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Abstract 

Missing process detail of sectors in Input-Output tables has been pointed out to be a limitation to using Input-Output 

Analysis (IOA) as an environmental-economic Life Cycle Analysis (EE-LCA) tool as it increases uncertainty of results. 

Often, economic sectors are compiled in a more aggregated form then environmental satellite accounts, and as Lenzen 

(2011) has pointed out it is superior for determining environmental multipliers to disaggregate economic data as 

opposed to aggregating the environmental datasets. In this paper we present data and methodology to disaggregate the 

electricity sector of China’s national IO table, using as much external information as possible, into a transmission and 

distribution sector as well as 8 sub-sectors representing power plants. We determine sector specific electricity 

consumption mixes based on regional industry clusters and local electricity generation mixes. By multiplication with a 

CO2 emissions satellite account we show the total embodied emissions in sectors’ final demand in the disaggregated 

table. These results are compared with emissions intensity from a second disaggregation run in which the 

disaggregation criterion based on the national average electricity generation mix.  

Keywords: Disaggregation, EE-LCA, Electricity Sector 

 

1. Introduction 

The mismatch of economic sector size in input-output (IO) tables and corresponding environmental 

satellite accounts is a problem IO practitioners often face in environmental-economic life cycle 

analysis (EE-LCA). During the stage of constructing an IO table it is common to merge sectors with 

similar production structure and output into one, but the data describing environmental factors (ie.: 

CO2 emissions or water use) is available either in the original sector number, or they have a 

different sector classification altogether (Lenzen, 2011). Construction of IO tables relies on 

comprehensive surveying of sales and purchase patterns of industries, a time consuming and 

difficult process because most of this information is considered confidential. Industries with similar 

structure are aggregated because loss of detail during this step is often minimal for use of IO tables 

in economic analysis, outweighing the benefit gained from spending time and resources on more 

detailed industry surveys to produce a highly disaggregated table. However, for analysis of 

economic impacts on the environment using the Leontief framework the level of sector aggregation 

has an influence on the results (Su et al. 2010, Lenzen, 2011). Ferraro and Nhambiu (2009) mention 

missing process detail of sectors as a limitation of the IO framework as a LCA tool. He suggests 

combining approaches from purely process-based LCA tools with the Leontief framework 

whenever possible to do so. The result, a hybrid LCA model, adds more process information to the 

IO framework and thus enhances the suitability for economic-environmental life cycle analysis. 

As mentioned in a paper by Lenzen (2011) aggregation of environmentally sensitive sectors 

has a more significant impact on the results of an EE-LCA than other sectors. Lenzen gives the 

example of aggregating a rice and wheat sector into one grain growing sector which may lead to 

under/overestimation of water use intensity in that sector because of the difference in water required 

per unit output of each individual sector. He concludes that results of EE-LCA analysis are more 

accurate when economic data is disaggregated as opposed to aggregating environmental accounts. 

For similar reason it is important to disaggregate the electricity production sector of the IO table 

into their individual power generation units. Clearly, the CO2 emissions of one kilowatt hour (kwh) 

of electricity produced by a coal fired power station is much higher than a unit produced with wind 

power or a hydro power station. Adding process-detail to the power sector of a countries’ IO table 
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by disaggregating the sector into its generation components improves further environmental-

economic analysis in which these tables are used. For instance, China’s IO table is used in Multi-

regional Input-Output (MRIO) models to analyse the emissions embodied in exports from China to 

the USA or European countries. By knowing the exact composition of electricity entering the 

production process for making goods and services in China emissions embodied in international 

trade can be quantified with more certainty (Su and Ang, 2010).  But the issue of disaggregation 

also has relevance at the domestic level. China recently committed to a voluntary GHG emissions 

reduction plan which is implemented nationally across its industries. Disaggregation of the 

electricity sector can provide a more accurate picture of industry emissions levels, especially if 

regional factors like local electricity generation mixes and industry clusters are taken into 

consideration, and so results of IOA with a disaggregated electricity sector entry can be quite useful 

to policy makers. 

The importance of disaggregating the electricity sector for EE-LCA has been mentioned by 

Marriot (2007), Turner et al. (2007), and Lindner et al. (forthcoming). The main obstacle to 

disaggregating the electricity sector is lack of detailed information about the make up of the new 

sectors and its purchase/sales patterns with other industries (which we call ―common sectors‖). In a 

previous paper we showed that disaggregation of the electricity sector in China is possible with only 

limited amount of data (in this case only the total output of the new sectors was known and weight 

factors were built based on output differences), but it was concluded that as much additional 

information as possible should be considered to make the disaggregation more accurate. For one, an 

improvement in accuracy would result in the IO table to resemble more closely the real economy it 

displays, but also results for CO2 emissions intensities in an EE-LCA could potentially be 

improved. In the absence of reliable survey data for China’s electricity sector several questions arise 

on how to disaggregate this sector: how can the input required by the new sectors from the common 

sectors in the economy be determined and what external data sets are available and useful? 

Secondly, how can we determine the new output of the disaggregated electricity generation sectors 

into the common sectors? 

This paper serves two purposes. For one, it explores the range of suitable data and details 

needed for an accurate disaggregation of the Chinese electricity sector entry in the IO table. The 

data used includes specific costs for power plants, electricity prices, and province level data on 

spatial variation in electricity generation output and regional industry clusters. With this 

information two sets of weight factors are estimated to quantify output from new sectors into 

common sectors, and input from common sectors into new sectors (as well as input/output between 

new sectors). The second purpose is to analyse the effect of weight factor choice on sector level 

CO2 emissions intensities. For this we create two disaggregation matrices that were derived with 

different sets of weight factors. We then take the Leontief inverse and multiply both matrices with a 

CO2 satellite account which contains emissions vectors for each power generation plant type. 

