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Abstract 
 

Disasters damage physical infrastructure systems, disrupt movement of people and 
commodities, and give rise to significant economic losses. This paper develops an input-
output model extension to explicitly identify regional perturbations pursuant to disaster 
scenarios. Historical data pertaining to the impacts of disasters on various economic 
sectors are utilized as input scenarios to a dynamic input-output model. The resulting 
model is specifically implemented for the Nashville region, which is a major 
metropolitan area in the United States known for its vibrant music and tourism industry 
sectors. The region is regularly visited by natural disasters like tornadoes and floods. The 
model developed in this paper is capable of estimating and visualizing the distribution of 
ripple effects across different economic sectors. Results of the study will help identify the 
critical sectors and can ultimately provide insights to formulating preparedness decisions 
to expedite disaster recovery. 
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1. Overview 
 
The immense physical, economic, and social consequences caused by recent disasters 
have prompted federal, state, and local agencies to develop policies for preparedness and 
recovery. The extensive focus of the United States on protecting critical infrastructure has 
grown since the establishment of the President’s Commission on Critical Infrastructure 
Protection (PCCIP) as stipulated in Executive Order 13010 [The White House 1996]. 
Several federal directives have been issued to underscore the need for disaster planning 
and management. Such directives [see, for examples, Department of Homeland Security 
(DHS) 2003a, 2003b] call for the development of risk analysis tools to prepare the nation 
against disruptive events, prevent the occurrence of dire consequences, and ensure 
efficient response and recovery in the aftermath of such events. The National Response 
Framework [DHS 2008] and National Infrastructure Protection Plan [DHS 2009], among 
others have been formulated to support the realization of such goals. In particular, man-
made and natural disasters have been explicitly identified within the planning scenarios 
developed in conjunction with the DHS [see Howe 2005]. 
 
Natural or man-made disasters bring damage to properties and critical infrastructure 
systems, disrupt economic productivity, and cause mortalities in extreme situations. In 
addition to the disruptions to infrastructure systems, these disasters can trigger a variety 
of economic effects including the inability of many employees to commute to work, as 
well as the disruptions to shipments of commodities. Destruction of critical infrastructure 
assets, such as electric power substations, can create cascading adverse effects across 
interdependent economic systems. Workforce absence translates to production losses. 
Delayed commodity shipments also adversely impact production because local 
businesses are unable to operate at full capacity without the necessary resources.  

 
This paper uses regional input-output modeling to estimate the total economic risk and 
resilience – including all direct losses and “ripple effects.” The model is an extension of 
classical input-output modeling that explicitly identifies regional perturbations pursuant 
to disaster scenarios. Historical data pertaining to the impacts of disasters on various 
economic sectors are utilized as input scenarios to a dynamic input-output model, with an 
example based specifically on Tennessee’s Nashville metropolitan area. The result is a 
new computer-based decision support system capable of estimating the distribution of 
losses across the economic sectors in the region and provides a visualization capability to 
identify the economic sectors most heavily impacted. These results of the study will help 
identify the critical sectors and can ultimately provide insights to formulating 
preparedness decisions to expedite disaster recovery. 
 
2. Model Description 
 
2.1 Background and Previous Uses 
 
At the core of the disaster risk model developed in this paper is the concept of input-
output (I-O) modeling. The I-O model views the economy as a set of interconnected 
sectors, which both produce goods as well as consume goods in the process of 
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production. When the intermediate consumption is combined with the final consumer 
demand for products, the result is a model useful for understanding the interdependent 
nature of an economy [Leontief 1936]. Leontief’s model has been extended and applied 
to myriad problems, including the effect of new technologies or taxes on the energy 
industry, and pollution creation and elimination [Miller and Blair 2009]. Understanding 
the interdependencies and resulting cascading impacts from an emergency event is 
essential in developing an effective security plan [TISP 2006]. The I-O model is a 
method for modeling interdependencies across multiple sectors of a given regional 
economy [Leontief 1951a and 1951b, Isard 1960, Miller and Blair 2009]. The National 
Cooperative Highway Research Program [2001] recognizes the I-O method in its 
guidebook for assessing the social and economic factors in infrastructure management 
domain. Extensions and current frontiers on I-O analysis can be found in Dietzenbacher 
and Lahr [2004].  
 
Geographic modeling and decomposition enable a more focused and hence a more 
accurate analysis of regional characteristics as well as the associated regional 
interactions. Interdependencies across regions are becoming more and more prevalent 
due to the increasing trend in interregional transportation and trading activities. 
Significant segments of the working population commute across regions, as evidenced 
from the Journey to Work and Place of Work data [US Census Bureau 2007]. The 
increasing number of commodity shipments across regions bolsters the activities of the 
freight and trade sectors based on the Commodity Flow Survey [Bureau of Transportation 
Statistics 2008]. Several Lowry/Echenique input-output model derivatives are available 
for analysis of disruptions and their adverse effects on workforce and supply chains [e.g., 
Ruiz-Juri and Kockelman 2006]. The benefits of input-output-based models are many, 
particularly with respect to modeling the effect of disruptive events on interdependent 
regional sectors. There exists a wealth of data that describe the relationships among the 
many different sectors of the economy, namely provided by the Bureau of Economic 
Analysis (BEA) and the US Census. Furthermore, input-output data are essential 
components within the larger social accounting matrices used in computable general 
equilibrium modeling [see, for example, Minnesota IMPLAN Group, 2008]. 
 
