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Abstract 

The GRAS technique, proposed by Junius and Oosterhaven (2003), is the 

method commonly used to update or regionalize input-output matrices from 

a prior with positive and negative cells. This paper presents an adjustment 

technique based on Generalized Cross Entropy (GCE) as an alternative to 

GRAS. The basic idea of the proposed method is to assume each cell of the 

target matrix as a random variable for which we have partial information in 

the prior.   

 

More specifically, 1) we assume each observation in the prior as a specific 

realization of the random process that generates the cells; and 2), we fix 

bounds for the maximum and minimum values that this random process can 

generate. From this information, together with the observed totals in the 

target matrix, the adjustment process is approached as a (constrained) 

minimization problem of the Kullback-Leibler divergence. This technique 

allows for potential changes in the sign of the cells, which can be something 

desirable in situations where sign-prevention in all the cases is too 

restrictive. We evaluate the performance of the proposed technique by 

means of numerical simulation and illustrate how can be applied with an 

empirical application. 

 

1. Introduction 

The general solution to the problem of adjusting a target IO table from a 

prior matrix is a new matrix that diverges least with respect to the prior 

and is consistent with the aggregate information observed for the target. 

The well-known biproportional RAS adjustment lies within this general 
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problem and is the most frequently applied technique if all the cells in the 

matrix are positive. Adjusting a matrix with both positive and negative 

entries, however, implies some practical problems for RAS. If a RAS 

adjustment is applied to a matrix that contains negative cells, easily leads 

to a solution that may largely deviate from the structure of the prior matrix. 

Junius and Oosterhaven (2003) proposed the so-called generalized RAS 

(GRAS) as an alternative adjustment for such situations. GRAS is a sign-

preserving technique for adjusting a matrix, and it can be applied directly to 

positive and negative cells. This technique, as well as several other sign-

preserving adjusting techniques, defines an objective function written in 

terms of absolute values with respect to the matrix-entries. 

 

In this paper we propose applying Generalized Cross-Entropy (GCE) 

estimation for this type of problems. The main advantage of the proposed 

technique is that it introduces more flexibility in the adjustment and allows 

for potential changes in the sign of the cells if we consider that sign 

preservation for all the cells could be too strict. In other words, the 

technique suggested here can make a change in the sign improbable but not 

absolutely impossible. The paper is divided into five additional sections. 

Section two presents the basic formulation of the proposed technique, 

whereas section three shows its solution. Section four compares the 

performance of the GCE estimation with other adjustment that are sign-

preserving, GRAS included, by means of a numerical simulation. An 

empirical application is conducted in section five. Finally, section six 

presents the main conclusions and finishes the paper.  

 

2. Formulation 

Consider a prior matrix   with cells     to be adjusted to a target matrix   

with unknown cells    , but with observable row and column totals   and   

respectively. The traditional GRAS problem is to find the matrix   that 

deviates least from   and is consistent with the row and columns margins.  
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Junius and Oosterhaven (2003) formulated their proposed solution as a 

variant of the traditional RAS problem, but allowing for the presence of both 

positive and negative entries. Lenzen et al. (2007) suggested some 

modifications in the target function in order to account for the distance 

between the initial and the target matrix. The formulation proposed in 

Lenzen et al. (2007) is: 

                  

 

   

 

   

      
   

 
  being             (1) 

 

And   is the base of the natural logarithm.  This minimization is subject to 

the row and column constrains: 

       
 
        

 
      ; 

        
 
        

 
        

(2) 

 

In this paper an alternative updating method applicable for matrices with 

both positive and negative cells is proposed. The proposed technique can be 

seen as an extension of the paper by Golan et al. (1994). In that paper, a 

Generalized Cross Entropy (GCE) procedure was proposed to recover 

intersectoral information from incomplete data. The context for applying 

this idea was, however, somewhat restricted since it only considered 

matrices of coefficients (bounded between 0 and 1). In this article this 

method is extended to cases where the entries of the target matrix are flows 

instead of coefficients and can contain both positive (larger than 1) and 

negative cells.  

 

The point of departure is considering each element of the prior and target 

matrices,   and  , as realizations of a random variable that can take a 
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range of   possible values which are contained in a vector 

                
          with values that are set exogenously. Each support 

vector     can be different for every cell and contains an odd number of 

values that are centered on point    
  symmetrically. The entries in the prior 

matrix determine the central points    
  for each vector. More specifically, 

each cell     in the initial matrix   is assumed to be this particular point of 

its corresponding vector (       
 ), although any of the other points 

contained in     could have been observed instead. These other values for 

each vector are specified arbitrarily by the researcher, depending on our 

beliefs about how much it is possible to deviate from    
 .  

