therefore, an approximation of L(A) for a deterministic matrix A is
regarded which will allow to approximate the distributions of its diago-
nal elements and the moments of the other elements after returning to
random input coefficients.

The approximation by minors (cf. Kogelschatz, 1978), which gives
good lower bounds for L, reads in its simplest form

l̃ii =
1

1− aii

∀ i and l̃ij =
aij

(1− aii)(1− ajj)
∀ i, j with j 6= i.

In the following, this approximation is studied for random variables Aij ∼
Be(ri, sj).

For the diagonal elements of L the densities are given as for Y =
1/(1−X) above:

fL̃ii
(l̃ii) =

1

l̃2ii

1

B(rii, sii)

(
1− 1

l̃ii

)rii−1 (
1

l̃ii

)sii−1

1[1,∞)(l̃ii) ∀ i.

Furthermore, E(L̃ii) = 1 +
rii

sii − 1
> 1 +

rii

sii

=
1

1− E(Aii)

and V ar(L̃ii) = E(L̃ii)
E(L̃ii)− 1

sii − 2
≥ V ar(Aii)

(
1 +

rii

sii

)4

.

For the off-diagonal elements of L the situation is complicated. The
distribution of L̃ij depends on a ratio and a product of beta random
variables. In the literature, several very complicated formulae can be
found, mainly for special cases of products (Johnson, Kotz, Balakrishnan
(1995, p. 256f)). A very good approximation of a product of beta random
variables, which usually is not beta distributed, was suggested by Fan
(1991, p. 4045). By construction, it ensures exact first two moments and,
furthermore, it performs very well in approximating higher moments as
his computations show.

Fan’s approximation theorem

If Xi ∼ Be(ri, si), Xi are independent random variables and Z =∏k
i=1 Xi, then Z has an approximate Be(R, S) distribution with true

5



first two moments, where

R :=
U (U − T )

T − U2
, S :=

(1− U)(U − T )

T − U2

and U :=
k∏

i=1

ri

ri + si

, T :=
k∏

i=1

ri

ri + si

· ri + 1

ri + si + 1

By the way, in the book of Johnson, Kotz, Balakrishnan (1995, p. 262),
where Fan’s result is reported, the formula for p has to be multiplied by
(S − T ), where p and S correspond to R and U here. The following
interpretations result from the independence assumption:

U =
k∏

i=1

E(Xi) = E(Z), T =
k∏

i=1

E(X2
i ) = E(Z2),

hence T − U2 = V ar(Z).

Obviously, T = UV where V =
∏k

i=1(ri + 1)/(ri + si + 1).

Fan’s method will now be applied to the approximation by minors
with random input coefficients Aij and L̃ij, where Aij ∼ Be(rij, sij) with
rij, sij > 1. In order to get some information about the distribution of
the off-diagonal elements of L̃ij, the denominator (1 − Aii)(1 − Ajj) =:
Zij is considered first. It seems realistic to assume the diagonal input
coefficients to be independent random variables. As Zij is a product of
(1−Aii) ∼ Be(sii, rii) and (1−Ajj) ∼ Be(sjj, rjj) it can be approximated
by Z̃ij ∼ Be(Sij, Rij) using the notation from above with additional
indices (i 6= j in the following)

Sij =
Uij (Uij − Tij)

Tij − U2
ij

, Rij =
(1− Uij) (Uij − Tij)

Tij − U2
ij

with

Uij =
sii

rii + sii

· sjj

rjj + sjj

and Tij = Uij
sii + 1

rii + sii + 1
· sjj + 1

rjj + sjj + 1

In the next step, the distribution of Yij := 1/Z̃ij = 1/(1 − Z̃ ′
ij) =

UijVij = E(Z2
ij), where Z̃ ′

ij := 1− Z̃ij with Z̃ ′
ij ∼ Be(Rij, Sij), is given as

that of Y := 1/(1−X) above

fYij
(yij) =

1

y2
ij

1

B(Rij, Sij)

(
1− 1

yij

)Rij−1 (
1

yij

)Sij−1

1[1,∞)(yij).
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The expected value of 1/Z̃ij is obtained as

E

(
1

Z̃ij

)
= 1 +

Rij

Sij − 1
= . . . =

1 + Uij − 2Vij

2Uij − Vij(1 + Uij)
>

1

E(Zij)
,

where Uij = E(Zij) and Vij ≥ Uij for rkk, skk large. In this case,
E(1/Z̃ij) ≥ (1− Uij)/(Uij − U2

ij) = 1/Uij = 1/E(Zij).

In the last step, the nominator Aij of L̃ij = Aij/Zij has to be taken
into account. The distribution of L̃ij which is a product of a beta and a
transformed approximate beta random variable will not be investigated
here. Evidently, no beta density can result since the domain of L̃ij is R+.
Nevertheless, the density of L̃ij, which is mainly concentrated on [0, 1],
might be approximated by a suitable (standard) beta distribution. For
empirical input matrices A the off-diagonal elements of L(A) are smaller
than 1.