The Leontief I-O model is formulated as follows: 
 
 x = Ax + c        (Eq. 1) 
 
 Where: 
 

• x is the production output vector (i.e., the element, xi, denotes the output of 
sector i) 

• A is the Leontief technical coefficient matrix (i.e., the element aij denotes the 
input requirement of sector j from sector i, normalized with respect to the total 
input requirements of sector j)  

• c is the final demand vector (i.e., the element, ci, denotes the final demand for 
sector i) 
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One of the strengths of the Leontief model is that it is supported by detailed data 
collected and compiled by national census and statistical agencies. In the United States, 
for example, extensive I-O data are published by the Bureau of Economic Analysis 
(BEA) to generate the technical coefficient matrix [Miller and Blair 2009]. This 
methodology is coupled with the BEA’s Regional Input-Output Multiplier System (RIMS 
II) to provide a useful framework for evaluating economic interdependencies [U.S. 
Department of Commerce 1997]. These data are available from BEA for the nation as a 
whole, each state, metropolitan regions (using the U.S. Census definitions), and counties.  
The availability of high-resolution economic data and social accounting matrices enables 
the application of I-O model and its hybrids for analysis of relatively small regions (e.g., 
analysis of infrastructure disruptions in Portland [Rose and Liao 2005]). Other I-O based 
models can be found in USDOT [2009] and Zhao and Kockelman [2004]. 
 
Haimes and Jiang [2001] revisited the Leontief model and expanded it to account for 
inoperability, or the inability for sectors to meet demand for their output. This model, the 
Inoperability Input-Output Model (IIM), has been featured in several applications. 
Examples include modeling of infrastructure interdependencies and risks of terrorism 
[Santos 2006, 2008], multi-state regional electric power blackouts [Anderson et al. 2007], 
inventory management [Barker and Santos 2010], and hurricane scenarios [Haggerty et 
al. 2008, Crowther et al. 2007]. The IIM was also applied to problems with sequential 
decisions and multiple objectives, such as the biofuel subsidy analysis explored by Santos 
et al. [2008]. Santos et al. [2007] have also formulated a conceptual framework for 
bridging I-O analysis with agent-based simulation for interdependent infrastructure 
systems.  
 
2.2 Inoperability Input-Output Model (IIM) 
 
The IIM is structurally similar to the Leontief I-O model in Eq. (1). The mathematical 
formulation is as follows: 
 
         q = A*q + c*        (Eq. 2) 
 

• q is the inoperability vector (i.e., the element, qi, denotes the inoperability of 
sector i) 

• A* is the interdependency matrix (i.e., the element a*
ij describes the 

inoperability contribution of sector j to sector i, see further discussions below)   
• c* is the demand perturbation vector (i.e., the element, c*

i, denotes the demand 
perturbation to sector i) 

 
The parameters descriptions of the IIM, as well as additional discussions on the dynamic 
model extensions are found below. Details of model derivation and an extensive 
discussion of model components are found in Santos and Haimes [2004] and also in 
Santos et al. [2008].  
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Sector Inoperability 
 
Inoperability is conceptually related to the term unreliability, which expresses the ratio 
with which a sector’s production is degraded relative to some ideal or ‘as-planned’ 
production level. Sector inoperability (q) in this paper is an array comprised of 65 
elements. Each element represents the resulting inoperability value for each of the 65 
interdependent economic sectors. Table 1 summarizes the sector classifications used in 
the regional model and examples. The inoperability of each sector represents the ratio of 
unrealized production (i.e., ideal production minus degraded production) relative to the 
ideal production level of the industry sectors. To understand the concept of inoperability, 
suppose that a given sector’s ideal production output is worth $100. Suppose also that a 
natural disaster causes this sector’s output to reduce to $90. The production loss is $10, 
which is 10% of the ideal production output. Hence, the inoperability of the sector is 
0.10. Since a region is comprised of interacting sectors, the value of inoperability will 
further increase due to the subsequent ripple effects caused by sector interdependencies. 
 
Interdependency Matrix 
 
The interdependency matrix (A*) is a transformation of the Leontief technical coefficient 
matrix (A), which is published by the BEA and is publicly available. It is a square matrix 
with 65 rows and 65 columns. The elements in a particular row of the interdependency 
matrix can tell how much additional inoperability is contributed by a column industry 
sector to the row industry sector. When the interdependency matrix (A*) is multiplied 
with the sector inoperability (q), this will generate the intermediate inoperability due to 
endogenous sector transactions. Endogenous transactions in the context of this paper 
pertain to the flow of intermediate commodities and services within the 65 sectors. These 
endogenous commodities and services are further processed by the intermediate sectors 
(i.e., commodities and services that are not further transformed or those used immediately 
for final consumption are excluded from endogenous transactions). BEA’s detailed input-
output matrices can be customized for desired geographic resolutions using regional 
multipliers, or location quotients based on sector-specific economic data. This process of 
regionalization is performed to generate region-specific interdependency matrices like the 
ones used in the case studies for the Nashville metropolitan statistical area.  
 
Demand Perturbation 
 
The demand perturbation (c*) is a vector comprising of final demand disruptions to each 
sector in the region. The demand perturbation, just like the inoperability variable in the 
basic IIM shown in Eq. (2), is normalized between 0 and 1. In this basic IIM formulation, 
supply disruptions are modeled as “forced” demand reductions. Consider a hypothetical 
disruption where the supply for a commodity or service decreases but demand remains 
virtually unaffected. In this case, the consumers will have to temporarily sacrifice their 
need for that commodity or service until it bounces back to its as planned supply level. 
The limitation of the basic model in Eq. (2) is that it uses “forced” demand reduction as a 
surrogate to supply reduction. To address this shortcoming, the dynamic extension to the 
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IIM was developed to enable a more explicit definition of perturbation parameters, in 
addition to the formulation of a sector-specific economic resilience matrix.  
 

Table 1: Sector Classification 
 

 
 
Economic Resilience 
 
A key motivation that led to the development of the dynamic IIM is the need for linking 
the concept of economic resilience with time varying sector inoperability for a given 
recovery horizon. In general, resilience is defined as the ability or capability of a sector to 
absorb or cushion against damage or loss [Holling 1973, Perrings 2001]. Rose and Liao 
[2005] suggest that resilience can be enhanced through: (i) expedited restoration of the 
damaged capability, (ii) using an existing back-up capability, (iii) conservation of inputs 
to compensate for supply shortfalls, (iv) substitution of inputs, or (v) shifting of 
production locations, among others. Rose [2009] provides comprehensive definitions and 
categories of economic resilience including static, dynamic, inherent, and adaptive. 
 