The paper is structured as follows: background and literature review on disaggregation and 

the specific case of China’s electricity sector is given. Next, the methodology for disaggregation 

following Wolsky (1984) is explained and our technique for deriving weight factors is outlined. We 

then show results of the disaggregation exercise and compare emissions intensities of both 

disaggregated tables followed by a conclusion. 

 

2. Literature Review 

The relevant body of literature on sector disaggregation in IO tables broadly encompasses the 

following topics: there are a number of studies dealing with the ―aggregation bias problem‖ (Kymn, 

1990; Morimoto, 1970). Another set of studies solve disaggregation based on estimating input and 

output of new sectors with limited amount of information and data (Gillen and Guccione, 1990; 

Wolsky, 1984) Several authors analyse the mismatch of environmental satellite accounts and 

economic IO data, provide coping strategies or analyse the effect of sector aggregation on emissions 

embodied in production (Lenzen, 2011; Su et al., 2010).  
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A number of literature articles with focus on sector size in IO tables is actually about 

merging (aggregating) several industries into one as opposed to splitting a sector into several new 

ones (disaggregation) (Miller and Blair, 1985). Disaggregation always requires use of additional 

information, exogenous to what is given in the aggregated form of the IO table and is therefore a 

more complex task then aggregation. The problem of initial loss of information after aggregating 

sectors is termed the ―aggregation bias problem‖ which has been discussed extensively in the 

literature (Fisher, 1986). The ideal set of information an IO practitioner needs to gather for a sector 

disaggregation includes total output of new sectors into the economy, the proportion of output of 

those sectors into other economic sectors, and vice versa their input. In case where survey data of 

companies and enterprises is not available to provide detailed information these inter-sectoral 

relationships in the IO matrix can be estimated with weight factors if the total output of new sectors 

is known. This is explained in figure 1. It shows a simplified form of disaggregation, where the last 

sector, C is disaggregated into c*1 and c*2. The blue arrow marks all possible output weights of 

new sectors into common sectors (2n
2
 possibilities, where n = number of new sectors). Input weight 

factors need to be build to show the input from common sector A into c*1 and c*2, as well as B into 

c*1 and c*2. This is indicated by the red arrow. Both sets of weight factors also determine the 

allocation of intra-industry sales between sector C, marked by the dark shaded quadrant in the lower 

right hand side of the table. 

 

 
Figure 1: Schematic example of disaggregation an Input-Output table. 

 

 A general mathematical solution to such a problem was given by Wolsky (1984) (Wolsky, 

1984). Lindner et al. (forthcoming) extend his approach to disaggregating one sector into an 

arbitrary number of new sectors (Lindner et al., forthcoming). Gillen and Guccione (1990) showed 

that disaggregation into sub-sectors is possible if  input and output prices, gross output and final 

demand for the new sectors is available for in a period other than the base year. As such, they 

extend Wolsky’s approach by including price information in the disaggregation method (Gillen and 

Guccione, 1990). Su et al. (2010) analysed the effect of sector aggregation on emissions embodied 

in trade between China and other countries. For the electricity sector they show how information on 

electricity consumption and prices can be used to obtain a more accurate estimate for disaggregating 

this sector (Su et al., 2010). 

 Other studies with a focus on disaggregation of the electricity production sector are Cruz, 

(2002 and 2004); Limmeechokchai and Suksuntornsiri, (2007); Shrestha and Marpaung, (2006); 

and Turner et al., (2007).  These authors disaggregate the electricity sector in respective countries or 

regions of interest (Scotland in case of Turner et al., Portugal in Cruz (2002 and 2004) as well as 

Thailand and Indonesia in the other studies mentioned), by using different sets of data on 

electricity/utility companies or energy/electricity consumption of sectors. For example, in Turner et 

al. (2007) the information used is obtained directly from the Scottish energy companies and 

considered confidential, so only some results are published in their work. The main difference 

between the studies mentioned above is that both Cruz (2002) and Limmeechokchai and 

Suksuntornsiri (2007) use energy data and primary fuel inputs as a criteria for disaggregation. Cruz 

(2002) builds a hybrid unit input output model and disaggregates based on differences in fuel 

consumption of sectors. Turner et al. and Shrestha and Marpaung (2005) take a slightly different 

approach by disaggregating according to the fleet of power generating plants used for generating 

A B c*1 c*2 FD X
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B
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electricity. Instead of disaggregating the electricity sector based on input of primary energy, they 

disaggregate according to monetary/economic firm level data in the power production sector.  

The latter approach is in essence followed in this paper, although we estimate the 

disaggregated table and do not use a full set of firm level data.  Information available to us for 

building the estimation includes the mix of electricity generation by power plant type and industry 

output at the province level and cost data on operation and maintenance (O&M) of power plants. 

Based on the data a set of input and output weight factors are estimated. In a similar fashion this has 

been done in Marriott (2007), who disaggregates the electricity production sector of the US make 

and use tables (Marriott, 2007). He uses O&M costs of power generation plants to quantify and 

compare the input from common sectors to the new sectors. With this information he builds new 

supply chains for each type of power generation plant used to produce electricity in the US. 

Marriott’s approach to modifying existing supply chains of all the common sectors, which are 

altered in the disaggregated table because electricity is supplied by several new sectors, is to 

develop a model that accounts for proximity of industries to power generation units. Assuming that 

industries use electricity from the closest source nearby, he derives sector-specific electricity 

consumption mixes. In our study the basic criteria for electricity sector disaggregation outlined in 

Marriott (2007) are adapted and applied to the case of China. Slight modifications to his 

methodology are made though. For example, we do not use the commodity by industry and industry 

by commodity tables of China (make and use tables) to perform the disaggregation, but instead 

directly disaggregate the national IO table of the year 2007. Also, instead of developing a linear 

logistic model to derive sector electricity consumption profiles we simply use differences in power 

generation mixes of the six electricity grid systems in China and an estimation of magnitude of 

industry output in these grids to build sector specific consumption profiles.   

