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ABSTRACT. Biproportional methods project a matrix A to give it the column and row sums

of another matrix; the result is R A S, where R and S are diagonal matrices. As R and S are

not identified, it is possible to normalize them. This article starts from the idea developed in de

Mesnard (2002) -- any normalization amounts to put constraints on Lagrange multipliers, even

when it is based on an economic reasoning, -- to show that it is impossible to calculate the

normalized solution at optimum, except by trial and error. Convergence must be proved when

normalization is applied at each step on the path to equilibrium. It is also indicated that

negativity is not a problem.
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1 Introduction

Biproportional methods project a matrix A0 to give it the column and row sums of another

matrix A1; the result is R A0 S, where R and S are diagonal matrices. As R and S are not

identified, it is possible to normalize them. This article will start from the idea developed in de

Mesnard (2002) -- any normalization amounts to put constraints on Lagrange multipliers, even

when it is based on an economic reasoning, -- to show that it is impossible to calculate the

normalized solution, except by trial and error, at optimum or along the path to optimum.

2 Remind: Normalizing biproportional methods

The principle of biproportional methods is the following. Assuming that a matrix  isA0

projected on the margins of a matrix  to give a projected matrix denoted . RA1 A K A0, A1

and S are two diagonal matrices such that  has the same margins than :A R A0 S A1

 for all i and  for all j. The solutions  for all i, ,j, can bej a ij a i
1

i a ij a j
1 ri , sj

found, for example, by minimizing the quantity of information 1:

,min I i j a ij log
a ij

a ij
0

s.t.  (multiplier ) and  (multiplier ).j a ij a i
1

i i a ij a j
1

j

The solution is found after a transformation  for all i and  for all j:ri exp 1 i sj exp j

1 Other algorithms, and among them the so-called method RAS (Stone and Brown,

1962) or those of (1) (Bachem and Korte, 1979) are possible but it is demonstrated that they

all lead to the same solution (de Mesnard, 1994).
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(1)  for all i, and  for all jri
zi

1

j 1

m

sj zij
0

sj

z j
1

i 1

n

ri zij
0

that could be changed into:

(1')  for all iri zi
1

j 1

m z j
1 zij

0

i 1

n

ri zij
0

1

It is unique as it is deduced of the minimization of I, a convex and continuously derivable

function, on a compact set. After initializing the process by a set of values  for all i, forri
0

example, R and S are found iteratively from a mathematical algorithm as follows:

(2)  for all i, and  for all jri
k 1 zi

1

j 1

m

sj
k 1

zij
0

sj
k 1 z j

1

i 1

n

ri
k zij

0

that could be transformed into:

(2')  for all iri
k 1

zi
1

j 1

m z j
1 zij

0

i 1

n

ri
k zij

0

1

It is demonstrated for RAS that the process is converging 2 (Bacharach, 1970). Biproportional

methods are not identified, that is  for any : it is impossible toR A0 S R A0 1 S 0

give an interpretation to a particular value found for a  or a  (even if the products  ri sj ri sj

are identified for all i and j). Geometrically, in the space of the , the locus of allri

biproportional solutions is on a hyperplane of dimension  passing by the origin. To bypassn 1

the difficulty of non identification, it is possible to normalize R or S, for example by doing

arbitrarily  or  or following Van der Linden and Dietzenbacher (1995), byr1 1 i ri 1

2 Under some conditions of existence on the matrices A0 and A1.
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arguing that the global substitution effect is zero for the whole economy, what is less arbitrary

(  denoting the output of sector j at year 1):x j
1

(3)
i j

ri a ij
0 sj

x j
1

j
x j

1
i j

a ij
0 sj

x j
1

j
x j

1
0

Reporting the expression of  found from (1), it follows:sj

(4)
j

a j
1 x j

1

j
a j

1 x j
1

i
a ij

0

i
a ij

0 ri

1

3 Calculability of normalization at optimum

In (de Mesnard 2002), it was stressed that normalizing  and  amounts to put a constraintri sj

on the multipliers  and , was is unusual in mathematical optimization. This is not only ai j

question of violating or not the "mathematical law" but this has important consequences. As

they are multipliers,  and  are known after calculating, so, how to know them beforeri sj

calculating, what would be necessary to apply the constraint?  Normalization allows to select

one set of these parameters, but what set?