The dynamic formulation of the IIM takes into account the economic resilience of each 
sector, which influences the pace of recovery of the interdependent sectors in the 
aftermath of a disaster. The formulation is as follows: 
 

 q(t+1) = q(t) + K[A*q(t) + c*(t) – q(t)]    (Eq. 3) 
 

The term, K, is a sector resilience coefficient matrix that represents the rates in which 
sectors recover to their nominal levels of production following a disruption [Lian and 
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Haimes 2006]. The model dictates that the inoperability level at the following time step, 
q(t+1), is equal to the inoperability at the previous stage, q(t), plus the effects of the 
resilience of the sector. The values of K tend to be negative or zero, thereby detracting 
from the overall level of inoperability. As seen in Eq. (3), K is multiplied with the 
indirect inoperability resulting from other sectors, A*q(t), plus the degraded final 
demand, c*(t), minus the current level of inoperability, q(t). The resilience coefficient, K, 
is assumed to be an inherent characteristic of a particular sector, but multiplying it with 
the inoperability product term, A*q(t), will result in coupled resilience across directly 
related sectors. This is particularly relevant when analyzing a sector that heavily depends 
on another sector for achieving its as-planned productivity levels. Regardless of how 
inherently resilient a sector is, its productivity will be significantly compromised when 
another sector it heavily depends on becomes largely inoperable in the aftermath of a 
disaster. 
    
The dynamic extension Eq. (3) answers one of the fundamental limitations of the basic 
IIM in Eq. (2), which is the ability to capture time varying recovery that adapts to some a 
priori and current levels of inoperability within the perturbation and recovery period. For 
the dynamic extension to the IIM, Lian and Haimes [2006] provide the formulation to 
estimate the sector resilience coefficient of each sector. This resilience coefficient is a 
function of: (i) sector inoperability, (ii) sector interdependencies, (iii) recovery period, 
and (iv) the desired level of inoperability reduction for the target recovery period. In this 
formulation, economic resilience is inversely proportional to the recovery period. This is 
because resilience is a desired attribute of any system and, hence, a higher level of 
resilience is preferred. On the other hand, recovery period (i.e., the time it takes to reach 
full recovery) is desired to be at minimum to the extent possible. The higher the value of 
the sector resilience metric, the better equipped it is to protect and recover itself from 
external perturbations. Hence, increasing the economic resilience metric of a sector 
reduces its recovery period as well as the associated economic losses. The dynamic 
version of the IIM is capable of analyzing the extent to which sector resilience can 
decrease the magnitude of sector inoperabilities and economic losses, as well as shorten 
the recovery period. This formulation would create a time-dependent value to better 
account for the impact of different intensities and durations of a disaster, as longer ones 
would tend to further stress the sectors impacting their ability to recover. Lian et al. 
[2007], Santos [2006], Lian and Haimes [2006], and Haimes et al. [2005] applied the 
model to various regional disaster scenarios to analyze the recovery behaviors of critical 
economic sectors and infrastructure systems. 

 
Economic Loss 
 
Similar to sector inoperability, economic loss is an array comprised of 65 interdependent 
economic sectors. Each element in this array indicates the magnitude of economic loss of 
each sector, in monetary units (or particularly in US dollars for the scenarios explored in 
the case studies). The economic loss of each sector is simply the product of the sector 
inoperability and the ideal production output.  For example, an inoperability of 0.1 for a 
sector whose production output is $100 will result in an economic (or production) loss of 
$10. Economic loss is treated as a separate disaster metric since it complements and 
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supplements the inoperability metric. Both the inoperability and economic loss metrics 
are desired to be kept at minimum. It is also worth noting that when the 65 sectors are 
ranked according to the magnitude of their inoperability and economic loss metrics, two 
distinct rankings will be generated. Suppose that a second sector has an inoperability of 
0.2 and a production output of $40. The resulting economic loss will be 0.2×$40 = $8. 
Although the inoperability of the second sector (0.2) has a higher rank compared to the 
first sector (0.1), the direction of priority will reverse when economic loss is considered 
as the sole basis for ranking. To wit, the second sector has an economic loss of $8, which 
has a lower rank in contrast to the first sector’s $10 economic loss. 
 
2.3 Databases for the Nashville Metropolitan Region 

 
Disasters can cause severe damage to existing infrastructure—consequently affecting 
economic productivity. Temporary closure of factories and stores, loss of mobility due to 
flooding and debris cleanup, repair of damaged infrastructure systems (among others) can 
drastically affect workforce and commodity flows for prolonged periods of time. 
Reduction in worker flow decreases productivity, reduction in commodity flow results in 
cascading demand and supply impacts, and social flows will impact business 
accessibility. Using detailed journey-to-work data, commodity flow surveys, and social 
accounting matrices permits modeling of disruptions to regional productivity. Modeling 
efforts include the potential for cascading failure, accounting for spatial dependencies and 
various economic and social travel patterns. 
 
A region expects substantial disruptions to infrastructure capacity, as well as workforce 
availability and mobility in the aftermath of a disaster. These disruptions in turn can 
trigger sector productivity degradations. In order to quantify the impact of reduced sector 
productivity levels on the economy of Nashville, economic data (such as input 
requirements, commodity outputs, and income statistics, among others) for each sector of 
the region are collected and assembled from different sources.  
 
Sector Classifications 
 
This paper configures the data collection methodology using the North American 
Industry Classification System (NAICS). RIMS II adopts an aggregated version of the 
detailed sector classification—comprising of 65 sectors (see Table 1) [U.S. Department 
of Commerce 1997].  
 
Input-Output Matrices 
 
In a simplified I-O model formulation, each industry is assumed to produce a distinct 
commodity. The term “commodity” in this report refers to the output of an industry, 
which can take the form of goods or services. Realistically however, it is possible that a 
given industry produces more than one commodity. In addition, a given commodity may 
not be a unique output of an industry. The BEA makes distinction between an industry 
and a commodity in its published I-O data via the “industry-by-commodity” and 
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“commodity-by-industry” matrices. Figure 2, adapted from Miller and Blair [2009], 
shows a summary of the types of national I-O accounts maintained by the BEA. 
 