 

2.1 Regional electricity generation mix and industry clusters 

In order to improve environmental analysis of production activities with the IO framework we need 

to move away from using a national electricity generation average as an estimation of input from 

the electricity production sector into all other sectors. Instead, sector specific consumption mixes 

should be developed. The CO2 emissions associated with a unit of electricity of an economic sector 

depends on where this sector is located geographically and on the local power generation mix 

(Marriott, 2007). Especially in China it is very important to consider these regional factors. This has 

several reasons. For one, resource endowment is not evenly distributed between provinces (Wang 

and Chen, 2010). China is the largest coal producer in the world, but nearly 50% of the coal 

production is shared by only three provinces (Inner Mongolia, Shanxi and Shaanxi). The 

geographical distribution of hydropower and wind is very uneven as well (Liu et al., 2011; Meng et 

al., 2011) This leads to use of a different mix in electricity generation power plants across regions in 

China. Table 1 shows power generated by different technologies in each of the six independent 

electricity grids of China and we can see that carbon-free hydro electricity varies between 60.8 GW 

in Central China, to only 4.1 GW in North China. Table 2 shows the power generation mix in each 

grid as a percentile fraction and compares it with the national average. The information is taken 

from the Chinese Electricity Yearbook (NBS, 2008). 
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Table 1:  The power generated in China’s six electricity grids split by power plant type 

(2007): 

 
abbre.: coal sub-c = coal power plants with sub critical boiler type, Coal super critical = power plants with super critical boiler type, Coal  

USC = coal ultra super critical boiler type, NG = natural gas power plants. other = contains wind power and solar PV. Source: (NBS, 2008) 

 

Table 2:  Power generation in each grid expressed in percentale fractions (2007): 

 
 Source: ( NBS,2007) 

 

 Secondly, a high disparity in socio-economic development exists between provinces. The rate 

of past economic growth in China has been spatially uneven, causing a high discrepancy in wealth 

and living standards between well developed provinces at the coast and underdeveloped provinces 

in the central- as well as western China (Zhang et al., 2011)). Regional economic disparity leads to 

different consumption patterns of goods and services between regions and specialization of some 

regional industries in production activities, resulting in industry clusters (Batisse and Poncet, 2004; 

Li and Xu, 2010). Thirdly, a combination of decentralization, inter-provincial competition, 

international trade and foreign direct investment has encouraged industry agglomeration and 

specialization of production activities among provinces (Gao, 2004). For instance, the coastal 

regions have a well developed manufacturing and service-oriented industry, whereas inland 

provinces are specialized in either agriculture or primary resource extraction (northwest), and 

provinces in the north are dominated by heavy industry. Uneven distribution of primary energy for 

power generation and industry specialisation have some important implications for the CO2 

emissions embodied in industrial production processes in China: specialization of some provinces 

in energy-intensive resource extraction or heavy industry, in contrast to a manufacturing and more 

service oriented industry in coastal provinces, leads to different GHG emissions profiles per 

province (Meng et al., 2011). Also, the fact that industries are not uniformly distributed across 

China, coupled with the regional difference in primary fuel mix used for electricity generation 

means that sectors probably do not consume the national average electricity mix across the country.  

This work examines the what extend these two factors vary and  we analyse as well its effect on 

sector emissions levels. 

 

% Hydro Coal Sub-c Coal SC Coal USC NG Nuclear Wind Solar Pv

North China 0.03 0.83 0.08 0.01 0.00 0.01 0.04 0.00

Central China 0.40 0.50 0.05 0.01 0.00 0.00 0.04 0.00

East 0.12 0.63 0.02 0.19 0.00 0.03 0.01 0.00

North East 0.09 0.81 0.07 0.00 0.01 0.00 0.02 0.00

South 0.47 0.41 0.07 0.00 0.01 0.04 0.00 0.00

Northwest 0.29 0.56 0.06 0.03 0.04 0.00 0.02 0.01

National Average 0.22 0.64 0.06 0.03 0.01 0.01 0.02 0.01

Electricity Generation in 6 operating power transmission and distribution networks in China
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3. Data requirement 

Throughout the process of building the disaggregated IO model for China we use the following 

data: 

• IO tables of 30 Chinese provinces of the year 2007 (NBS, 2010b). The tables are used to 

estimate level of regional industry concentration. 

 

• Chinese national input-output table of 2007(NBS, 2010a). The table is in 42x42 sector 

format.  

 

• Portfolio of power generation plants for all six power networks in China. Data is obtained 

from the Chinese Electricity Yearbook (NBS, 2008). The data is used in combination with 

provincial IO tables to estimate sector consumption profiles. 

 

• Operation and management cost data (RMB/kwh) on power generation plants in China. 

These are taken from the book ―Projected costs of generating electricity‖ (PCGE) issued by the 

International Energy Agency (IEA, 2010). The cost data is used to estimate proportional weight 

factors for the input of common sectors into new sectors. 

 

• Estimates of electricity costs. The numbers are taken from the Electricity Yearbook of 

China.  

 

• Emissions factors. Numbers are obtained from literature (Nsakala and Marion, 2001; Steen, 

2001). 

 

4. Methodology 

4.1 Background on Disaggregation 

A solution to disaggregating one sector into two has been described in Wolsky (1984) and extended 

to disaggregation into n-sectors by Lindner et al (forthcoming). We first review the basic 

methodology covering important aspects and then introduce new steps for disaggregating China’s 

electricity sector using a range of supporting information.  