Finding a solution amounts to solve the system . However, as (1) is itself computed1 , 4

by solving (2) iteratively, one has to solve , that is to compute the intercept2 , 4

between the constraint and the trajectory defined by (2) that ends up on an accumulation point

and in fact the trajectory that ends up exactly on the constraint. However, this point is

unknown as biproportion is solved after an infinite iterative process; in other words, starting

from an initialization, one cannot know by calculation what is this point, only it can be known

by numerical computing. Moreover, the initialization point and the trajectory are not unique.
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So, one cannot calculate the correct set, biproportional solution respecting the normalization

constraint (4).

In (de Mesnard, 2002), a 2x2 example was provided: it is recalled here as it could help the

reader to understand the new arguments developed in this article. Data are:

, , , .A0 0.1 0.2
0.3 0.1

A1

0.4
0.9

0.5 0.8

x1
1 20 x2

1 25

The solution matrix in all cases is: . In the normalizationA
0, 0558756 0, 3441244
0, 4441244 0, 4558756

expression, , the terms  2 r1 s1 5 r1 s2 6 r2 s1 2.5 r2 s2 8 s1 7.5 s2 s1
0.5

0.1 r1 0.3 r2

and  are inserted to give the normalization constraint in the space ofs2
0.8

0.2 r1 0.1 r2

:r1, r2

(4')      r2 1. 2222 1. 1667 r1 5. 5556 10 2 484 420 r1 225 r1
2

In the above example, choosing  and  gives the (unconstrained) solutionr1
0 1 r2

0 1

  and  but the normalization formula (4') implies a different valuer1 0.553210 r2 1.465719

for : it must be equal to 1.5714125; one must change the initialization to obtainr2

coincidence. This one is obtained for an initialization by  and  to giver1
0 1 r2

0 1.0903506

the solution  and  that fully respects (4'); this last value has beenr1 0.579157 r2 1.534466

found by trial and error, not by calculating.

Remark that normalization leads to initialize by not equal values. Also, one notice that the

normalized solution must have a valid initialization point, but this one is not unique: another

initialization is  and  for the same solution, or also  andr1
0 2 r2

0 0.355393 r1
0 0.5

 or  and , etc.r2
0 1.6295396 r1

0 0.2 r2
0 2.0229707
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One can see on the above example that empirically, the initialization points leading to a

solution on the normalization constraint (4') are closed to this normalization constraint; the

other points are dismissed. A paradox is: it is not because an initialization point is chosen on

the normalization constraint that it is a valid constrained solution. For example  isr1
0 r2

0 1

on the constraint (4') but it is not a biproportional solution:  is false. It is evenr1 r2 1

possible to initialize by negative values to obtain the same constraint solution:  andr1
0 0.5

 3.r2
0 3.1115122

In this 2-dimensional example, all solutions are aligned on the origin (non identification) what

allows to compute exactly the solution by the intersect of the straight line  and of ther2 r1

line (4'), without passing by (2). However, it is false for  as the intersect of the locus ofn 2

all biproportional solutions and the surface (4) of dimension  is of dimension  (a linen 1 n 2

if , a plane surface if , etc.) what leaves an infinite number of possibilities..n 3 n 4

Figure 1 about here

3 All ri
* (or sj

*) can be negative without any problem as they are not identified. In (de

Mesnard, 2002), it is stressed that some terms ri
* could be positive and some negative in

equation (4) but this is not a problem also: the solution matrix is always not negative as soon

as matrices A0 and A1 are not negative.