 
Figure 1.  Summary of economic I-O accounts 

 
The make matrix, denoted by V, would show the monetary values of the different column 
commodities produced by the different row industries. The use matrix on the other hand, 
denoted by U, would show the monetary values of the different row commodities 
consumed by the different column industries. These matrices are typically associated with 
the following vectors: (i) e refers to the commodity-based exogenous (or final) demand; 
(ii) y refers to the commodity-based output; (iii) x refers to the industry-based output; and 
(iv) z refers to the value added. Note that Figure 1 does not directly specify the I-O 
matrix representing an industry-by-industry matrix. Hence, the make and use matrices are 
normalized first with respect to their column totals, and are then multiplied with each 
other. The resulting product matrix is typically known as the industry-by-industry 
technical coefficient matrix in I-O parlance. A column of this matrix shows the input 
contribution of the row industries to the column sector, expressed as a proportion of the 
total input requirements of that column sector. The technical coefficient matrix is used for 
computing the elements of the interdependency matrix of the IIM (i.e., the notation A* in 
Eq. 1). 
 
Gross Domestic Product 
 
Gross Domestic Product (GDP) consists of final consumption, other than those used as 
intermediate production inputs to the 65 endogenous sectors. As such, GDP is also 
interpreted as the value of final uses (or consumptions), which includes personal 
consumption expenditure, gross private domestic investment, government purchases, and 
net foreign exports (i.e., difference in exports and imports) [Miller and Blair 2009].  
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Since the value of GDP is theoretically equal to the gross domestic income, it is also 
defined by BEA as “the market value of goods and services produced by labor and 
property in the United States, regardless of nationality; GDP replaced gross national 
product (GNP) as the primary measure of U.S. production in 1991.”1 GDP data is also 
available for all states and metropolitan areas within the United States.  
 
Local Area Personal Income 
 
Local Area Personal Income (LAPI) refers primarily to the wages paid to the workers in a 
given region. Other components of LAPI include “supplements to wages and salaries, 
proprietors' income with inventory valuation adjustment (IVA) and capital consumption 
adjustment (CCAdj), rental income of persons with CCAdj, personal dividend income, 
personal interest income, and personal current transfer receipts, less contributions for 
government social insurance.”2 LAPI data are available for each of the 65 sectors. To 
convert the output of disaster impact into a measure of workforce sector inoperability, 
there needs to be a way to translate a percentage decrease in workforce availability into a 
measure of sector inoperability. Arnold et al. [2006] accomplished this through estimates 
of worker productivity. To generate worker impact for the RIMS II sectors, the ratio of 
Local Area Personal Income (LAPI) to industry output is computed [BEA 2008]. The 
LAPI provides the value of workforce to the industry (the market value of the laborers' 
work) and dividing this by the industry output gives the proportion of output that is 
dependent on the workforce. This calculation of inoperability for a given sector is shown 
in Eq. (4). This LAPI-based approach is compatible with the commonly used metrics for 
assessing workforce input, which include number of hours, number of jobs, and number 
of employed people [OECD 2001]. 

 

€ 

Sector Inoperability =  Unavailable Workforce
Size of Workforce

×
LAPI

Sector Output
  (Eq. 4) 

 
The impact on workers is then multiplied with the number of workers in that sector that 
are unavailable divided by the number of workers in that sector (giving percentage of 
workers missing) to determine overall sector inoperability. A case in point, Burrus et al. 
[2002] developed a comprehensive survey describing the impact of various disaster 
intensities on workforce availability. The sectors included in their survey are similar to 
the RIMS II classification employed in the study. Such historical workforce recovery data 
can be used to formulate the time-varying recovery functions.  
 
Employment Numbers by Industry 
 
Employment data are available for different states and metropolitan areas. For example, 
BEA publishes annual estimates of the total full-time and part-time employment by 
NAICS industry. These employment numbers are available only for a subset of the 65 
sectors in the IIM. Hence, the regional per capita income can serve as a basis for 

                                                        
1 BEA Glossary: http://www.bea.gov/glossary/glossary_g.htm 
2 BEA Glossary. http://www.bea.gov/glossary/glossary_l.htm 
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estimating the number of workers in sectors with missing data. These sector-specific 
employment numbers are used in determining the equivalent number of jobs lost within 
the disaster horizon. 
 
3. Decision Support Tool 
 
The decision support tool developed in this paper comprises a front-end graphical user 
interface (GUI) developed in Microsoft ExcelTM. The spreadsheet tool comprises of five 
modules: (i) scenario generation, (ii) computation, (iii) visualization, (iv) prioritization 
and sensitivity analysis, and (v) data analysis. These modules are described as follows: 
 
3.1 Scenario Generation Module 
 
The scenario generation module enables the user to provide the model scenario inputs. 
The user is asked to enter the initial inoperability for each of the 65 sectors, as well as the 
time it takes to achieve full recovery. Initial inoperability (denoted by q0) is a number 
between 0 and 1, which describes the extent to which a given sector’s production 
capacity is affected initially (i.e., 0.1 means that 10% of the production capacity is 
rendered inoperable by a disaster). On the other hand, the time to recovery (denoted by T) 
is the time that it is expected to take a sector to recover to its pre-disaster production 
level. In the model, the time to recovery is measured in days. In the absence of recovery 
period data for some sectors, a similar value for a sector with known recovery period can 
be used. The reasoning behind this is that a given sector—even if it is not directly 
affected by a disaster—will match (or even exceed) the recovery period of a sector that it 
is coupled with. By the same token, a sector whose dependence on other sectors is 
minimal will virtually remain unaffected regardless of the assumed recovery period. 
Figure 2 shows a partial screenshot of the scenario generation component with arbitrary 
parameter inputs. 
 