Recall that the Leontief framework relates output xi, of goods produced by sector i to the sum of 

intermediate consumption, z, in the economy and an external final demand, f. It is assumed that 

industry flow from sector i to sector j depends linearly on the total output of sector j.  We describe 

an economy with N+1 sectors as: 

1

N

i ij i

j

x z f


  , for i = 1 to N + 1.                  (1) 

By denoting the ratio of sector i goods purchased by j to total output of sector j as the technical 

coefficient aij (1) is rewritten as 

1

N

i ij ij i

j

x a x f


  , for i = 1 to N + 1,                   (2) 

We present (2) in matrix form and invert to get the total requirements matrix: 

 
1

  x I A f Lf                      (3) 

In the Leontief formulation (total requirement matrix) I describes the identity matrix of size N+1 x 

N+1 and L is the Leontief inverse formulation.  

The Leontief framework can be extended to include environmental satellite accounts. Let e be a row 

vector of size N + n with N components of zero and n components of specific CO2 emissions per 
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kwh of electricity output by power plant type (gCO2/kwh). In order to determine,  , the emissions 

(gCO2) per unit of RMB final demand, we multiply e with the total requirements matrix: 

 
 

1
 ε e I A

 
(4) 

Disaggregating a sector in the Leontief framework with only limited amount of information 

based on Wolsky is done by formulating an initial estimate for the unknown technical coefficients, 

A*,  and final demand ratios for the new sectors. The coefficient matrix A* describes the same 

economy as A (an economy with N sectors), with the only difference that the last sector of the 

economy (N+1) has been disaggregated into n distinct sub-sectors. A weight factor is formed using 

the output ratio of the new sectors in relation to the aggregated sector they stem from.  Usually, the 

total output of the new sectors is known, and since the output produced by the disaggregated sectors 

must be conserved we write: 

wk = xN+k
*
/xN+1,          (5) 

where wk is the output of the k
th

 new sector and * denotes the disaggregated matrix. We call this 

factor the output factor. Knowing the output factor wk leads to a set of 4 constraints describing the 

condition that final demand of new sectors must remain positive as well as that the amount of goods 

from common sectors to new sectors, new sectors to common sectors and input/output between new 

sectors in the intra-matrix must be conserved (see Wolsky, 1984 or Lindner et al. 2012). Every 

estimate for disaggregating one sector into several new sub-sectors needs to follow these 

constraints. When building such an estimate for disaggregation it is assumed that the new sectors in 

the economy have identical technologies and output to the other sectors are supplied in proportion 

to the output weights w.   

The equations describing the estimate for disaggregation used in this paper are given in (6) to (9). 

We add a new weight factor,  , which describes the proportion of input from the common sectors, 

N, to the new sectors, k ( 1 k ). We call this factor the input factor. The condition is that the 

sum of input from common sectors into new sectors must be equal to the input of the common 

sectors into the aggregated sector (N+1). This is described by equation (6): 

 

1,

*

,   NinNik aa , for k = 1 to n, and i = 1 to N                 (6) 

Without this condition the input would stay fixed so that each common sector supplies the same 

proportion into the new sectors. In reality the money spent on operating a wind power plant will 

likely vary from the money spent on either a nuclear plant or coal fired power station. There are 

several variables determining the variation in supply to the electricity sector: besides output 

generated by the plants as a measure of sector ―size‖ we need to consider operation and 

maintenance costs. Deriving the exact weight proportions for the input factor   is described in the 

next section. Equations (7) to (9) show the input relationship between new sectors and common 

sectors, the intra-matrix and the condition that final demand in the new sectors cannot be less than 

zero. 

 , 1,N k i k N ia w a
  , for k = 1 to n and i = 1 to N, (7) 

 
, 1 , 2 , 1, 1N k N N k N N k N n k N Na a a w a  

           , for k = 1 to n, (8) 

 

1

1

N
k k

N

f
b w

x





 , for k = 1 to n. (9) 

Note that the weight factors wk only defines the proportion of supply from newly disaggregated 

sectors into the common sectors (row entry) and the input-output relationships of the intra-matrix. 

In the example of disaggregating the electricity sector into generation units the weight factor is 

usually determined by using the national average electricity generation mix. In the next section we 

introduce a method to determine the weight factor more accurately by taking data on regional 

variation in industry output as well as local electricity generation mixes.  
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4.2 Disaggregating China’s Electricity Sector 

4.2.1 Level of Disaggregation 

Goal is to disaggregate sector entry 23, electricity production, heat and water distribution and 

supply in the national economic IO table (42 by 42 sectors) of China into 9 new sectors. The final 

product will be a 50x50 sector IO matrix for China. For the purpose of this exercise we move sector 

entry 23 to entry 42 in the IO table. Boundaries of disaggregation are set as follows: electricity 

production and distribution is first split into two separate sub-sectors, the transmission and 

distribution sector (T&D) and electricity production. The latter is further disaggregated into eight 

types of electricity generation: pulverized coal fired power  (PCFP) stations with sub critical boiler 

type (sub-c), PCFP with super-critical boiler type (super-crit), PCFC with ultra-super critical boiler 

type (USC), wind power plants, solar power plants, nuclear power plants, hydroelectric power and 

natural gas power plants (NG plants).  This is shown in Table 3, with the last column representing 

all new sectors in the IO table. 

 

Table 3: Disaggregation of the electricity production and distribution entry 

 
 

It was agreed on this level of disaggregation in order to capture the major electricity production 

options with different CO2 emissions per unit output. The emissions factors (in grams of CO2/ 

kwh) are given in tables 4. We include the range of coal fired power stations with different boiler 

efficiency currently used in China because their emissions output varies as well (Ma, 2008). 

Although natural gas and solar power currently only contributes a minor fraction to China’s national 

generation mix we also include these two plant types because all necessary data for disaggregation 

was available and because they will likely play a more dominant role in China’s future generation 

mix (Wang and Chen, 2010). In case the disaggregated IO table of 2007 is used as a basis to 

estimate future IO tables then including these ―future‖ generation options is vital.  Ideally we would 

have also separated heat and water production and supply from the aggregated sector entry. Heat 

and hot water production and supply refers to co-generated heat power (CHP) from thermal plants 

and heat distribution networks like district heating. This form of heating is primarily used in the 

North and Northwest of China. However, we were unable to find data on O&M costs or investment 

costs of CHP plants and district heating lines in China. Therefore, this sub-sector remains 

aggregated in the electricity production sector. 