In the sequel, expected value and variance of L̃ij will be derived. As
before, Zij is substituted by Z̃ij. Additionally, it is assumed that Aij

and Aii, Ajj are independent which may be doubted. Then, the expected
value of L̃ij turns out to be

E(L̃ij) = E(Aij) E

(
1

Z̃ij

)
= E(Aij)

(
1 +

Rij

Sij − 1

)

> E(Aij)
1

E(Zij)
= E(Aij)

(rii + sii)(rjj + sjj)

siisjj

= E(Aij)

(
1 +

rii

sii

)(
1 +

rjj

sjj

)
.

Obviously, L̃ij it has not only a greater mean but also greater variance
than Aij. This is shown by the usual computation of a variance

V ar(L̃ij) = E(L̃2
ij)−

(
E(L̃ij)

)2

.

E(L̃2
ij) = E

(
Aij · 1

Z̃ij

)2

= E(A2
ij) E

(
1

Z̃2
ij

)
by independence

= E(A2
ij)

(
1 +

Rij

Sij − 1

)(
1 +

Rij

Sij − 2

)

≥ E(A2
ij)

(
1 +

Rij

Sij − 1

)2

.
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V ar(L̃ij) ≥ E(A2
ij)

(
1 +

Rij

Sij − 1

)2

− (E(Aij))
2

(
1 +

Rij

Sij − 1

)2

= V ar(Aij)

(
1 +

Rij

Sij − 1

)2

> V ar(Aij)

[(
1 +

rii

sii

)(
1 +

rjj

sjj

)]2

which follows from the lower bound of E(L̃ij) mentioned above.

Both lower bounds for E(L̃ij) and V ar(L̃ij), respectively, differ from
the corresponding moments of Aij by augmenting factors which depend
only on the ratio of beta parameters r and s of the corresponding diagonal
elements. The factor for V ar(L̃ij) is just obtained by squaring the factor
for E(L̃ij). Also the 3σ-region will be extended by the latter factor.
For the values of the example in Figure 2, where µ = 0.2 is realistic for
average diagonal elements Aii of input matrices with 10 to 15 sectors,
one would obtain E(L̃ij) > 1.56 ·E(Aij) and V ar(L̃ij) > 2.44 · V ar(Aij).

4 Proxies of Beta Parameters

After these theoretical considerations the question arises how to estimate
the parameters r and s of the beta distributions within this model for
the input coefficients. Estimation from a time series is doubtful since
coefficients are changing over time for several reasons. Only input-output
tables based on fixed prices should be used. For estimation procedures of
the parameters r, s see Johnson/Kotz/Balakrishnan (1995, p. 221–238)
and with special regard of skewness Moitra (1990).

Even from a single input matrix a first proxy for r, s may be given.
A practical proposal made by Bamberg (1976, p. 16) for the moments of
an apriori distribution in Bayesian estimation can be applied here. He
suggests to ask for the mode m as a proxy of µ and for the greatest
possible deviation d from µ. According to the 3σ-rule, which says that
99% of the probability of a normal density lies in the 3σ-region and 89%
according to Chebychev’s inequality for the least favorable distribution
he suggests to take d/3 as a proxy of σ. For unimodal beta densities this
probability will be close to that of the normal distribution.
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For stochastic input coefficients one may modify this proposal as fol-
lows. Take the observed value aij a) as mode mij or b) as expected value
of the distribution and also as deviation d in case b). It is assumed that
the probability that Aij exceeds 2aij may be neglected. With respect to
the skewness (to the right) of adequate beta densities it might be pre-
ferred to take a larger region, say, up to 3aij in order to capture about
95% of the probability. Thus, two equations are obtained for case b)

E(Aij) =
rij

rij + sij

= aij

V ar(Aij) =
aij (1− aij)

rij + sij + 1
=

(aij

3

)2

which may be solved for rij and sij.

In case a), which corresponds to the idea of maximum likelihood
estimation, aij = mij has to be transformed to E(X) by

E(Aij) = aij
rij

rij − 1

rij + sij − 2

rij + sij

= µij

and in the equation for the variance aij has to be substituted by µij, a
third unknown. For input coefficients Be(r, s) usually is skewed to the
right so that E(X) > m. Usually, the smaller the input coefficients the
greater the skewness and the greater µij/mij. Since µij/mij ≤ 2 for
rij ≥ 2 it is proposed to take 2(1− aij) as a proxy of this ratio in order
to eliminate the third unknown.

5 Further Research

As a next step, the densities for the lower bounds of the off-diagonal
elements of L(A) may be approximated by suitable beta distributions
the moments of which are given above.
An appealing extension of the framework would be to start with a multi-
dimensional standard beta distribution (Dirichlet-distribution) for each
sector since the input coefficients and the value added coefficient add up
to one (columnwise). Thus, this restriction may be taken into account.
In particular, this would be important for estimation procedures.
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