 
Figure 2.  Screenshot of scenario definition GUI component 

In addition, an advanced feature of the model allows the user to enter not only the initial 
inoperability values (q0), but also to insert subsequent inoperability values across the 
recovery period (e.g., q1, q2, q3, etc.). This is particularly useful for cases with known 
inoperability and recovery trends, such the disaster scenarios further explored in Section 
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4. This advanced feature also allows users to perform inoperability adjustments whenever 
risk management actions are introduced within the recovery period. The annotated 
diagram in Figure 3 explains this advanced feature for a sector with a recovery trend 
similar to a step function. 
 

 
Figure 3.  Screenshot of Scenario Definition GUI Component 

 
3.2 Computation Module 
 
This is the computing engine of the program containing the codes for the IIM. This 
module stores the simulation rules and algorithms needed for executing the IIM and its 
dynamic recovery model extensions. This module also includes the algorithms for 
visualizing the model results, namely the inoperability and economic loss for each sector 
and for each day within the recovery period. 
 
In the computer tool, sector recovery is modeled as a time varying function instead of 
static or predetermined value as formulated previously. The resilience coefficient 
(discussed in Section 2.2) for each sector represents the ability of a sector to recover from 
some level of inoperability to a final level of inoperability in a given period of time. As a 
regional economy and its associated sectors recover from a large-scale disruption, the 
nominal resilience coefficients are expected to fluctuate. The reasoning behind this is that 
as sectors utilize inventories and capital resources to recover and mitigate the impacts of 
a disaster, they deplete these resources and thus are less able to recover. The pace of 
recovery is further compounded by sector interdependencies—creating indirect effects 
that continue to disrupt regional productivity. The new formulation of the resilience 
coefficient includes a variety of factors, including the current inoperability value, 
previous inoperability values (giving measures of trends and duration) and nominal sector 
recovery rates to determine a baseline scenario.  
 
 

•! Utilities sector is represented here as a 
step function 

•! Other sectors are affected due to their 

dependencies to the utilities sector 
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3.4. Visualization Module 
 
The visualization module enables the user to view the recovery behaviors of the critical 
sectors given the parameter values entered in the scenario definition stage. The critical 
sectors are selected as the top-10 sectors (out of 65) with respect to the two primary 
metrics of the IIM, which are inoperability and economic loss. The rankings based on 
these two metrics are generally different, as explained in Section 2.2. 
 
The following figures give sample visualizations of how inoperability and economic loss 
evolve across the recovery period. Although not directly included in the visualization, 
other important disaster consequence metrics are extrapolated from the economic loss 
estimates. These include tax loss, income loss, and equivalent number of jobs lost for the 
applicable recovery period. These loss estimates are provided in each of the scenarios 
explored in Section 4. 
 

 
Figure 4.  Top-10 sectors with largest inoperability 

Figure 4 provides a sample 
depiction of the top-10 sectors with 
largest inoperability values. 
Inoperability rankings are based on 
magnitude of sector disruptions, 
normalized relative to sector total 
output. A uniform sector disruption 
scenario is applied to all 65 sectors to 
show the key sectors based on the 
inoperability metric. Inoperability 
metric highlights sectors that are 
tightly coupled with other sectors 
regardless of their economic values, 
such as: Manufacturing (S10, S25, 
S23, S26, S9); Oil and gas, Mining 
(S3, S4); Transportation (S24, S30). 
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On the other hand, Figure 5 
depicts the associated top-10 sectors 
with largest economic losses. 
Economic loss rankings are based on 
cumulative economic losses incurred 
prior to full recovery. The same 
uniform initial disruption is applied to 
all 65 sectors to show the key sectors 
based on the economic loss metric. 
Economic loss metric highlights 
sectors that have higher production 
values, measured in monetary unit, 
such as: Banks, Insurance (S41, S43); 
Computer systems (S49); 
Administrative services (S51); Real 
Estate (S45); Trade (S 27, S28). 

Figure 5.  Top-10 sectors with largest inoperability 

 
 
3.4 Prioritization Sensitivity Analysis Module 
 
The tool is capable of visually searching for critical economic sectors that support two 
minimization objectives, which are economic loss and inoperability. We utilize the 
dynamic cross prioritization plot (DCPP) that uses more flexible threshold regions to 
capture critical sectors with varying preferences for the economic loss and inoperability 
objectives [Resurreccion and Santos 2011]. That is, the use of an arc orientation that 
captures more points closer to the x-axis (y-axis) to highlight the higher preference for 
the inoperability (economic loss) objective than the economic loss (inoperability) 
objective. Hence, the DCPP module can provide additional information on identifying 
and prioritizing the economic sectors that are expected to suffer the greatest 
consequences from a disaster scenario. These inoperability and economic loss 
consequences, as well as the extrapolated fiscal losses (i.e., tax loss, income loss, and 
equivalent number of jobs lost) can provide insights in planning for enhancements of 
regional resilience (e.g., backup capabilities, additional inventories, and production input 
substitutions, among others).  
 
The prioritization sensitivity analysis module requires two categories of user inputs: (i) 
preference structure for economic loss and inoperability objectives, and (ii) prioritization 
scope to determine the size of the prioritization filter. The process and descriptions of 
these inputs are described as follows. First, the user is asked for the economic loss 
weight, or the relative importance of the economic loss objective with respect to 
inoperability. A scale of 0 to 1 is used, with the following interpretations: 
 

• A value of 1 means economic loss is the only objective that matters (see 
Figure 6) 



 15 

• A value of 0.5 means economic loss is equally preferred to inoperability (see 
Figure 7) 

• A value of 0 means inoperability is the only objective that matters (see Figure 
8) 

 
In addition, the tool requires the user to enter a prioritization scope—a positive integer 
that can be adjusted to set the size of the prioritization area. This integer is increased 
when more sectors are to be prioritized, and decreased when fewer sectors can be 
prioritized (e.g., a budget constraint). 
 

 
Figure 6.  Prioritization using economic loss objective only 

 

 
Figure 7. Prioritization with equal weights for economic loss and inoperability objectives 

A weight of 1 to economic loss means 

inoperability is ignored. 

Prioritization scope selects the sectors based 
on economic loss metric alone, and hence 

the threshold is shown as a vertical line.  