At the beginning of the iterative process it is possible to have some r or s terms that

are negative and some that are positive, for example if initialization starts with some negative

ri
(0). But as they are all positive or zero or all negative or zero at equilibrium, necessarily after

a certain moment these terms will turn to have all the same sign. So, the constraints of

negativity are not really a problem except if one consider that the solution matrix must be valid

(i.e., not negative) at each step k.
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4 Calculability of normalization on the path to equilibrium

Above, normalization comes at the end of the iterative process when  (and ) areri sj

calculated at equilibrium. It is not completely satisfactory as (2') is iterative but (4) is not. It

could have be preferred to have two iterative equations to form a system so the question is:

what happens when normalization comes during the iterative process, that is to say at each

step k? It is much more complicated. If it is accepted that normalization must hold not only for

equilibrium but also for all steps of the iterative process, one has to calculate the path

respecting the normalization at each step k from initialization to equilibrium. And one would

demonstrate that the resulting solution converges to the same solution than those given by (4).

As the equilibrium values of r and s terms are found from an iterative process, condition (3),

i.e., , has to be set not only at equilibrium but also ati ri j a ij
0 sj x j

1
i j a ij

0 sj x j
1 0

each step of the iterative calculation of r and s terms, that is:

(5)
i

ri
k 1

j
a ij

0 sj
k 1

x j
1

i j
a ij

0 sj
k 1

x j
1

Terms  must be replaced by  found from (2):sj
k 1 sj

k 1 a j
1

i 1
n ri

k a ij
0

1

(6)
j

a j
1 x j

1

i
a ij

0 ri
k 1

i 1

n

a ij
0 ri

k
1

j
a j

1 x j
1

i
a ij

0

i 1

n

a ij
0 ri

k
1

One observes that the normalization formula includes both  and  terms: it becomesri
k

ri
k 1

"intertemporal" (if iterations are compared to time periods). Remark that it becomes

impossible to normalize at  and one must wait for  to do it. Obviously, whenk 0 k 1

 for all i, (6) tends toward (4). Now, one has to solve the system .ri
k 1

ri
k 1 6

In the example of (de Mesnard, 2002), the normalization expression is:
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2 r1
k 1 6 r2

k 1 s1
k 1 5 r1

k 1 2.5 r2
k 1 s2

k 1 8 s1
k 1 7.5 s2

k 1

Replacing  and  in the normalizations1
k 1 0.5

0.1 r1
k

0.3 r2
k

s2
k 1 0.8

0.2 r1
k

0.1 r2
k

expression (5) transforms into:

(6') r2
k 1 6 r1

k r1
k 1 13 r1

k 1 r2
k 14 r1

k 22 r2
k

4 r1
k

7 r2
k

Initializing by  and , one obtains  and .r1
0 1 r2

0 1 r1
1 0.6075949 r2

1 1.4025974

However normalization formula (6') obliges to associate to  another value forr1
1 0.6075949

, that is : coincidence doesn't hold. One must change initialization, forr2
1 r2

1 2.2232451

example, to  and  to have coincidence, with  andr1
0 1 r2

0 1.6287231 r1
1 0.7606423

 as result.r2
1 1.8935493

However, at step 2, things are bad as coincidence falls gain, even with these new values:

 and  while (6') indicates  So convergencer1
2 0.7323751 r2

2 1.9265983 r2
2 1.8982382.

must be demonstrated from  to equilibrium.k 0

5 Conclusion

As the diagonal matrices R and S of RAS are not identified, it is possible to normalize them.

However, in (de Mesnard, 2002) it is stressed that, as R and S are Lagrange multipliers,

normalizing means that Lagrange multipliers are constrained, what is mathematically strange.

Starting from the fact that multipliers are known only at the end of an optimization calculation

and then by an iterative computation, this article has shown that the normalized solution

cannot be calculated but only found by trial and error; convergence must be proved when

normalization is applied at each step of the path to equilibrium. However, negativity is not a
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problem. So, unfortunately, biproportional methods remain unidentified and R and S must not

be interpreted by themselves...
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Figure 1. Function  of normalizationr2 f r1

The paths to equilibrium are indicated by  an arrow
The constrained equilibrium is indicated by a bold dot
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