 

For the sake of simplicity, let us illustrate this idea by considering the 

simplest case whit    . In this situation, the support vector would be 

defined as                                           
         . The scalar   

represents a rate of variation imposed by the researcher with respect to    , 

which determines the minimum and maximum value assumed as possible 

for this cell. Note that if we set any      , we prevent the possibility that 

this element could change its sign from positive to negative or vice versa, 

but this sign-preserving character can be removed just by setting a scalar  

     .1    

  

Once the possible realizations for each entry in the matrices have been 

specified, given that we assume that they are generated by a random 

process, some probability distribution should be assigned to them. Although 

the support vectors for the cells of   and   are common, the distribution 

probabilities are different. In the case of  , these probabilities are set a 

priori by the researcher, but they are unknown for our target matrix  .  

 

                                            
1 We assume here that this scalar is common to all the cells in the matrix, but this 

assumption can be relaxed easily.  
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Starting with the elements of matrix  , we need to specify a probability 

distribution as   
  

            
          for each element    .  Continuing 

with the simplest case with    , one natural way of doing this is 

assuming that all the values are equally probable and setting         
  

        . This solution implies giving to the value actually observed (   
 ) 

the same probability as to the extreme cases      and     . An alternative 

could be to assign an arbitrarily high probability    
  to it and assuming that 

the two extreme cases are equally probable to each other. Whatever the 

specific probabilities chosen, the general rule                 
     

guarantees that: 

 

             

 

   

 (3) 

  

We apply the same reasoning with the elements of the target matrix  , but 

now the probability distributions   
  

                    are unknown. The 

value of each cell of this matrix is given by the expression: 

 

             

 

   

 (4) 

 

In this framework of analysis, the original problem of adjusting matrix   

from matrix  , has been transformed in a new problem where a set of 

posterior probabilities   are estimated from the a priori probabilities  .    

 

3. The GCE solution 
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A GCE solution is applied in order to find the solution to our  generalization 

of the estimation problem can be posed as a minimization program like: 

 

   
 

               

 

   

 

   

   
    

    
 

 

   

 (5) 

Subject to:  
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     (7) 

 

In the original paper by Junius and Oosterhaven (2003, pp. 90-91) and in 

the correction proposed by Lenzen et al. (2007, pp. 464-465) proofs of the bi-

proportionality of the solution of the GRAS algorithm are presented. In a 

similar fashion, this section presents the solution of the GCE program 

contained in equations (5)-(7) and it shows that the solution achieved are 

biproportional to the  information contained in the prior matrix.  

 

The Lagrangean function related to (5)-(7) is: 

     

         

 

   

 

   

   
    

    
                    

 

   

 

 

   

 

 

   

 

   

                   

 

   

 

 

   

 

 

   

 

(8) 
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With corresponding derivatives: 

  

     
    

    

    
                    (9) 

 

Imposing the optimality conditions in (9) yields: 

                                   ; 

or 

                                  =               

(10) 

 

Being                    and                     . Note that this 

biproportional relationship between the prior and posterior distributions   

and   does not hold for the prior and target matrices   and  . This means 

that the GCE solution is not necessarily sign-preserving, but depends on the 

absolute value of scalar   used to set the possible values included in the 

support vector.  

 

4. Evaluation by numerical simulation 

In this section the suggested GCE solution will be compared with the GRAS 

solution by a numerical simulation under several possible scenarios. As 

point of departure, we have taken as initial matrix   the same used by 

Junius and Oosterhaven (2003) to illustrate the GRAS procedure:  

<<Insert Table 1  around here>> 

 

The target matrix to be estimated is generated in each trial of the numerical 

simulations modifying each cell in the cells of Table 1 by introducing some 

noise: 
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           , where            (11) 

 

This generation process for the cells of the target keeps the zeros in the 

initial matrix. Additionally, the standard deviation   conditions the distance 

between the initial and the final elements. Initially we set      , given 

that with such a standard deviation the possibility of changes in the sign of 

the cells is virtually prevented. Additionally we try with different values of 

  (specifically       and    ) in order to consider larger differences 

between   and  . Note that a standard deviation as     or     virtually 

prevents a change in the sign of the cell, but a standard deviation in     as 

big as     allows the possibility of such a change. The row and column 

margins marked in bold in Table 1 are assumed as observable in the target 

matrices generated and incorporated as constrains to the adjustment 

problem. 

 

The application of the proposed GCE technique requires setting the   

points contained in the support vectors      and that define the possible 

values taken in the target cells    . We opted for the simple case with    , 

where                                , setting different values for the 

scalar  . Specifically, we set values       and   .   