Banks 
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Administrative Services 

Mining 

A weight of 0.5 to economic loss implies the 

same inoperability weight of 0.5. 

Prioritization scope generates a “quarter-
circle” threshold.  

Mining 

Administrative Services 

Computer Design 

Apparel 
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Figure 8. Prioritization using inoperability objective only 

 
3.5 Data Module  
 
The data module contains the relevant regional economic data. Examples of economic 
data that have been already described in Section Section 2.3 are input-output matrices, 
Gross Domestic Product (GDP), Local Area Personal Income (LAPI), employment 
statistics. These data are specific to the Nashville metropolitan region. In addition to the 
foregoing data sets, the spreadsheet tool also houses data extrapolated from other sources. 
These extrapolated data sets are used for estimating regional fiscal losses such as tax 
opportunity losses, personal income losses, and employment losses. 
 
Tax Loss Estimation 
 
Here, we assume that significant portions of the tax revenues collected at the county and 
state levels are pegged to the level of economic activity of the region. Examples of such 
tax categories include sales and use taxes, which are typically taken as percentages of the 
commodities and services sold locally. For the state of Tennessee (which encompasses 
Nashville), the sales tax rate for food is 5.5% and 7% for other merchandises3. Rates for 
use taxes are the same as sale taxes4.  
 
The following equation provides an estimate of sales and use tax losses for each sector i. 
Note that there are 65 sectors. 
 
 Tax Lossi = ( PCEi ÷ xi ) × (Δxi) × (tax ratei)    (Eq. 5) 
                                                        
3 http://www.tn.gov/revenue/tntaxes/salesanduse.htm 
4 “It [use tax] is applied when merchandise (tangible personal property) is purchased from outside the state of Tennessee and imported 
into the state for use or consumption.” Ibid. 
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 Where: 
 

• PCEi is the Personal Consumption Expenditure for sector i 
• xi is the total output of sector i in the region 
• Δxi is the economic loss of sector i for a given disaster scenario, as computed 

by the model 
• tax ratei is the applicable sales tax rate for sector i in the region 

 
Because of the current capability of the I-O model to estimate production output losses, 
sales and uses tax losses will be estimated based on the percentage of the PCE relative to 
regional output. Other tax categories include property, excise, licenses and fees, and 
income, among others. Due to the current data module limitations on tax analysis, the 
computer tool is only capable of estimating losses from sales and use taxes. 
 
Income Loss Estimation 
 
Here, we focus our analysis on extrapolated data based on the Local Area Personal 
Income (LAPI). As discussed previously, LAPI is available for each of the 65 sectors. 
For each sector i, we first compute the proportion of LAPI with respect to the total 
regional output. When this proportion is multiplied with the production output loss of a 
particular sector i (due to a disaster), this will provide an estimate the income loss for 
sector i, and is formulated as follows: 
 
 Income Lossi = ( LAPIi ÷ xi ) × (Δxi )     (Eq. 6) 
 
 Where: 
 

• LAPIi is the Local Area Personal Income for sector i 
• xi is the total output of sector i in the region 
• Δxi is the economic loss of sector i for a given disaster scenario, as computed 

by the model 
 
Note that the loss estimated in the above formulation pertains to the aggregated income 
losses suffered by the workforce in sector i. Computation of the corresponding income 
tax loss by the local government can be complex (i.e., considering the different income 
tax brackets, federal vs. state distribution, disaster tax reliefs, etc.). Hence, extracting the 
associated income tax loss from the computed income loss is beyond the current scope of 
the current study. 
 
Employment Losses 
 
Traditional I-O employment multipliers analysis enables the computation of additional 
jobs created due to an increase in demand (and subsequently, production) of commodities 
and services for particular sectors. A similar concept is implemented here for estimating 
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job losses that can stem disaster-induced income losses. The formulation for job losses5 
in each sector i is as follows: 
 
 Job Lossi = ( Income Lossi ÷ LAPIi ) × ( Workersi )   (Eq. 7) 
 
 Where: 
 

• Job Lossi is the number of jobs lost in sector i 
• Incomei is the workforce income loss in sector i 
• LAPIi is the local area personal income sector i 
• Workersi is the number of workers in sector i 

 
4. Worked Examples with Screenshots  
 
Disaster consequences encompass reductions in workforce productivity, loss of lives, and 
social disequilibrium. Workforce productivity losses can significantly decrease a sector’s 
output regardless of the efficiency of other production factors. Regional economies, like 
Nashville, have limited resources to manage disaster consequences. The objective of the 
case studies is to manage impacts of various disaster scenarios in Nashville using 
available economic and survey data. This section demonstrates the use of the IIM and its 
dynamic extensions to assess the impacts of disaster scenarios on the Nashville’s 
economic sectors. Data sets assembled from various economic and census agencies 
include input-output matrices, gross domestic product data, local area personal income 
data, and employment numbers, among others.  
 
The following sections demonstrate the application of the IIM using different cases. Each 
case is introduced with scenario descriptions, as well as a summary of the different loss 
categories that could be of interest to regional policymakers. Recall that the two primary 
consequence categories provided by the IIM are inoperability and economic loss. The 
economic loss variable is denoted by Δxi (see Eqs. 5 and 6) and is computed by the IIM 
for each of the 65 sectors. These economic loss values serve as the basis for estimating 
different categories of regional losses, including: (i) tax loss, (ii) income loss, and (iii) 
equivalent number of jobs lost.  
 
In addition, the rankings of the critical sectors according to the inoperability and 
economic loss metrics are shown, along with the associated visualization outputs of the 
IIM. The DCPP tool also provides sample prioritization of key sectors based on priority 
assignments to the inoperability and economic loss objectives. As discussed in Section 
3.4, the DCPP results can identify the economic sectors that are expected to suffer the 
greatest consequences from a disaster scenario and can help in formulating policies for 
enhancing regional resilience. 