 

 

 

 

 

 

 

 

 

 

 

Electricity production Pulverized coal plants (sub-c)

PC coal plants (super-crit)

transmission and PC coal plants (ultra-super critical)

distribution (T&D) Wind power plants

Solar 

Nuclear power

Hydro power

Natural gas power plants

T&D

Sector entry 23 in 42x42 IO table of China

Electricity production, transmission and 

distribution, heat and water supply
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    Table 4: CO2 intensity of power plants 

 
 

4.3 Disaggregating the electricity sector into production and supply: 

The first level of disaggregation consists of splitting the aggregated sector into production and 

supply. This step can be understood as an adjustment to the inter-industry (z-) matrix before a more 

detailed disaggregation of the electricity production sector, based on the weight factors is done. We 

found no data detailing the input proportion of common sectors to T&D and production of 

electricity, or vice versa the proportion of monetary supply from T&D and production sector to 

other sectors in the economy. Hence, an assumption needs to be made. The Chinese electricity 

yearbook (NBS, 2008) lists the investment made into both sectors separately for the year 2007. This 

is shown in table 5: 

 

Table 5:  Investment in the power sector 

 
 

We see that about 45% of investment spending went to the supply and distribution of electricity. 

Since this is the only reliable number distinguishing the two sub-sectors we have to assume that 

industry input from all economic sectors into the two electricity sub- sectors is made according to 

the proportion of investment costs. Secondly, the output from both sectors into all other sectors is 

split in this proportion as well, and the same is done with the final demand. The result is a 43 x 43 

sector IO table, and the electricity generation row and column entry contains 55% of monetary 

value of the previously aggregated sector. 

 

4.4 Disaggregating the electricity generation sector 

4.4.1 Deriving values for the input weight factors 

The question is in what proportion are commodities from the common sectors in the economy 

bought by the newly disaggregated generation sectors? In the real economy it is probably not true 

that all common sectors supply their products in equal proportion to each new power generation 

sector. Thus, as stated in equation (6) we introduce a way to refine the disaggregation of the 

electricity production column entry by using the input factor  . Its purpose is to split the purchases 

of the electricity sector from common sectors into certain proportions to resemble purchases made 

by new sectors in a more accurate way. The factor for each sector is derived from taking the 

weighted sum of power plants’ operation and maintenance (O&M) cost and annual electricity 

generation output. This is done according to the outline described in Marriot (2007). The argument 

is that allocation of industry input to the new power generation sectors should not solely be based 

on the electricity output of the new sectors, but also on how the money is spent within a year to 

generate said output. For example, an operator of a coal fired power station needs to buy fuel, 

Technology

Hydroelectricity 18

Coal  sub-c 1000

Coal super-c 900

Coal USC 750

Natural gas 400

Nuclear 45

Wind power 10

Solar PV 30

CO2 intensity 

(gCO2/kwh)

Total 549.29

Power generation 304.15

Transmission& Distribution 245.14

Investment in Chinese power sector 

(bill. RMB)
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whereas wind power plant operators do not. And there are other costs (materials, maintenance, 

waste disposal) that occur throughout a year and their magnitude varies among plant types. It is 

important to note that cost of construction, reflected in capital costs of power plants, is not 

considered in this exercise for distinguishing the supply. Construction is an economic activity 

within the construction sector of the IO table and so is therefore not included in the electricity sector 

(Marriot, 2007). If we were to consider construction of power plants we would have to disaggregate 

the construction sector as well. 

O&M costs of power plants for China are taken from the IEA (2010). For each generating 

technology in the power sector the book gives a range of O&M costs in USD/kWh. These include 

fuel costs. We convert the costs into RMB/kWh using a currency conversion rate of 6.5 (as stated 

by the IEA). The price range is higher for technologies relying on fuels, like coal fired power 

stations and natural gas plants, due to price fluctuations of gas, coal and petroleum. Table 6 shows 

the results of the exercise by giving the medium, low and high values of O&M prices. Table 7 then 

shows the power generation mix in China for the year 2007 (NBS, 2008). 

 

Table 6: Range of O&M costs by power plant 

 

Source: (IEA, 2010) 

 

    Table 7:  Electricity generation in China 

 

Note: Solar = 0.003 

Source: NBS (2008). 

 

With both datasets we obtain input factors for supply of common sectors to the newly disaggregated 

sectors. The cost data of each power plant is weighted by multiplying it with its fraction in the 

national generation mix. Results are then normalized and expressed as a fraction of 1. In the results 

section this table is reported. But beforehand there are some exceptions that need to be considered. 

For example, all purchases from the common sector coal mining and processing (sector entry 2) are 

most likely entirely made by the three coal-fired power generation sectors. Likewise, output from 

gas production and supply is allocated entirely to the natural gas power plant sector. The 

Technology Median Low High

Coal (SC) 11.2 9.5 12.9

Coal (USC) 12.3 10.3 14.3

Coal (sub-c) 8.5 7.5 9.5

Natural Gas 20.3 12.6 28.1

Nuclear 9.4 7.9 10.9

Hydroelectricty 13.4 12.0 14.8

Wind power 14.7 13.9 15.5

Solar PV 15.3 14.7 16.0

Electricity O&M prices by Generation type 

(RMB/kWh)

Coal (SC) 0.06

Coal (USC) 0.04

Coal (sub-c) 0.64

Natural Gas 0.01

Nuclear 0.01

Hydroelectricty 0.23

Wind power 0.01

Solar PV 0.00

Power generation mix in 

China 2007 (% )
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assumption for allocating inputs petroleum processing and coking and crude petroleum and natural 

gas products across the generation types were taken from Marriot (2007). 