 

The probability distributions   
  

 associated to each element     are the other 

important point in the GCE adjustment. They implicitly reflect our beliefs 

about how much deviation we assume between the observed realization in 

the cell     and its unknown counterpart    . If we believe that the “extreme” 

values          or          are not probable (i.e., the     element has to be 

close to the initial cell    ), we can assign a prior distribution with a mass 

probability in the central point and        for the rest of values. If, on the 

contrary, we consider that the entry     is not necessarily very close to the 
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initial     but it can take values across all the parameter space defined in 

     with equal probability, we can assume an uniform distribution       

   
          . In the experiment we apply this uniform distribution and 

also a “spike” one as   
  

                   . 

 

In order to extend the comparison, we consider adjustment techniques other 

than GRAS. The recent papers by Huang et al. (2008), Pavia et al. (2009) or 

Termushoev et al. (2010) evaluated alternative adjustment procedures to 

the GRAS objective function (1), suggesting the three following variants: 

                         
 

 

   

 

   

 
Improved Normalized 

Squared Differences (INSD) 
(12) 

                  
 
       

 
 

   

 

   

 
Improved Squared 

Differences (ISD) 
(13) 

                 
         

 
 

   

 

   

 
Improved Weighted Squared 

Differences (IWSD) 
(14) 

 

To evaluate the performance of these five estimation approaches (GCE, 

GRAS, INSD, ISD and IWSD), 1,000 trials have been carried out. There are 

several different deviation measures that can be applied to evaluate the 

adjustment (see Lahr 2001, appendix 3, for a survey of the possible 

measures). In the experiment we opted for calculating the Weighted 

Absolute Percentage Error (WAPE), which has been largely used when 

evaluating the performance of adjusting techniques (see Jiang et al., 2010 

and 2011 for recent examples). This measure averages the percentage error 

giving larger weights to errors in large cells than errors in small cells 

(Oosterhaven et al, 2008). It is defined as: 
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where the      elements denote the estimated entries. Additionally, the so-

called Standardized weighted absolute difference (SWAD) is calculated as 

well:  

       
                

       
  

   
 
   

 

   

 

   

 (16) 

 

which is a deviation measure similar to WAPE, but now the absolute 

deviations are weighted by the size of the true transactions (Lahr, 2001). 

Table 2 shows the results. 

<<Insert Table 2 around here>> 

Deviation measures in Table 2 indicate a very similar performance between 

GRAS and INSD, which both clearly beat ISD and IWSD under any of the 

three scenarios simulated. These results are similar to those reported in 

Temurshoev et al. where several adjusting techniques were evaluated by 

means of an empirical application for The Netherlands and Spain (see 

Tables 2, 3 and 4 in Temurshoev et al., 2011).  The proposed GCE technique, 

however, slightly outperforms GRAS and INSD and the gains in 

comparatively smaller deviations become larger when scalar   grows. This 

result is not surprising, given that the GCE technique is not a strictly sign-

preserving: it departs from the cell present in the prior matrix but allows for 

a potential change of sign in the corresponding posterior cell. We can make 

this change more or less likely by setting the a priori probabilities  . 

Generally speaking, the higher the probability assigned to the central point 

in the support vectors (   
 ), the smaller the probability of a change in the 

sign of the solution. The performance of the technique seems relatively 

insensitive to changes in the support vectors (by changing the scalar  ) or to 

changes in the a priori distributions set in   . 
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5. An empirical application: updating the intermediate and final 

demand tables for Spain 

The numerical simulation made in the previous section is complemented in 

this section, which presents an empirical application of the proposed GCE 

technique and compares the results obtained with the GRAS adjustment. 

For this purpose, we take as target matrix the total (domestic and imported) 

product-by-industry Use tables for Spain in 2007, elaborated by the Spanish 

Statistical Institute (INE) and given at basic prices. The intermediate 

demand tables are classified into 118 commodities. After a cleaning process 

to remove commodities with zeros in the margins, we ended up with a 

classification into 102 products plus “Net taxes” (with both positive and 

negative entries) and 75 industries. We distinguish 3 categories for the final 

demand: “Total final consumption” (private and public), “Gross capital 

formation” (with both positive and negative entries, because it includes 

changes in inventories), and “Total exports”.2   

 

For the adjustment of the intermediate demand table we assume that the 

totals of the 2007 intermediate and final demand tables are observable and 

we adjust the cells of this target matrix ( ) on the basis of two different 

prior matrices ( ): the use tables for 2002 and 2006. In order to account the 

huge variability that could be present in the cells of the matrix between two 

time periods, the GCE technique is based on support vectors again with 

    values, as in the numerical experiment in the previous section, but 

now allowing for much larger extreme values by considering a scalar 

     . In the same way as in the numerical simulation, two a priori   

probability distributions (one uniform and one spike) have been considered 

as well. Table 3 presents the results of these adjustments: 

 

                                            
2 Data are available at http://www.ine.es/en/daco/daco42/cne00/cneio2000_en.htm.  

http://www.ine.es/en/daco/daco42/cne00/cneio2000_en.htm
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<<Insert Table 3 around here>> 

The results corresponding to the estimation of the intermediate demand 

table show that a traditional GRAS adjustment is preferable to a GCE 

estimation under any of the two a priori probability distributions 

considered. This result is partially conditioned by the fact that most of the 

cells of this intermediate matrix are always positive, so the sign-preserving 

nature of GRAS results in a comparative advantage with respect to the GCE 

estimation.  