 
 
 
                                                        
5 Available data does not distinguish counts of full-time and part-time workers. 
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4.1 Case 1: Modeling Workforce Disruption 

 
Consider a disaster hits the Nashville region that causes an initial inoperability of 50% to 
all its workforce sectors. For this scenario, it assumed that inoperability decreases 
exponentially and recovery is achieved over a 30-day horizon. The parameters that 
describe the initial effects of the disaster scenario are entered into the dynamic IIM and 
generated the economic loss and inoperability charts in Figure 9. The total economic loss 
for the simulated scenario is $800 million. From this economic loss, the following losses 
can be estimated based on the approaches discussed in Section 3.5. Note that the 
following losses are incurred only within the assumed recovery period of 30 days (or 
approximately 1 month): 
 

• Tax loss: $7,221,193 
• Income loss: $108,013,667 
• Equivalent number of jobs lost: 2,465 jobs 
 

 
Figure 9. Top-10 critical sectors for Case 1 ranked according to: 

Economic loss (left) and Inoperability right  

 
The top 10 sectors that suffer the highest economic losses (Figure 9, left panel) are: 
Computer systems design and related services (S49), Administrative and support services 
(S51), Federal Reserve banks and credit intermediation (S41), Insurance carriers and 
related activities (S43), Ambulatory health care services (S54), Wholesale trade (S27), 
Real estate (S45), Retail trade (S28), Hospitals and nursing and residential care facilities 
(S55), and State and local general government (S65). The top-10 sectors account for 48% 
of the total regional economic loss. It can also be observed that the economic losses 
increase sharply in the first 10 days, and start to “flatten out” after approximately 20 
days. The inoperability charts indicate that recovery is almost completely achieved in 30 
days. 
 

Total Loss: $800 Million 
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For the same scenario, the top 10 sectors with highest inoperability values (Figure 9, right 
panel) are: Other services, except government (S61), Apparel and leather and allied 
products (S10), Other transportation equipment (S24), Furniture and related products 
(S25), Oil and gas extraction (S3), Textile mills and textile product mills (S9), Rail 
transportation (S30), Mining, except oil and gas (S4), Food and beverage and tobacco 
products (S8), and Miscellaneous manufacturing (S26). 
 
The inoperability and economic loss rankings are different because the production 
outputs of the sectors could vary by orders of magnitude. As such, a sector that suffers a 
relatively low economic loss value can have a critical ranking in inoperability if its total 
production output is also lower relative to other sectors. By the same token, a sector with 
a relatively low inoperability value can have a critical ranking in economic loss if its total 
production output is significantly higher compared to the other sectors.  
 
The dynamic cross prioritization plot (DCPP) tool enables the users to perform sensitivity 
analysis with respect to how they structure their preference between the economic loss 
and inoperability objectives. Two sample scenarios are presented in Figure 10. The 
vertical region corresponds to a preference strategy that gives importance to economic 
loss only, while the quarter-circle region corresponds to assigning equal weights to 
inoperability and economic loss objectives. For a purely economic loss minimizing 
strategy, there is a risk to exclude sectors that have critical ranking with respect to 
inoperability (e.g., transportation equipment). For the equal weighting strategy, equal 
priority is allocated between economic loss and inoperability. Nevertheless, there is also a 
risk of excluding sectors with critical economic loss rankings in this equal weighting 
strategy (e.g., banking and insurance). Hence, prioritizing sectors for recovery need 
careful consideration of the balance between economic loss and inoperability. 
 

 
Figure 10. DCPP for Case 1 

 

Banks 

Insurance 

Transportation Equipment 
Textile 
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4.2 Case 2: Infrastructure Disruption with “Flat” Recovery Function 
 

Suppose that Case 1 is expanded such that in addition to the 50% initial workforce 
inoperability, there is a constant 80% electric power outage6 that persists for 10 days. 
These combined disruption scenarios comprise Case 2, which is explored in this section. 
The scenario parameters that describe Case 2 are entered into the dynamic IIM and 
generated the economic loss and inoperability charts in Figure 12. The total economic 
loss for the simulated scenario is $816 million. From this economic loss, the following 
losses can be estimated based on the approaches discussed in Section 3.5. Note that the 
following losses are incurred only within the assumed recovery period of 30 days (or 
approximately 1 month): 
 

• Tax loss: $7,346,801 
• Income loss: $108,831,472 
• Equivalent number of jobs lost: 2,483 

 
 

 
Figure 11. Top-10 critical sectors for Case 2 ranked according to: 

Economic loss (left) and Inoperability right  

The top 10 sectors that suffer the highest economic losses (Figure 11, left panel) are: 
Computer systems design and related services (S49), Administrative and support services 
(S51), Federal Reserve banks and credit intermediation (S41), Insurance carriers and 
related activities (S43), Ambulatory health care services (S54), Wholesale trade (S27), 
Real estate (S45), Retail trade (S28), Hospitals and nursing and residential care facilities 
(S55), and State and local general government (S65). The top-10 sectors account for 47% 
of the total economic loss.  

 

                                                        
6 Since regional I-O data typically lump electric power sector with the general “utility” sector, an approach to perform sector 
disaggregation is to pre-multiply the assumed “% outage” with the ratio of electric power output relative to the total utility sector 
output.  

Total Loss: $816 Million 
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In contrast, the top 10 sectors with highest inoperability values (Figure 11, right 
panel) are: Utilities (S6), Oil and gas extraction (S3), Other services, except government 
(S61), Pipeline transportation (S34), Apparel and leather and allied products (S10), Other 
transportation equipment (S24), Mining, except oil and gas (S4), Rail transportation 
(S30), Textile mills and textile product mills (S9), and Furniture and related products 
(S25). In the inoperability charts for Case 2, we can directly observe that the electric 
power disruption is modeled as a “Utilities” sector disruption, which is flat for the first 10 
days and completely restored thereafter. 