 

4.4.2 Construction of the Intra matrix 

The 2007 national IO table reveals that 11.3 billion RMB were spent in purchases from the 

electricity sector itself. This could be power purchased by utilities to cover supply shortfalls. We 

disaggregate this value to power purchases among the 9 new sectors, including T&D. We use the 

assumption made by Marriot (2007) that the intra-industry value is split among each entry in the 

new intra-matrix by multiplication with the row and column weight factor. 

 

4.5 Deriving output weight factors 

The question we try to answer in this section is in what ratio common sectors purchase electricity 

from the newly disaggregated generation sectors? We focus on equation (7) and explain how to 

derive the technical coefficient matrix, a*, adjusted for considering regional electricity generation 

mixes and industry clusters. The result of this exercise is a 8 x 41 sector matrix of technical 

coefficients showing the input of each new sector (8 electricity generation plants) into 41 common 

sectors. There will be 41 different sets of output weight ratios, wk, each set made up of 8 fractions 

of electricity input into a common sector that some up to 1, and hence meet the constraint given by 

Wolsky (1984).  In other words, each sector in the national IO table is allocated a region specific 

electricity consumption mix. 

 

1) We group the 30 province IO tables of China according to the electricity grid system they 

belong to. There are six grid systems in China and the grouping of provinces to each grid system is 

shown in Annex 1. In other words, the boundary chosen for determining regional electricity mixes 

is the electricity grid operating system. We chose this boundary because within provinces of a grid 

system considerable amount of electricity is traded, which has the effect that each province’s 

electricity mix approaches the grid average mix. 

2) In each of the six regions we extract the aggregated electricity sector row from the 

provincial IO tables (z-matrix) and add them together. As a result we obtain six 1 x 42 vectors 

showing the monetary input from the electricity sector to all common sectors in the grid. This 

regional electricity grid vector captures the different magnitude of electricity input to common 

sectors in the regions.   

3) We compare the sum of the six regional electricity vectors with the value of electricity 

sector entry in the national IO table of China. There are some differences and the deviation is 

between 4 and 10% of the national IO table, but can be as high as 35% for some sectors.  We 

normalize each regional electricity vector so that the sum of the six regional electricity vectors is 

equal to the row vector in the national table.  

4) From the Chinese electricity yearbook and other literature sources we calculate the 

electricity generation mix for each grid system containing 9 generation units. This was shown in 

table 2 already. Each generation option in the six grids contributes a fraction of 1 to the total mix. 

5) We multiply each regional electricity vector with the fraction of power plants available 

contributing to the region specific generation mix (shown in table 1). Results of this are grouped 

into 8 matrixes of the size 6 x 41. So each matrix shows monetary value of electricity input to the 

common sectors for each grid according to generation type.  

6) The row sum of each matrix is divided by the total input of the aggregated electricity sector 

in the national table IO. As a result we obtain the 8x41 output weight factors which define the 

sector specific consumption mix of the common sectors.  

 

We illustrate mathematically the combined effect of regional industry clusters and electricity 

generation mix on the consumption mix of common sectors in the national IO table. The following 

notation is adapted: 
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wk,(j) = percentage of total output of electricity generation sector type k, in region j.  

Pi,(j) = percentage of total output of common sector  produced in the jth region 

N+1 = electricity sector of the national IO table to be disaggregated. 

i = common sectors in the national IO table, where i = 1 to N. 

Nr: number of regions 

a: technical coefficient matrix of the aggregated table 

a*: technical coefficient matrix of the disaggregated table  

z = inter-industry matrix 

 

We introduce additional constraints: the fraction of industry output from the common 

sectors produced in each region needs to sum up to 1 (to equal the output of the national table) and   

the fraction of regional electricity generation mix of power plant type k needs to sum up to 1 as 

well: 

1
1

)(, 


Nr

j

jiP , (10)    and 1
1

)(, 


Nr

j

jkw ,  (11) 

We can express the technical coefficient, a, of the aggregated matrix (left hand side of the equation) 

as the sum of inter-industry transfer z divided by total output in each of the 6 regions: 

aN+1, i    = 
1

,1
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z
  = 
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1

1
,   (12) 

And since the output xi (j) of a common sector i in region j can be expressed as the sum of fraction 

Pi of national output x, we write: 

ijijiNjijiNjiN xPaxaz )(,)(,,1)(,)(,,1)(,1   ,                         (13)

 

  

 

 so that equation (12) can be rewritten as: 
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As an example, if we disaggregate the electricity sector into k sectors of electricity generation, we 

have: 
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The quantities zN+1,i,(j) and wk( j)  can be determined for each region and since we know the total 

national output xN+1 we further write:  
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                (16) 

 

From the last equation we can see that the departure of the coefficients 
*

,ikNa   from the 

national average of electricity generation input to industry sectors i can be attributed to two factors: 

the combined presence of regional industry clusters with regional electricity mix clusters and the 

difference in the regional industry efficiency from the national industry efficiency (i.e. the 

difference between the regional coefficients 
*

,ikNa   and the national coefficient iNa .1 ). 
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5. Results 

5.1 Input and Output weight factors 

In this section we present results of calculating the input weight factors,  , and output weight 

factors wk. Input weight factors were calculated using the low end and high end results the O&M 

data provided by the IEA (2011). We also calculated a median value and used this value during the 

actual disaggregation. This is shown in table 8. 

 

Table 8: Input weight factors from common sectors to power generating sectors: 

 
 

 

The input weight factors offer a first estimate on how to allocate supply from the common sectors to 

the disaggregated sectors. We notice that the factors differ from the fractions of electricity 

generation for power plants in the national mix. For instance hydroelectricity went up to 0.3 from 

0.23 in the power mix, and coal fired power plants with sub-critical boiler moved down to 0.54.  