 

The projection of the final demand matrix, however, depicts a different 

picture. In This case GCE outperform clearly GRAS both in the adjustment 

from 2002 as in the one from 2006. The explanation is that in the final 

demand categories, the changes in sign can be more frequent (e.g., between 

2006 and 2007 Gross capital formation changed from positive to negative 

and vice versa for seven commodities) which implies a problem for GRAS 

but not for GCE.  

 

6. Concluding remarks 

An adjustment technique for matrices with positive and negative cells has 

been proposed in this paper. The suggested GCE method has as main 

advantage a higher flexibility when compared with other traditional sign-

preserving techniques, as GRAS. Given that it requires the specification of a 

supporting vector containing all the possible realizations of each cell, it 

allows for preventing changes in the sign simply by not considering values 

that imply such a change. Alternatively, supporting vectors with values that 

change the sign of a cell can be included with an arbitrarily low a priori 

probability. This situation can reflect researcher’s belief about the behavior 

of a specific entry in a matrix, where a change in its sign can be improbable 

but not totally impossible. The numerical experiment conducted in the 

paper, as well as the empirical application, suggest that the proposed GCE 

technique can be considered as an alternative to other adjustment 
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techniques in situations when we cannot be completely sure about a 

potential change in the sign of a cell.  
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Table 1. Initial matrix for the numerical simulation 

 
 Goods Services Consumption Net exports Total output 

Goods 7 3 5 -3 12 

Services 2 9 8 1 20 

Net Taxes -2 0 2 1 1 

Total Use 7 12 15 -1 33 

Value added 5 8 0 0 13 

Total input 12 15 20 -1  

Source: Junius and Oosterhaven (2003, page 94) 
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Table 2. Deviations between target and estimates in the numerical 

simulation (1,000 trials) 

              

 Technique  WAPE (%) SWAD 

GRAS 4.03 0.004 

INSD 4.04 0.004 

ISD 5.96 0.006 

IWSD 9.42 0.009 

  
  

                     
CGE (   ) 3.61 0.004 

CGE (   ) 3.61 0.004 

CGE (    ) 3.61 0.004 

  
  

                    
CGE (   ) 3.60 0.004 

CGE (   ) 3.60 0.004 

CGE (    ) 3.61 0.004 

              

 Technique  WAPE (%) SWAD 

GRAS 8.09 0.009 

INSD 8.10 0.009 

ISD 11.92 0.012 

IWSD 18.56 0.018 

  
  

                     
CGE (   ) 7.22 0.008 

CGE (   ) 7.22 0.008 

CGE (    ) 7.22 0.008 

  
  

                    
CGE (   ) 7.21 0.008 

CGE (   ) 7.20 0.008 

CGE (    ) 7.21 0.008 

              

 Technique  WAPE (%) SWAD 

GRAS 21.04 0.022 

INSD 20.39 0.022 

ISD 28.33 0.029 

IWSD 40.32 0.041 

  
  

                     
CGE (   ) 18.65 0.020 

CGE (   ) 18.20 0.019 

CGE (    ) 18.18 0.019 

  
  

                    
CGE (   ) 18.32 0.019 

CGE (   ) 18.16 0.019 

CGE (    ) 18.14 0.019 
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Table 3. Results of updating Spanish Use tables at basic prices. 

 

Intermediate use table (from 2002 to 2007) 

 Technique  WAPE (%) SWAD 

GRAS 14.95 0.0033 
  

  
                     CGE (     ) 20.76 0.0050 

  
  

                    CGE (     ) 20.83 0.0051 

 

Final demand table (from 2002 to 2007) 

 Technique  WAPE (%) SWAD 

GRAS 26.00 0.0660 
  

  
                     CGE (     ) 9.84 0.0105 

  
  

                    CGE (     ) 9.85 0.0106 

 

 
  

 

Intermediate use table (from 2006 to 2007) 

 Technique  WAPE (%) SWAD 

GRAS 4.11 0.0013 
  

  
                     CGE (     ) 6.17 0.0015 

  
  

                    CGE (     ) 6.16 0.0014 

 

Final demand table (from 2006 to 2007) 

 Technique  WAPE (%) SWAD 

GRAS 7.34 0.0130 
  

  
                     CGE (     ) 3.30 0.0025 

  
  

                    CGE (     ) 3.30 0.0024 

 