 
The inoperability and economic loss rankings vary for the same reasons given earlier. 
The DCPP tool enables the user to perform sensitivity analysis with respect to how they 
structure their preference between the economic loss and inoperability objectives. The 
vertical region in Figure 11 corresponds to a preference strategy that gives importance to 
economic loss only, while the quarter-circle region corresponds to assigning equal 
weights to inoperability and economic loss objectives. For a purely economic loss 
minimizing strategy, there is a risk to exclude sectors that have critical ranking with 
respect to inoperability (e.g., Utilities, Pipeline Transportation). Nevertheless, there is 
also a risk of excluding sectors with critical economic loss rankings (e.g., Computer 
Design, Banking), when equal weights are allocated between economic loss and 
inoperability. Hence, prioritizing sectors for recovery need careful consideration of the 
balance between economic loss and inoperability. 

 

 
Figure 12. DCPP for Case 2 
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4.3 Case 3: Infrastructure Disruption with a “Step Function” Recovery 
 

Suppose that Case 1 is expanded such that in addition to the 50% initial workforce 
inoperability, the electric power recovery is modeled as a step function with the following 
specifications7: 

 
• 80% utility infrastructure disruption for Day 0 to Day 2 
• 50% utility infrastructure disruption from Day 3 to Day 5 
• 25% utility infrastructure disruption from Day 6 to Day 10 
 

These combined disruption scenarios comprise Case 3, which is explored in this section. 
The scenario parameters that describe Case 3 are entered into the dynamic IIM and 
generated the economic loss and inoperability charts in Figure 13. The total economic 
loss for the simulated scenario is $809 million. From this economic loss, the following 
losses can be estimated based on the approaches discussed in Section 3.5. Note that the 
following values encompass the losses incurred within the assumed recovery period of 30 
days (or approximately 1 month): 
 

• Tax loss: $7,286,167 
• Income loss: $108,475,569 
• Equivalent number of jobs lost: 2,475 

 

 
Figure 13. Top-10 critical sectors for Case 3 ranked according to: 

Economic loss (left) and Inoperability right  

 
For Case 3, the top 10 sectors that suffer the highest economic losses (Figure 13, left 
panel) are: Computer systems design and related services (S49), Administrative and 
support services (S51), Federal Reserve banks and credit intermediation (S41), Insurance 
carriers and related activities (S43), Ambulatory health care services (S54), Wholesale 

                                                        
7 See explanatory notes in footnote #6. 

Total Loss: $809 Million 



 24 

trade (S27), Real estate (S45), Retail trade (S28), Hospitals and nursing and residential 
care facilities (S55), and State and local general government (S65). The total economic 
loss for the simulated scenario is $809 million. The top-10 sectors account for 47% of 
this total economic loss, which is the same as Case 2.  

 
In contrast, the top 10 sectors with highest inoperability values (Figure 13, right panel) 
are: Utilities (S6), Oil and gas extraction (S3), Other services, except government (S61), 
Apparel and leather and allied products (S10), Other transportation equipment (S24), 
Textile mills and textile product mills (S9), Furniture and related products (S25), Mining, 
except oil and gas (S4), Rail transportation (S30), and Pipeline transportation (S34). In 
the inoperability charts for Case 3, we can directly observe that the electric power 
disruption is modeled as a “Utilities” sector disruption, whose recovery is modeled 
similar to a step function. This type of flexible recovery adjustment is particularly useful 
for modeling risk management interventions to expedite recovery. 

 
Just like in previous cases, the DCPP tool enables the user to perform sensitivity analysis 
with respect to how users or decision makers would structure their preference between 
the economic loss and inoperability objectives. It should be noted that Case 3 is a slight 
variant of Case 2 (i.e., they only differ with respect to the shape of the recovery function 
for the “Utilities” sector). Hence the DCPP chart is omitted for this case since the sector 
priorities are the same as the economic loss and inoperability rankings found in Figure 
13.  
 
5. Conclusions and areas for future model improvements  
 
Economic disruptions in the aftermath of a disasters can cascade across interdependent 
economic sectors, further delaying recovery. This paper develops a recovery model to 
estimate sector inoperability and economic losses for a disaster scenario in the example 
region. Two primary IIM metrics for determining critical sectors are presented in this 
chapter—namely inoperability and economic loss. Inoperability measures the percentage 
reduction relative to the total output of the sector. Economic loss, on the other hand, 
corresponds to the decrease in the value of economic output due to the productivity 
disruptions. From the economic loss values computed by the IIM, other loss categories 
could be derived such as tax loss, income loss, and equivalent number of jobs lost. 
Sensitivity analysis of inoperability and loss reduction objectives can provide insights on 
identification and prioritization of critical sectors. Based on the simulated scenarios, the 
10 most critically affected sectors (out of 65) suffer about half of the projected losses. 
This observation will be particularly useful in informing the regional decision-makers 
just who will bear the greatest losses.  
 
To show the key features of the IIM tool, three cases are explored. These scenarios 
involve combinations of disruptions to workforce sectors and to the utility infrastructure 
sector. Since regional I-O data typically bundle electric power within the general utility 
sector, further analysis is needed to perform sector disaggregation to analyze direct 
impacts on the electric power sector. For example, it is possible to take the ratio of 
electric power output with respect to the total utility sector output. At the national level, 
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utility sector is comprised of three subsectors, namely (i) electric power, (ii) natural gas, 
and (iii) water and sewerage systems. Such ratio can range from 60-70% based on 
national data archived by the BEA8. Hence, electric power is a significant component of 
the utility sector. A given value of electric power % outage can be entered to the IIM as a 
utility sector disruption by applying such ratios.  
 
Finally, the simulated scenarios for the example region showed that the majority of the 
top-10 sectors based on the economic loss metric are service-oriented. In contrast, the 
majority of the top-10 sectors based on the inoperability metric are manufacturing-
related. Hence, a careful balance must be sought in prioritizing key sectors as different 
performance measures may indicate a different set of rankings. Given decision-maker 
preferences, there exists an opportunity to use the Analytic Hierarchy Process (AHP) and 
other elicitation methods to guide in the prioritization of the key sectors. Although 
applied specifically to the example metropolitan area, the same methodology can be 
implemented in other regions. The methodology and decision analysis tool developed in 
this chapter can also be integrated with other critical infrastructure models. 
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