Coal-fired power stations with sub-critical boiler have lower O&M costs than hydroelectricity and 

this effect is weighted into the input factors. 

The results for the manual allocation of supply from common sectors to newly disaggregated 

sectors are shown in table 9.  

 

Table 9: Manual allocation of common sector’s input to new sectors: 

 
 

 

We also calculated new output weight factors which are based on our estimation of regional 

electricity consumption mixes per industry sector. The full table of output weights is given in the 

Appendix. In table 10 we only show 5 sectors and their deviation of electricity consumption 

compared to the national average. The minus sign indicates the consumption of electricity from a 

certain power plant type is less (in percentage points) than the national average. The calculation 

revealed that the pattern of electricity consumption by each industry is indeed different from the 

national average. In some cases, like wind power it can be as high as a magnitude of 1.7.  

 

 

 

 

 

 

Technology Median Low High

Coal (SC) 0.07 0.06 0.06

Coal (USC) 0.05 0.04 0.04

Coal (sub-c) 0.54 0.48 0.44

Natural Gas 0.02 0.01 0.02

Nuclear 0.01 0.01 0.01

Hydroelectricty 0.30 0.28 0.23

Wind power 0.01 0.01 0.01

Solar PV 0.01 0.01 0.01

Input weight factors (% )

common sector Coal SC Coal USC Coal sub-c NG plant Nuclear Hydroelectricity Wind power Solar pv

Coal mining and processing 0.11 0.08 0.81 0 0 0 0 0

Petroleum processing and coking 0.02 0.03 0.05 0.9 0 0 0 0

Transport and warehousing 0.11 0.08 0.81 0 0 0 0 0

Crude petroleum and natural gas products 0.02 0.03 0.05 0.9 0 0 0 0

Water production and supply 0.11 0.08 0.81 0 0 0 0 0

Gas production and supply 0 0 0 1 0 0 0 0

Allocation across generation types
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Table 10: comparison of national average with sector specific consumption mix: 

 
 

We construct the intra-matrix, distributing the value of intra-industry sales from the electricity to 

each new sector in the economy according to Marriot (2007). The full results, after disaggregation, 

are shown in table 11 and the monetary value is 10.000 RMB. Only parts of the disaggregated 

Chinese IO table are displayed in this paper, mainly due to the fact that a 50x50 sector excel matrix 

is difficult to show in third document. In the Annex, however, we show the 9 row and 9 column 

matrixes of the disaggregated electricity sector in the Chinese IO table, including final demand and 

total output of the new sectors. 

 

 Table 11: Intra-matrix of Chinese Disaggregated IO table: 

 
 

5.2 CO2 emissions intensity 

One aim of this work is to determine the effect of different weight factors used for disaggregation 

on results of emissions intensity,  , of sectors in the economy. Using the final demand as stated in 

the Chinese IO table we compare the emissions embodied in one unit of final demand of two 

separate disaggregation runs. The first one, L1, uses the new set of weight factors which were 

determined as described in the previous section to disaggregate the row and column entry of the 

electricity sector. The other disaggregation run uses the national average electricity mix as weight 

factors to divide the row entry and for the division of supply from common sectors to new sectors 

(column entry) it was assumed that output is allocated in equal proportions to each generating sector 

(L2). We then build the Leontief inverse coefficient matrix of the disaggregated tables and multiply 

with a CO2 satellite account as described in equation (4). Results of both runs are shown below. 

Figure (1) shows the total emissions embodied in one unit of final demand for the 41 common 

sectors after using disaggregation run L1.  Here we see the primary industry sector like resource 

extraction and mining as well as the metallurgy sectors having the highest emissions intensity 

whereas service oriented sectors (real estate, finance and insurance)  have the lowest intensity. 

 

average

(%)

Hydro 0.230 -44.6 -15.8 -12.8 -23.5

Sub-c 0.637 16.0 0.4 1.8 7.6

Super crit 0.060 16.8 -10.9 0.3 1.6

USC 0.040 -57.6 61.5 1.4 -16.7

NG 0.010 -6.6 -3.0 12.9 -32.6

Nuclear 0.010 -79.3 30.4 -17.5 -42.9

wind 0.010 199.9 109.7 152.9 175.6

solar pv 0.003 -66.2 -62.1 -52.1 -80.0

Technology

Deviation of electricity consumption of four sectors from national generation average

Coal mining + 

processing
Chemicals

Metals smelting + 

pressing

Gas production and 

supply

0.45 0.167 0.29 0.037 0.027 0.012 0.006 0.006 0.005

T&D Hydro Coal Sub-C Coal SC Coal USC NG power Nuclear Wind power Solar PV

T&D 22882500 8491950 14746500 1881450 1372950 610200 305100 305100 254250

Hydro 8491950 3151457 5472590 698227 509517 226452 113226 113226 94355

Coal Sub-c 14746500 5472590 9503300 1212490 884790 393240 196620 196620 163850

Coal SC 1881450 698227 1212490 154697 112887 50172 25086 25086 20905

Coal USC 1372950 509517 884790 112887 82377 36612 18306 18306 15255

NG power plant 610200 226452 393240 50172 36612 16272 8136 8136 6780

Nuclear 305100 113226 196620 25086 18306 8136 4068 4068 3390

Wind power 305100 113226 196620 25086 18306 8136 4068 4068 3390

Solar PV 254250 94355 163850 20905 15255 6780 3390 3390 2825

11.3000000 RMB
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 Figure 2. CO2 emissions intensity of 41 common sectors in the Chinese IO table. 

The same results were produced using the assumption electricity is supplied to sectors according to 

the national average (L2). In the appendix we show a table listing emissions intensities of the new 

sectors. We compare both results in figure 2 by looking at the percentage deviation of L1 from L2. 

We see that the difference in emissions intensity is rather small: results of L1 fall between the range 

of plus or minus 4% of L2.  In other words, despite using rather different weight factors not only 

between sectors in the L1 model run, but also between L1 and L2, the results of total emissions 

intensity among sectors varies considerably less. 
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Figure 3: Difference in CO2 emissions intensity between 2 disaggregation model 

runs. 1 = no difference,  < 1 = the emissions intensity of L2 is lower, > 1 = emissions intensity of L 2 is higher then L1. 

 

 

Conclusion 

 The goal of this paper is to introduce data and a technique to disaggregate the electricity sector of 

Chinas’ IO table. The argument for disaggregation is that it enables to add more process detail to 

some sectors in the IO table, and hence would make further use of the tables for EE-LCA more 

accurate. We perform two ―runs‖ of disaggregation: one where weight factors to distinguish the 

new sectors are chosen based on a range of external information about the input/output relationship 

of the new sectors with common sectors, and one ―run‖ where weight factor distinction is simply 
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made on the national electricity generation average. Emissions intensities of both runs are 

compared. 

We conclude that with the technique presented here disaggregation based on Wolsky’s idea of 

developing an initial estimate that follows a set of constraints is possible even with more complex 

information to build  the estimate. But due throughout the process one of the main goals of 

disaggregation, which is to decrease uncertainty of embodied emissions (for example in trade of 

goods and products), may actually be missed simply because the data used to estimate the weight 

factors  already has a lot of uncertainty inherent. For example, the first step of disaggregation, the 

separation from T&D to the power generation units, is a very general guess based on investment 

costs simply because no other detailed data is available. Secondly, estimation of supply into new 

sectors from common sectors based on the O&M costs provided by the IEA contains uncertainty as 

well – simply because the O&M costs are estimations themselves. And thirdly, the technique of 

estimating sector consumption profiles with provincial IO tables also incorporates some error, 

varying from sector to sector. This has several reasons, some province level tables are not in the 

same level of quality than the national table, but also the provincial tables contain interprovincial 

exports/imports which ideally would have to be removed before comparing them with the national 

IO table. An improvement of the technique would be to account for uncertainty and error in the 

disaggregation by giving ranges for possible solutions of disaggregation. In Lindner et al. 

(forthcoming) the full range of possible solutions for the inverse coefficients in the disaggregated 

matrix was given. It is concluded that although we use more information to support a disaggregation 

in this paper, and therefore ideally we would place our estimate with more certainty in the space of 

all possible solutions for disaggregation, still the formulated estimate in this work has a 

considerable amount of uncertainty inherent. Therefore a range of disaggregation solutions should 

be provided even with more detailed data. 

From the results of environmental analysis, in which we analysed the emissions embodied in 

one unit of  final demand of the common sectors, we expected to see a difference between 

emissions intensities of sectors between both model runs. However, results indicate that the 

difference is less than 5% for all common sectors. This is likely due to the fact that we present the 

total embodied emissions which include the indirect emissions along the supply chain of sectors. 

Since each sector has a generic electricity consumption mix, accounting the emissions along the 

supply chain will necessarily result in the emissions intensity to approach the intensity of the 

national average. The effect of individual sector mixes on emissions intensity should be most 

visible when direct emissions are calculated, and decrease further down the supply chain. We 

conclude that using sector specific electricity consumption mixes are good to detect industry 

specific direct emissions, but not necessary for analysing indirect emissions because the emissions 

will approach the national average. From the viewpoint of environmental analysis it is also less 

important to accurately model the dertailed supply of common sectors into the new generating 

sectors, compared to estimating the input of generating sectors into common sectors. The input from 

common to new sectors in essence modifies the first layer of indirect emissions (electricity is sold to 

common sectors who produce goods that are sold again to the electricity generating sectors), and at 

that stage the emissions level are already approaching the national average.  

Disaggregation is merely a step of improving quality of data to be used for future analysis.  

Given that an IO practitioner will likely weigh off the time invested in disaggregation and the 

benefit gained we suggest that disaggregation of the electricity based on weight factors that are built 

on using the national electricity generation average is satisfactory. For the compilation of the next 

IO tables of China we encourage to disaggregate the electricity sector before publication based on 

the firm level data that bodies of the Chinese Government may have access to.  
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1) Division of provinces into six electricity grids in China. Also shown are the percentage of 

powe generated with fossil fuels in each province (NBS, 2008). 

 

 

2) Output weight for each common sector. Shown in the following table, split into three pieces, 

are the weight factors we determined to build sector specific electricity consumption profiles. All 8 

weights add up to 1 for each sector. 
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Hydro 0.23 0.19 0.13 0.15 0.19 0.19 0.18 0.20 0.19 0.24 0.24 0.18 0.19 0.21 0.20 0.20

Sub-c 0.64 0.67 0.74 0.72 0.67 0.66 0.68 0.63 0.65 0.63 0.61 0.68 0.64 0.64 0.65 0.62

Super crit 0.06 0.06 0.07 0.07 0.07 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.05

USC 0.04 0.03 0.02 0.01 0.02 0.05 0.03 0.08 0.07 0.03 0.05 0.03 0.06 0.04 0.04 0.08

NG 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.00

Nuclear 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.02

wind 0.01 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02

solar pv 0.003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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3. Difference of CO2 emissions intensities of new sectors from 2 disaggregation runs: 

 

L1 L2 % difference

T&D 94.3 91.21 0.97

Hydroelectricty 197.4 166.22 0.84

Coal (sub-c) 1350.5 1339.11 0.99

Coal (SC) 1371.4 1294.45 0.94

Coal (USC) 1155.9 1076.96 0.93

Natural Gas 900.9 733.91 0.81

Nuclear 319.4 172.98 0.54

Wind power 496.5 245.78 0.50

Solar PV 485.1 231.85 0.48

CO2 emissions intensities for new sectors from 2 model runs:


