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Abstract: The purpose of this paper is to assess the interdependencies among the eight 

(8) main sectors of economic activity in the US economy, using quarterly data on output 

and labor fora period of fifteen years (1992-2006), just before the first signs of the global 

recession made their appearance.  In this context, we set up a novel methodological 

framework which combines Input-Output (IO) analysis with state of the art Global 

Vector Autoregressive (GVAR) modeling. In addition, we use the IO matrices to provide 

a procedure in order to test for the existence of dominant sector(s) in the USA and 

estimate a GVAR model with dominant sector(s) and the exogenous variables of Global 

Credit and Global Trade acting as the transmission channels. Our results seem to suggest 

that the US economy has relatively limited connectivity, in terms of sectoral output and 

labor, among the various sectors.  
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1. Introduction 

The VAR approach and especially the Global VAR (GVAR) model, provide 

nowadays a very useful framework for assessing the transmission of shocks among 

economic entities.1 The GVAR framework was introduced by Pesaran et al. (2004) and 

developed through several quality theoretical contributions such as Pesaran and Smith 

(2006), Dées et al. (2007b) Chudik and Pesaran (2011a), (2011b) as well as empirical ones 

such as Dées et al. (2005), (2007a), Pesaran et al. (2006), Pesaran et al. (2007), Bussière et 

al. (2012), Konstantakis and Michaelides (2014).  

The GVAR model is suitable for assessing relationships between economic 

entities while its methodology provides a general, yet practical, modeling framework for 

the quantitative analysis of the relative importance of different shocks and channels of 

transmission. In fact, it consists of a compact econometric model of the economic 

entities involved which is specifically designed to model the economic interdependencies 

among economic entities, e.g. at both the national and international level.  

The GVAR framework is structured upon observables, which typically include 

economic aggregates, trade and financial variables, with other unit-specific variables 

serving as proxies for common unobserved factors. It is exactly this characteristic that 

constitutes an important input in the so-called “decoupling” of the US sectoral economy. 

The purpose of this paper is to assess the interdependencies among the eight (8) 

main sectors of economic activity in the US economy, using quarterly data on output and 

labor for a period of fifteen years (1992-2006), just before the first signs of the global 

recession made their appearance. 

                                                            
1 The so-called factor augmented vector autoregressions (FAVAR) are often viewed as an alternative approach to 
GVAR (see e.g. Bernanke et al. 2005; Korobilis 2013). However, the number of estimated factors used in FAVAR is 
different for different countries and it is not clear how they relate to each other globally (Dees et al. 2007a). In fact, 
Kapetanios and Pesaran (2011) argue that GVAR estimators perform better than the corresponding ones based on 
principal components. 
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We have chosen the variables of output and labor because they are probably the 

major economic variables at the sectoral level which are able to express, in a nutshell, the 

economic conditions of each sector. More precisely, we take into consideration the 

production of each sector through the variable of output as well as the main factor of 

production (i.e. input) through the variable of labor. Additionally, we have chosen to use 

the variables of Global Trade and Global Credit instead of their domestic counterparts 

i.e. US Credit and US Trade, due to the high degree of opennessof the US economy. 

The present paper is the first, to the best of our knowledge, which provides a 

simple and practical framework for applying the GVAR approach at the sectoral level. In 

this framework, we propose combining the traditional Input Output (IO) Leontief 

methodology with the state of the art GVAR approach. To this end, we set out a detailed 

methodological framework for constructing the sectoral weight matrix of the GVAR 

model, which builds on the IO technical coefficients matrix. Next, we provide a 

procedure in order to test for the existence of dominant entities and we implement the 

proposed novel sectoral methodology to the US economy. 

The proposed framework which combines the traditional IO methodology with 

the state of the art GVAR modeling has considerable advantages with respect to either of 

the two approaches upon whichit builds. With respect to the GVAR approach, the 

weight matrix constructed in this work,which is derived based on Leontief’s IOmatrix,is 

perfectly capable of capturing the linkages between the various sectors of the economy. 

Hence, the modeling of the economy is complete since there are no missing relationships 

due to the fact that all sectors are explicitly included in the GVAR model. With respect 

to the IO approach, our proposed framework acts as a state of the art econometric 

technique which is capable of producing robust statistical estimates based on real–world 

data on economic aggregates instead of mere point calculations, while incorporating the 

full information set of the IO tables.  
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The remainder of the paper is structured as follows: section 2 sets out the 

proposed methodology, section 3 presents the data and the variables; section 4 describes 

the empirical analysis; section 5 presents the estimation results; section 6 offers a brief 

discussion; finally, section 7 concludes. 

 

2. Methodology 

2.1 GVAR Analysis 

The Global VAR model consists of eight (8) major economic entities, namely the eight 

economic sectors of the US economy. Each sector i, ݅ ൌ 1, 2, … , 8		follows a VAR 

model, augmented by the so-called exogenous variables of global trade (T) and credit 

(D), expressing the transmission channels through which the various economic 

transactions and shocks take place. The endogenous variables ݔ௜௧denote a 8×2 vector of 

macroeconomic variables belonging to each sector i, consisting of the sectoral Output 

(Y) and Labor (L). 

We use the variables of output and labor as the model’s endogenous variables 

because they are probably the major economic variables at the sectoral level which are 

able to express, in a nutshell, the economic conditions of each sector. In fact, we take 

into consideration the production of each sector through the variable of output as well as 

the main factor of production (i.e. input) of each sector through the variable of labor.  

The foreign variables ݔ∗௜,௧represent a weighted average of the other sectors’ 

variables that are regarded to be weakly exogenous in each sector’s model, whose weights 

are pre-determined. Mathematically, the VAR model for each sector is: 

,ܮ௜ሺߔ ௜௧ݔ௜ሻ݌ ൌ ܽ௜଴ ൅ ,ܮ௜ሺ߉ ݔ௜ሻݍ ∗௜௧൅ ܽ௜ଵܩ௧ ൅  ௜௧[1]ݑ

For ݅ ൌ 1, 2, … ݐ	݀݊ܽ		8, ൌ 1. . . . ܶ where ݔ௜௧ is the set of sectoral domestic 

variables and  ߔ௜ሺܮ,  ;௜ሻ is the matrix of lag polynomial of the associated coefficients݌



22nd International Input-Output Conference 2014, Lisbon, Portugal 

 

5 
 

ܽ௜଴is a vector of fixed intercept; ܩ௧ is a set of the Global Variables and ܽ௜ଵ is a vector of 

their respective coefficients ݔ ∗௜௧ൌ  ௜௧ is the set of weighted foreign variables andݔܹ

,ܮ௜ሺ߉  ௜ሻ is the matrix of lag polynomial of the associated coefficients.Matrix ௜ܹis a8 × 8ݍ

dimensional matrix of weights andݑ௜௧~݅. ݅. ݀ሺ0, -ଶሻwith mean zero and the varianceߪ

covariance matrix Σi. 

The implementation of the GVAR methodology has two steps. Firstly, each 

sector’s VARX model is constructed treating the variables of global Trade and global 

Credit as exogenous. After the construction of each VARX model we relate their 

corresponding estimates through link matrices by stacking them together to obtain our 

GVAR model. In particular, we consider the following model for country i: 

௜௧ݔ ൌ ܽ௜଴ ൅ ௜௧ି௣ݔ௜௣ߔ ൅ ݔ௜଴߉ ∗௜௧ ൅߉௜௤ݔ ∗௜௧ି௤൅ ܽ௜ଵܩ௧ ൅  ௜௧[2]ݑ

 

To begin with, we group all foreign and domestic variables together as: 

௜௧ݖ ൌ ቀ
௜௧ݔ
ݔ ∗௜௧

ቁ	

Therefore, for each sector i the respective model becomes: 

௜௧ݖ௜ܣ ൌ ܽ௜଴ ൅ ௜௧ݖሼ௣.௤ሽ	௜.୫ୟ୶ܤ ൅ ൅ܽ௜ଵܩ௧ ൅  ௜௧ݑ

where:ܣ௜ ൌ ሺܫ, െ߉௜଴ሻܽ݊݀ܤ௜,୫ୟ୶	ሼ௣,௤ሽ ൌ ൫ߔ௜௣,  .௜௤൯߉

 

By gathering all the domestic endogenous variables together, we define the 

following global vectorݔ௧ ൌ ቀ
ଵ௧ݔ
ଶ௧ݔ

ቁ and we obtain the identity:ݖ௜௧ ൌ ,	௧ݔܹ ∀݅ ൌ 1,…,8 

where W is the weight matrix. Thus, by using the former identity in the i-thsector- 

specific model, we get: 

௜ܣ ௜ܹݖ௜௧ ൌ ܽ௜଴ ൅ ሼ௣,௤ሽ	௜,୫ୟ୶ܤ ௜ܹݖ௜௧ି୫ୟ୶	ሼ௤,௣ሽ ൅ ܽ௜ଵܩ௧ ൅  ௜௧ݑ

By combining each sector model with the later equation weobtain the GVAR: 

௧ݔܯ ൌ ܽ௜଴ ൅ ሼ௧,௤ሽ	௧ି୫ୟ୶ݔሼ௣,௤ሽ	௜,୫ୟ୶ܪ ൅ ൅ܽ௜ଵܩ௧ ൅  ௜௧ݑ

where	ܯ ൌ ሺܣ௜ ௜ܹሻ	ܽ݊݀	ܪ௜ ൌ ൫ܤ௜,୫ୟ୶	ሼ௣,௤ሽ ௜ܹ൯. 
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If the M matrix is non-singular, then we obtain the reduced form of the GVAR 

model: 

௧ݔ ൌ ܾ଴ ൅ ሼ௣,௤ሽ	௧ି୫ୟ୶ݔሼ௣,௤ሽ	୫ୟ୶ܨ ൅ ܾଵܩ௧ ൅  ௧ݒ

 

where:	ܾ௜ ൌ ௜ܨ		.	ଵܽ௜ିܯ ൌ ௧ݒ	and	௜ܪଵିܯ ൌ  ௧ݑଵିܯ

 

Furthermore, following Chudik and Smith (2013), in the potential presence of a 

dominant entity we transform each i-thVARX model of the GVAR to account for this 

dominant sectoras follows2: 

௜௧ݔ ൌ ܽ௜଴ ൅ ௜௧ି௣ݔ௜௣ߔ ൅ ௜ܰబݔ଴,௧ ൅ ௜ܰబ,௞ݔ଴,௧ି௞ ൅ ݔ௜଴߉ ∗௜,௧ ൅߉௜,௤ݔ ∗௜,௧ି௤൅ ܽ௜ଵܩ௧ ൅  ௜௧[3]ݑ

where	ݔ଴,௧ ൌ ൛ ଴ܻ,௧, ଴,௧ൟ is a 2x1 vector of variables of the dominant sector and ݅଴ܮ ്

݅={1,..7}. 

We examine the dynamic characteristic of our GVAR model through the so-

called Generalized Impulse Response Functions (GIRFs) following Koop et al. (1996) 

and Pesaran and Shin (1998).Analytically, a positive standard error (σ) unit shock is 

examined on every variable in the universe of our model aiming at determining the 

extent to which each economic sector, responds to a shock. Also, we study the extent to 

which these shocks have persistent effects. The (Generalized) Impulse Response 

Function (GIRF) is as follows:  

ሺ௡ሻ	௝ܫ ൌ ௝௝ିଵ/ଶߪ ൅ ߑ௡ܤ ௝݁∀݊ ൌ 1, 2, … [4] 

whereܫ௝	ሺ௡ሻ is the Impulse Response Function n periods after a positive standard error 

unit shock; ߪ௝௝ is the jth row and jth column element of the variance–covariance matrix 

Σ of the lower Cholesky decomposition matrix of the error term which is assumed to be 

                                                            
2 Note that despite the insightful suggestion by Chudik and Smith (2013) to use a dominant entity, they do 
not provide a procedure for selecting the number of dominant entities to be used. 
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normally distributed; B is the coefficients’ matrix when inversely expressing the VAR 

model as an equivalent MA process and ௝݁ is the column vector of a unity matrix. See 

further Koop et al. (1996) and Pesaran and Shin (1998). 

2.2 Input Output Analysis 

(A) Constructing the sectoral weight matrix in an IO framework 

Ιn the core of the GVAR methodologyat the international level is the so-called trade 

weight matrix(see e.g. the seminal work by Pesaran et al. 2004). To this end, we use the 

IOmatrix3 of the US economy to serve as the means to create the sectoral weight matrix4.  

As is well known, the IO model is based on the following equation for the 

various (n) economic sectors:  

௜ݕ +௜௡ݔ + ... +௜ଶݔ +௜ଵݔ = ௜ߕ , i= 1, 2, ..., n[5] 

where: ߕ௜ ≥0 is the output of sector i, ݕ௜is the final demand for the product of sector i, 

 .௜௝is the product of sector i used by sector jݔ

Equation (5) can be written as follows, in matrix form: 

Χ = ΑΧ + Υ[6] 

where: X is the vector of outputs, Y is the vector of final demand, and A is the so-called 

input or technicalcoefficients matrix whose typical element is equal to: 

ሺܽ௜௝ሻ	௡௫௡	 ൌ 	
௫೔ೕ
௑ ௝

[7] 

where: ܽ௜௝ ≥0 is interpreted as the quantity of output from sector i required to produce 

one unitof output in sector j. 

Solving the balance equation [6] for X, we obtain: 

                                                            
3 Instead of the standard technical coefficients matrix A, we could also use the tailored hybrid technology-
based product IO tables constructed in the spirit of Rueda-Cantuche and ten Raa (2013). 
4For an eigenvector method measuring the ‘keyness’ of inter-sector linkages in a related context, see the 
works by Dietzenbacher (1992) and, very recently, by Jianxi (2013). In a similar vein, Los (2004) proposed 
using a dynamic input–output growth model to identify strategic industries. 
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X = ሺܫ௡ െ  ሻିଵY[8]ܣ	

in which ܫ௡is then × n identity matrix, ሺܫ௡ െ  ሻିଵ is the so-called Leontief inverse and Yܣ	

is the column vector of final demand. 

As we know, in the IO approach, the main tools of analysis are the technical 

coefficients matrix A and the Leontief inversematrixሺܫ௡ െ  ሻିଵ, namely the matrix ofܣ	

input-output multipliers of changes in final demand into levels of outputs. 

Now, based on the fundamental IO matrix of technical coefficients A, we 

construct	matrix ܳ, which has the following form: 

ܳ ≡ ൭
ଵଵݔ … ଵ௡ݔ
⋮ ⋱ ⋮
௡ଵݔ … ௡௡ݔ

൱ 

where each element of ܳ is given by the expression: 

௜௝ݔ ≡ ܽ௜௝ ௝ܺ[9] 

and the ݔ௜௝ element of matrix ܳ expresses the product of sector i that is used from sector 

j, ௝ܺ is the total output of the j-th sector and ܽ௜௝is interpreted as the quantity of output 

from sector i required to produce one unit of output in sector j, as we have seen earlier. 

Notice that, in general, ݔ௜௝ ് ,௝௜ݔ ∀݅, ݆ ∈ ሼ1, … , ݊ሽ.  

In the IO matrixܳ, the row elements express the quantities of goods and 

services, in value terms, supplied by one sector to itself and all others. Similarly, column 

elements express quantities obtained by a sector from itself and all others. In general, 

matrix Q expresses an (intermediate) intra-sectoral flow matrix. 
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Next, we construct the transpose of matrix Q, i.e. ்ܳ. In matrix ்ܳ, the row 

elements express quantities obtained by a sector from itself and all other sectors, whereas 

the column elements express quantities supplied by a sector to itself and all others.  

 Now, let matrix P be defined as the difference between matrix Q and its 

transpose,	்ܳ, or in matrix notation: 

ܲ ≡ ܳ െ ்ܳ 

Thus, the typical element,  ݌௜௝, of matrix P is equal to : 

௜௝݌ ≡ ௜௝ݔ െ  ௝௜ݔ

Each element, ݌௜௝, measures the net amount of goods and services of a sector, in value 

terms, that flows between itself and each other sector, in a respective year.  

Obviously, P is a matrix with zeros in the main diagonal. In matrix form: 

ܲ ≡ ൭
0 … ଵ௡݌
⋮ ⋱ ⋮
ଵ௡݌ … 0

൱ 

since, by definition, every element of its main diagonalindicates the quantities that each 

sector obtains and supplies to itself, which, in a general equilibrium framework, are equal 

to each other. Hence, ݌௜௜ ൌ 0, ௜௝݌	݀݊ܽ ൌ െ݌௝௜, ∀݅, ݆ ∈ ሼ1, … , ݊ሽ. Apparently, P 

represents a net (intermediate) intra-sectoral flow matrix. 

 Since we are interested in constructing the so-called weight matrix, close to the 

spirit of the GVAR model at the international level (Pesaran et al.2004), we proceed as 

follows:Let NQ, be the IO matrix whose typical element, ݊ݍ௜௝, is given by the following 

expression: 

௜௝ݍ݊ ≡ ห݌௜௝ห ൌ หݔ௜௝ െ  ௝௜ห[10]ݔ
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A net intra-sectoral flow weight is defined as the ratio of flows of goods and services 

between sector i and sector j, over the total absolute flows of goods and services realized 

by sector i. Or in mathematical terms: 

௜௝ݓ ≡
௡௤೔ೕ

∑ ௡௤೔ೕ
೙
೔సభ

[11] 

Obviously, W is a matrix with zeros in the main diagonal. Or, in matrix form: 

ܹ ≡ ൭
0 … ଵ௡ݓ
⋮ ⋱ ⋮

௡ଵݓ … 0
൱ 

since	݊ݍ௜௜ ൌ 0 as discussed above, and, in general, ݓ௜௝ ് ,௝௜ݓ ∀݅ ് ݆. 

For instance, the element ݓଵଶ indicates the flows of goods and services, between 

sector 1 and sector 2 as a proportion of the total flows of sector 1. 

Apparently, W represents an intermediate net intra-sectoral flow weight matrix. 

Ιf the net intra-sectoral flow weights of a sector tend to remain stable over time 

this would imply a situation of structural stability. On the other hand, if the weights were 

found to be unstable over time, an instability situation might be indicated.  

The proposed weights can be computed from the data contained in IO Tables 

and National Accounts and the derived net intra-sectoral flow weight matrix W is directly 

analogous to the typical weight matrix of the GVAR model at the international level. 
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(B) Testing for Dominant Sector(s) in an IO framework 

In order to test for the number of dominant sectors, wecalculate the eigenvalues of Input 

Output matrix A5. However, in what follows, we focus on matrix Q(instead of A), since 

its eigenvalue distribution expresses the dynamic behavior of any given economy in 

terms of net intermediate intra-sectoral flows, which is the focus of our analysis.6The 

eigenvalues λ(i), i=1,..,8 of matrix Q are such that |ܳ െ |௡ܫሺ݅ሻߣ ൌ 0 where ܫ௡ is the n × n 

identity matrix and each eigenvalue is considered to have multiplicity equal to 1. In 

general: λ(i)=a ± bj, where jଶ=-1, a, b ∈ ܴ, and the modulus of λ(i)is equal to:|ߣሺ݅ሻ	| ൌ

√ܽଶ ൅ ܾଶమ ൒ 0, i=1,...,8.Now, let λ(pf) = λ(1) denote the Perron–Frobenius (P–F) 

eigenvalue of the n × n matrix Q. We divide each eigenvalue’s modulus with the P-F 

eigenvalue’s modulus to get the normalized eigenvalue:	ߩሺ݅ሻ ൌ |	ሺ݅ሻߣ| ⋅   ,|ିଵ	ሻ݂݌ሺߣ|

i=1,...,8. The normalized eigenvalues: ρ(i), i=2,...,8are the so-called non-dominant 

eigenvalues, since ρ(pf)=ρ(1)=1.  

Following common practice, the number of dominant sectors implied by the 

economy’s structure is equal to i*, for which ρ(i*)>0.4-0.3 approximately,since values of 

ρ(i*)less than 0.40–0.30 might be considered negligible from a practical point of view 

(Mariolis and Tsoulfidis, 2014).  

 

3. Data and Variables 

We have chosen to apply the proposed methodology to the US economy because: (i) it is 

the largest economy in the world in terms of output produced and, probably, (ii) the 

world’s dominant economy in terms of power and influence. Also, the US economy 

                                                            
5 An interesting approach would also be the investigation of a dominant region in the Input-Output 
multiregional analysis concept proposed by Canning (2013). 
6 Of course, the same procedure could alternatively be applied to the technical coefficients matrix A. 
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presents (iii) interesting connectivity among its economic sectors (e.g. Acemoglou et 

al.2012), as well as (iv) very good data availability.  

We use an eight-sector classification of the US economy because: (i) it avoids 

large data requirements, a characteristic which is highly desirable for the expository 

nature of our work, (ii) it avoids large computational complexity related to the already 

heavy structure of the econometric representation of the GVAR model, (iii) it provides a 

compact and practical representation of the country’s economy, and, (iv) it is consistent 

with the findings by other researchers highlighting the need for compact classification 

formats of the US economy (see e.g. Mariolis and Tsoulfidis, 2014). Our classification 

builds on the respective compact US classification by the Bureau of Labor Statistics 

(BLS) (2014) and the Canadian classification by the Canadian Industry Statistics (2012). 

For the detailed industry classification, see Table A1 (Appendix). 

The data are quarterly and stop in 2006, just before the first signs of the US 

recession made their appearance. The model incorporates two (2) sector-specific 

variables: Output (Y) and Labor (L) that were obtained from the Bureau of Economic 

Activity (BEA) and the Bureau of Labor Statistics (BLS), respectively.Regarding the 

global variables, we use the aggregate values of (i) Global Trade and also (ii) Global 

Credit, both in millions of dollars, which were obtained in constant prices from the 

World Data Bank.  

We have chosen to use the variables of Global Trade and Global Credit instead 

of their domestic counterparts i.e. US Credit and US Trade, due to the fact that: (a) the 

US economy is free of trade barriers and, consequently, it has a very high degree of 

openness (Cooper, 1986) which in turn implies that the use of Global Trade is preferable 

since, as Romer (1992), Grossman and Helpman (1991) and Edwards (1998) argue, 

countries that are more open to the rest of the world have a greater ability to absorb 

shocks (e.g. technological advancements) generated in other nations; (b) the US economy 
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is considered to be the main locomotive of global demand of goods and services which 

in turn dictates the use of Global Trade; (c) an increasing percentage of US firms operate 

at a multinational level and thus they have access to financial markets around the globe 

and not only to the US market, which in turn implies that the use of Global Credit is 

preferable. Due to the openness of the US economy, we used IO matrices which contain 

information on both domestically produced as well as imported inputs, which is 

consistent with the spirit of the original GVAR model.7The Leontief Inverse matrices for 

the USA are those of years 1995, 2000 and 2005 and come from the OECD (STAN) 

database.For the Leontief Inverse matrices in the adopted industry classification, see 

Tables A2-A4.All variables are expressed in constant prices.  

The weightsare computed using the detailed methodology set out earlier where - 

for the calculation of the weights - the time span is split into three sub-periods (1992–

1997, 1998-2002 and 2003–2007) and for each sub-period we use a representative 

domestic IO table, assuming that the production technology for the US remains constant 

during the sub-periods.  

4. Empirical Analysis 

4.1 GVAR Empirical Analysis 

Stationarity 

A number of relevant econometric tests need to be carried out first. We start by testing 

for stationarity based on the ADF methodology following Pesaran et al. (2004). In case 

the time series employed are not stationary, we induce stationarity following, among 

others, Koop (2013). As we know, there are several ways to test for the existence of a 

unit root. In this paper, we use the popular Augmented Dickey-Fuller (ADF) 

                                                            
7Despite the fact that we could subtract the absolute values of the imports column proportionally from the 
intermediate cells in the (intermediate) flow matrix (Q), we worked using total IO matrices, because of the 
openness of the US economy, as discussed earlier. 
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methodology (Dickey and Fuller. 1979) following Pesaran et al. (2004). The ADF test is 

based on the following regression: 

1 1
1

m

t t t
i

bt Y      


      
[12] 

whereΔ is the first difference operator, t the time and ε the error term:  

The original time series were found to be non-stationary. In fact, all the variables 

were I(1). Thus, stationarity was induced by means of first differencing (Tables A5-A11). 

Asymptotic Properties 

For the purpose of estimation and inference in stationary models, Chudik and Pesaran 

(2011a) showed that the relevant asymptotics are:
்

ே
→ ݇ ൏ ∞[13] 

where T denotes the time dimension and N is the number of endogenous variables in the 

model. Our model clearly complies with thisasymptotic conditionT/N< ∞. 

 

Cointegration 

Also, we have to check for cointegration between the different variables that enter the 

model. We employ the popular Johansen (1988) methodology that allows for more than 

one cointegrating relationship, in contrast to other tests. The methodology is based on 

the following equation:ݕ߂௧ ൌ ݉ ൅ ௧ିଵݕߎ ൅ ∑ ௧ି௜ݕ߂ఐ߁ ൅ ݁௣
௣ିଵ
௜ୀଵ [14] 

where:	ߎ ൌ ∑ ௜ܣ െ ௣ܫ
ఐୀଵ ௜߁݀݊ܽ ൌ െ∑ ௣ܣ

௣
௝ୀ௜ାଵ [15] 

The existence of cointegration depends upon the rank of the coefficient matrix Π which 

is tested through the likelihood ratio, namely the trace test described by the following 

formulas: ܬ௧௥௔௖௘ ൌ െܶ∑ logሺ1 െ ௜ሻߣ
௞
௜ୀ௥ାଵ [16] 

where: T is the sample size and ߣ௜ is the largest canonical correlation. 

The trace test tests the null hypothesis of r<n cointegrating vectors and the 

critical values are found in Johansen and Juselius (1990).  
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The results of testing for cointegration, which are available upon request by the 

authors, suggest that no cointegration is present in any of the US economic sectors 

leading us to apply the GVAR methodology using a VARX model for each sector with 

stationary variables, i.e. the first differences8 enter the VARX model of each sector.  

 

4.2 Input Output Empirical Analysis 

Testing for Dominant Sector(s)  

Close to the spirit of Chudik and Smith (2013), we proceed by investigating the existence 

of dominant sector(s) in the GVAR model. In this context, we divide each eigenvalue’s 

modulus with the P-F eigenvalue’s modulus to get the normalized eigenvalue:	ߩሺ݅ሻ ൌ

|	ሺ݅ሻߣ| ⋅  |ିଵ,  i=1,...,8. The normalized eigenvalues: ρ(i), i=2,...,8 are the so-called	ሻ݂݌ሺߣ|

non-dominant eigenvalues, since ρ(pf)=ρ(1)=1.   

Tables 1,3 and 5 present the eigenvalues of the US matrix Q for the years 

1995,2000 and 20059respectively, whereas Tables 2,4 and 6 presentthe normalized 

eigenvalues for the respective years. 

Table 1: Eigenvalues of Q (1995) Table 2: Normalized Eigenvalues of Q (1995)

Eigenvalue ߣఐ 

1 21817,28

2 4206,5

3 117,09

4 701,88

5 359,64

6 1637,76

7 2441,33

8 2295,43
 

Eigenvalue ߩఐ 

1 1

2 0,19

3 0,01

4 0,03

5 0,02

6 0,08

7 0,11

8 0,11
 

 
                                                            
8Of course, for the variables that were found to be I(2) we used second differences so as to ensure that all 
the variables in the model are stationary. 
9The same procedure was applied to the technical coefficients matrix A for years 1995, 2000 and 2005, and 
yielded similar results which are available upon request by the authors. 
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Table 3: Eigenvalues of Q (2000) Table 4: Normalized Eigenvalues of Q (2000)

Eigenvalue ߣఐ 

1 39285,19

2 6546,66

3 102,08

4 495,38

5 1218,1

6 3623,88

7 2262,32

8 2687,03
 

Eigenvalue ߩఐ 

1 1

2 0,17

3 0

4 0,01

5 0,03

6 0,09

7 0,06

8 0,07
 

Table 5: Eigenvalues of Q (2005) Table 6: Normalized Eigenvalues of Q (2005)

Eigenvalue ߣఐ 
1 7313.01 

2 9930.26 

3 9081.20 

4 5932.55 

5 184.24 

6 3182.29 

7 2102.92 

8 741.30 
 

Eigenvalue  ఐߩ
1 1 

2 0.14 

3 0.13 

4 0.08 

5 0.02 

6 0.04 

7 0.03 

8 0.01 

 

Following common practice, the number of dominant sectors implied by the 

economy’s structure is equal to i*, for which ρ(i*)>0.4-0.3 approximately, since values of 

ρ(i*)less than 0.40–0.30 might be considered negligible from a practical point of view, as 

we have seen earlier. Hence, the results of Tables 2,4 and 6 suggest the existence of 

onedominant sector in the US economy, throughout the period of our investigation. 

 

Constructing the sectoral weight matrix  

Next, we proceed by constructing the weight matrix of our GVAR model using the 

methodology described earlier. As we have seen, a net intra-sectoral flow weight matrix 

W has the form:ܹ ൌ ൭
0 … ଵ௡ݓ
⋮ ⋱ ⋮

௡ଵݓ … 0
൱ 
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since	ݓ௜௜ ൌ 0 as explained earlier and, in general, ݓ௜௝ ് ,௝௜ݓ ∀݅ ് ݆. The typical element 

 ,௜௝ is defined as the ratio of flows of goods and services between sector i and sector jݓ

over the total flows of goods and services realized by sector i: ݓ௜௝ ൌ
௡௤೔ೕ

∑ ௡௤೔ೕ
೙
೔సభ

 

In our investigation, we construct three weight matrices for the years 1995, 2000 

and 2005, respectively(see Tables 7-9), based on the IO inverse matrices for the US 

economy (see Tables A2-A4, Appendix) and the respective flow matrices Q (see Tables 

A12-A14, Appendix) 

 

Table 7: Weight Matrix (1995) 

 Sector 1 2 3 4 5 6 7 8

1 0.00 0.02 0.05 0.03 0.53 0.20 0.16 0.00

2 0.02 0.00 0.16 0.02 0.20 0.34 0.18 0.07

3 0.01 0.03 0.00 0.02 0.03 0.05 0.83 0.03

4 0.03 0.01 0.08 0.00 0.02 0.08 0.71 0.07

5 0.23 0.07 0.07 0.01 0.00 0.35 0.25 0.02

6 0.04 0.05 0.04 0.02 0.14 0.00 0.67 0.05

7 0.02 0.01 0.40 0.09 0.06 0.37 0.00 0.05

8 0.00 0.05 0.13 0.08 0.03 0.23 0.47 0.00
 

 

 

Table 8: Weight Matrix (2000) 

 Sector 1 2 3 4 5 6 7 8

1 0.00 0.02 0.07 0.04 0.65 0.17 0.05 0.01

2 0.02 0.00 0.17 0.03 0.12 0.26 0.32 0.07

3 0.06 0.14 0.00 0.02 0.08 0.12 0.56 0.02

4 0.06 0.05 0.04 0.00 0.09 0.36 0.37 0.02

5 0.38 0.08 0.06 0.04 0.00 0.33 0.09 0.03

6 0.05 0.08 0.04 0.07 0.17 0.00 0.57 0.02

7 0.01 0.08 0.16 0.06 0.04 0.44 0.00 0.22

8 0.01 0.06 0.02 0.01 0.05 0.05 0.80 0.00
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Table 9: Weight Matrix (2005) 

 Sector 1 2 3 4 5 6 7 8

1 0.00 0.02 0.06 0.04 0.58 0.23 0.05 0.02

2 0.01 0.00 0.16 0.03 0.10 0.28 0.37 0.05

3 0.04 0.14 0.00 0.01 0.05 0.09 0.65 0.01

4 0.05 0.05 0.01 0.00 0.09 0.31 0.48 0.01

5 0.30 0.06 0.04 0.04 0.00 0.28 0.26 0.01

6 0.05 0.07 0.03 0.05 0.11 0.00 0.65 0.03

7 0.01 0.07 0.14 0.05 0.07 0.45 0.00 0.21

8 0.01 0.04 0.01 0.00 0.01 0.09 0.83 0.00
 

 

As we have seen, if the net intra-sectoral flow weights of a sector tend to remain 

stable over time this would imply a situation of structural stability. On the other hand, if 

the weights were found to be unstable over time, an instability situation might be 

indicated. Based on the calculated weight matrices, we find evidence of increased 

structural stability over time, with very few exceptions. 

By means of the matrices W we proceed with estimating the GVAR model, using 

sector 7 (information technology, finance and communications), as the dominant sector 

in the US economybecause: (a) it is the largest sector in terms of output produced, as 

well as the (b) the largest sector in terms of the output exchanged. 

 

5. Estimation Results and Stability 

Next, for the implementation of our model we have to determine the optimum lag length 

for each sector’s variables. 

Optimum Lag Length of the GVAR model 

We make use of the so-called Schwartz-Bayes Information criterion (SBIC) introduced 

by Schwartz (1978), where the optimum lag length is given by the objective function: 

k෠ ൌ argmin୩ஸ୬ሼെ2
୪୬൫୐୐ሺ୩ሻ൯

୬
൅ k ୪୬

ሺ୬ሻ

୬
ሽ [17] 
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where LL(k)  is the log-likelihood function of a VAR(k) model, n is the number of 

observations and k is the number of lags and k෠ is the optimum lag length selected. As the 

works of Breiman and Freedman (1983) and Speed and Yu (1992) have shown, SBIC is 

an optimal selection criterion when used in finite samples. 

The optimum lag length for each sector was equal to two (2) quarters (Pesaran et 

al. 2005). Therefore, the VARX model for each sector ݅, ݅ ് 7is as follows: 

൬
߂ ௜ܻ.௧
௜,௧ܮ߂

൰ ൌ

ܽ௜,଴ ൅ ௜,௣ߔ ൬
߂ ௜ܻ.௧
௜,௧ܮ߂

൰ ൅ ௜ܰ,଴ሺ൬
߂ ଻ܻ.௧
଻,௧ܮ߂

൰൅ ௜ܰ,௣ሺ൬
߂ ଻ܻ,௧

଻,௧ܮ߂
൰ ൅ ∑ ఐ,଴߉

଼
௜ୀଵ,௜ஷ଻ ൬

߂ ௜ܻ.௧
∗

௜,௧ܮ߂
∗൰ ൅ ௜,௣߉ ൬

߂ ௜ܻ.௧
∗

௜,௧ܮ߂
∗൰ ൅

௜޿ ൬
௧ܧܦܣܴܶ߂
ܫܦܧܴܥ ௧ܶ

൰ ൅  ௜[18]ݑ

while, for the dominant sector, i=7, its VARX model is the following: 

൬
߂ ௜ܻ.௧
௜,௧ܮ߂

൰ ൌ ܽ௜,଴ ൅ ௜,௣ߔ ൬
߂ ௜ܻ.௧
௜,௧ܮ߂

൰൅ ෍ ఐ,଴߉

଼

௜ୀଵ,௜ஷ଻

൬
߂ ௜ܻ.௧

∗

௜,௧ܮ߂
∗൰ ൅ ௜,௣߉ ൬

߂ ௜ܻ.௧
∗

௜,௧ܮ߂
∗൰ ൅ ௜޿ ൬

௧ܧܦܣܴܶ߂
ܫܦܧܴܥ ௧ܶ

൰ ൅  ௜ݑ

where Δis the first differencing operator, ሼ ௜ܻ,௧,  ௜,௧ሽ is the 1x2 vector representingܮ

output and labor, respectively, for all sectors ݅ ൌ 1,… ,8, p is the lag length that is p=2, 

ሼܧܦܣܴܶ߂௧, ܫܦܧܴܥ ௧ܶሽ are the exogenous variables of global Trade and global Credit 

with ޿௜the respective coefficients, ߔ௜,௣, ௜ܰ,௣and߉௜,௣are the matrices of lagged polynomials,  

௜ܰ,଴and߉ఐ,଴are the coefficient matrices of the dominant sector and the other sectors 

respectively and ܽ௜,଴ is the intercept, while ݑ௜௧ is a vector of idiosyncratic, serially 

uncorrelated sector-specific shocks with mean zero and the variance-covariance matrix 

Σi, ݑ௜௧~݅. ݅. ݀ሺ0,  .ଶሻߪ

The effect of the foreign variables on their sector-specific counterpart is 

presented in Table A16, Appendix. The results suggest that in all sectors labor seems to 

be significantly affected by output and vice versa. In this context, it is worth noticing that 



22nd International Input-Output Conference 2014, Lisbon, Portugal 

 

20 
 

the dominant sector 7, as expected, appears to have the most significant interconnections 

with the rest of the sectors, a fact that seems to be consistent with our choice of the 

dominant sector. Additionally, we witness relatively limited interconnectivity among the 

various sectors mainly with respect to their output, a fact which is consistent with the 

findings by other researches (e.g. Mariolis and Tsoulfidis, 2014).  

 

GVAR Stability Conditions 

 

Also, in order to determine whether the model is stable, we have to check the stability of 

the sector-by-sector models, separately. However, following Pesaran et al. (2004) and 

Mutl (2009) it is not sufficient to examine the sector-by-sector stability, ignoring the 

endogeneity of the other variables ݔ∗௜,௧.	Hence, it does not suffice to require that ρ(ߔ௜) < 

1 for stability, where ߩሺߔ௜) is the spectral radius of the matrix ߔ௜, ݅ ൌ 1,… ,8. Instead, 

Mutl (2009, p. 9) derived a sufficient condition for the model to be stable, namely that 

the maximum absolute row sums of W are less or equal to ݇௪, that is:  

‖ܹ‖ଵ ൑ ݇௪[19] 

where݇௪ is the uniform bound of absolute row and column sums of the weight matrix 

W: ∑ ∑ หݓ௜௝,௤௠ห௞
௠ୀଵ ଵ

൑ ݇௪ ൏ ∞ଵ
௝ୀଵ [20] 

where݇௪ does not depend on T or N and the choice of indexes i and q, but can 

potentially depend on other parameters of the model; and ݓ௜௝,௤௠ denotes the (q, m)-th 

element of W௜௝ .Finally, note that if r is the maximum number of eigenvalues of Φ, then 

according to the fundamental algebraic theorem, r൑   .ሻߔሺ݇݊ܽݎ
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The results of our analysis are consistent with the stability of each sector’s VARX 

model (see Figure 1), based on the eigenvalues lying on or inside the unit circle, and 

imply stability of the estimated model and of the various sectors of the US economy. 

Figure 1: Stability of the VARX models 

  

  

 

6. Discussion 

It should be noted that the aim of the empirical analysis is not to provide a deep and 

sophisticated analysis of the US sectoral economy, but rather to provide an illustration of 

the methodology proposed in this paper including a brief discussion of its main results.  

In this framework, we base our detailed analysis on Generalized Impulse 

Response Function (GIRFs) and, more precisely, on the robust Confidence Intervals 

(C.I.) (bootstrapped, 10.000 iterations) rather than the point estimates in order to avoid 

any possible structural instability. Each GIRF shows the dynamic response of the 

variable of each sector to unit shocks to: (i) Output and (ii) Labor on each one of the rest 

of the sectors, for up to 8 periods, i.e. 2 years.  
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In the exposition of the results, the reader can focus on the first two years 

following the shock, which is a reasonable time horizon over which the model presents 

credible results (Dees et al. 2007a). Figure A1 (Appendix) shows the estimates of the 

GIRFs and their associated 90% C.I. For instance, a positive shock of one standard 

deviation on the output of sector 2 (Y2*) affects positively the output of sector 1 (Y1), in 

the short run i.e. 2-3 quarters. This effect, after approximately 4 quarters, becomes 

negative and it dies out at the end of the period investigated, i.e. after eight quarters. The 

effect is not persistent since the output of sector 1 (Y1) returns back to its initial 

equilibrium position. 

In general, the GIRFs suggest relativelylimited interconnectivity, in terms of both 

sectoral output and labor, between the various sectors of the US economy, a finding 

which is consistentwith previous finding based on the results of Table A.2. All the effects 

seem to have a temporary character since they die out rather quickly, in less than eight (8) 

quarters. It is worth noticing that we do not witness any persistent effect, since in all 

cases all variables return back to their initial equilibrium position, implying relatively 

increased stability of the US sectoral economy.  

In detail, the GIRFs suggest that sectors 1,3,4,5 and 7 that account for the 

primary production of goods (sector 1), primary production of energy (sector 3), 

constructions (sector 4), final products (sector 5) and information technology, finance 

and communications (sector 7),are the sectors with the highest connectivity, in terms of 

output, with the rest of the sectors. This could be attributed to the nature of these 

specific sectors since they act either as the main supplier for the production of other 

goods e.g. sector 1 and 3, or as leading demand sectors for goods e.g. sectors 3, 5 and 7. 

Either way, most of the above sectors exhibit relatively significant connectivity with at 

least three other sectors. Our findings are, in general terms,also consistent with the 
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findings of Jianxi (2013), regarding the influence of these sectors on the economy of the 

US, as a whole. 

Moreover, sectors 3, 5, 6 and 8 that account for the production of energy (sector 

3), final products (sector 5), trade (sector 6) and education and health services (sector 8), 

are the sectors with the highest connectivity, in terms of labor, with the rest of the 

sectors in the economy. This, in turn, could be attributed to the fact that employees in 

these sectors exhibit increased diversification in terms of skills and specialization, in the 

sense that all other sectors could easily act as employee suppliers for these specific 

sectors. It is worth noticing that each of the aforementioned sectors exhibits considerable 

connectivity with over four sectors. 

Of course, using one of the most important tools of IO analysis, i.e. the matrix of 

technical coefficients A, we can easily observe that, in general, the leading sectors in 

terms of connectivity are sectors 3, 6, and 7 that account for primary production of 

energy (sector 3), trade (sector 6) and information technology, finance and 

communications (sector 7). These sectors are consistent with the findings of our GVAR 

model.  

 

7. Conclusion 

In this paper we have assessed the interdependencies among the eight (8) main sectors of 

economic activity in the US economy, using quarterly data on output and labor for the 

time period 1992-2006, just before the first signs of the global recession made their 

appearance. In this context, we set up a novel methodological framework which 

combined Input-Output (IO) analysis with state of the art Global Vector Autoregressive 

(GVAR) model. The purpose of our paper was not to provide a deep and sophisticated 
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analysis of the US sectoral economy, but rather to provide an illustration of the 

methodology proposed including a brief discussion of its main results. 

In a novel approach, we used the GVAR methodology at the sectoral level and 

suggested using the IO matrices of the economy to serve as the means to construct the 

GVAR weight matrix. To this end, we proposed and derived a simple yet practical 

framework for constructing the weight matrix based on the technical coefficients matrix, 

for the years 1995, 2000 and 2005, respectively.   

In addition, we used the IO matrices and offered a procedure to examine for the 

existence of dominant sector(s) in the US sectoral economy. The empirical analysis 

suggested the existence of one dominant sector in our dataset. Hence, we employed the 

model using a dominant sector and the results of our econometric investigation 

suggested that the US economy has relatively limited connectivity among its sectors, in 

terms of both sectoral output and labor. Additionally, it is worth noticing that we did not 

witness any persistent effect since, in finite time, all the variables returned back to their 

initial equilibrium positions. This finding could be viewed as an expression of the 

increased stability of the US economy. 

Our combined GVAR-IO findings are, in general terms, consistent with the 

connectivity links pictured through the IO technical coefficients matrix of the US 

economy. In this context, our results clearly imply that a combination of IO and GVAR 

is highly desirable because it is capable of providing very useful insights, since it is able of 

decomposing the connection between the various sectors in terms of all the variables 

that enter the model. A good example for future research, besides widening the database 

and accounting for additional variables, would be the construction of a GVAR model at 

the international level based on relevant global IO matrices.  
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GIRF sector 1: Response of Y1  

 

GIRF sector 1: Response of L1  
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GIRF sector 2: Response of Y1 

 

GIRF sector 2: Response of L2 
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GIRF sector 3: Response of Y3  

 

GIRF sector 3: Response of L3 

 

 

-20

0

20

40

-20

0

20

40

-20

0

20

40

-20

0

20

40

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

sec3, Y7 sec3, L1* sec3, L2* sec3, L3*

sec3, L4* sec3, L5* sec3, L6* sec3, L7

sec3, L8* sec3, Y1* sec3, Y2* sec3, Y3

sec3, Y4* sec3, Y5* sec3, Y6* sec3, Y8*

90% CI Generalized Impulse Response Function (GIRF)

step

-100

0

100

200

-100

0

100

200

-100

0

100

200

-100

0

100

200

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

sec3, Y7 sec3, L1* sec3, L2* sec3, L3

sec3, L4* sec3, L5* sec3, L6* sec3, L7

sec3, L8* sec3, Y1* sec3, Y2* sec3, Y3

sec3, Y4* sec3, Y5* sec3, Y6* sec3, Y8*

90% CI Generalized Impulse Response Function (GIRF)

step



22nd International Input-Output Conference 2014, Lisbon, Portugal 

 

31 
 

GIRF sector 4: Response of Y4 

 

GIRF sector 4: Response of L4 
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GIRF sector 5: Response of Y5  

 

GIRF sector 5: Response of L5 
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GIRF sector 6: Response of Y6 

 

GIRF sector 6: Response of L6  
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GIRF sector 7: Response of Y7 

GIRF sector 7: Response of Y7 
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GIRF sector 8: Response of Y8 
 

GIRF sector 8: Response of L8 
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Table A1: Industry Classification

 
INDUSTRIAL SECTORS (U.S. ECONOMY) 

SECTORS DESCRIPTION NACE CLASSIFICATION 

1 
AGRICULTURE, FORESTRY 

AND FISHING A01,A02,A03 

2 MINING, PETROLEUM AND 
COAL PRODUCTS 

B, C10-C12, C13-C15, C16, C17, C18, C19, 
C20, C21,C22, C23, C24, C25, C26, C27, C28, 

C29, C30, C31-C32, C33 

3 
ELECTRICITY, GAS, WATER, 
TRANSPORT AND STORAGE 

D, E36, E37-E39, H49, H50, H51, H52, H53 

4 CONSTRUCTION F 

5 
FOOD & BEVERAGES, WOOD 
PRODUCTS AND FURNITURE, 

METAL PRODUCTS 
I 

6 WHOLESALE & RETAIL TRADE G45, G46, G47 

7 

INFORMATION, 
TECHNOLOGY REAL ESTATE, 
FINANCE AND INSURANCE, 

COMMUNICATION AND 
PERSONAL SERVICES  

J58, J59-J60, J61, J62-J63, S95, K64, K65, K66, 
L, L68A, M71, M72, N77, M73, M74-M75, 

N79, N80-N82, O, Q87-Q88, R90-R92, R93, 
S94, S96, T, U, M69-M70, N78 

8 
EDUCATIONAL 

ORGANIZATIONS & HEALTH 
SERVICES 

P, Q86 

 

 

Table A2: Leontief Inverse matrix of the US economy for the year 1995 

 Sector 1 2 3 4 5 6 7 8
1 1.36 0.05 0.05 0.02 0.53 0.09 0.16 0.04
2 0.18 6.19 1.04 0.25 0.97 0.92 0.57 0.35
3 0.12 0.69 7.89 0.32 0.98 5.46 1.48 0.61
4 0.05 0.27 0.52 2.24 0.35 0.38 0.57 0.24
5 0.19 0.49 1.42 0.71 8.86 1.17 1.41 0.57
6 0.14 0.45 0.86 0.29 0.90 2.29 0.81 0.37
7 0.22 0.94 1.30 0.41 1.17 1.11 14.28 2.19
8 0.01 0.07 0.19 0.04 0.11 0.17 0.32 5.29
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Table A3: Leontief Inverse matrix of the US economy for the year 2000 

 Sector 1 2 3 4 5 6 7 8
1 1.32 0.03 0.04 0.02 0.62 0.07 0.11 0.02
2 0.22 6.14 1.06 0.23 0.84 0.84 0.47 0.21
3 0.12 0.45 7.49 0.27 0.85 5.31 0.64 0.23
4 0.03 0.10 0.19 2.13 0.13 0.16 0.15 0.06
5 0.17 0.43 1.29 0.60 8.31 1.01 0.87 0.30
6 0.10 0.37 0.65 0.25 0.67 1.97 0.46 0.15
7 0.28 1.22 1.79 0.56 1.80 1.63 12.87 1.53
8 0.05 0.31 0.44 0.17 0.45 0.40 0.82 4.36

 

 

Table A4: Leontief Inverse matrix of the US economy for the year 2005 

 Sector 1 2 3 4 5 6 7 8
1 1.32 0.03 0.04 0.02 0.62 0.08 0.11 0.03
2 0.23 6.37 1.30 0.27 0.95 1.04 0.69 0.33
3 0.10 0.39 7.34 0.25 0.86 5.21 0.72 0.30
4 0.03 0.09 0.20 2.13 0.12 0.17 0.19 0.08
5 0.15 0.37 1.26 0.58 8.07 1.01 1.01 0.43
6 0.08 0.36 0.66 0.26 0.68 1.89 0.59 0.27
7 0.26 1.13 1.61 0.53 1.68 1.46 14.55 2.07
8 0.05 0.34 0.55 0.19 0.50 0.51 1.11 5.58

 

 

Table A5: ADF test Sector 1 (Note: + denotes second difference) 

Original Variables First Differenced Variables 

 Variables p-value Stationarity p-value Stationarity 

Y1 0.78 No 0 Yes 

Y2* 0.86 No 0 Yes 

Y3* 0.8 No 0.01 Yes 

Y4* 0.83 No 0.02 Yes 

Y5* 0.92 No 0.02 Yes 

Y6* 0.98 No 0.1 Yes 

Y7*+ 0.86 No 0 Yes 

Y8* 0.98 No 0.05 Yes 

L1 0.91 No 0 Yes 

L2* 0.43 No 0 Yes 

L3* 0.84 No 0 Yes 

L4* 0.83 No 0 Yes 

L5* 0.92 No 0 Yes 

L6* 0.96 No 0 Yes 

L7* 0.99 No 0.03 Yes 

L8* 0.67 No 0 Yes 

Credit 0.1 Yes     

Trade 0.89 No 0 Yes 
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Table A6: ADF test Sector 2 (Note: + denotes second difference) 

Original Variables First Differenced Variables 

 Variables p-value Stationarity p-value Stationarity 

Y1* 0.7 No 0 Yes 

Y2 0.99 No 0.04 Yes 

Y3* 0.63 No 0 Yes 

Y4* 0.68 No 0 Yes 

Y5* 0.99 No 0.02 Yes 

Y6* 0.85 No 0 Yes 

Y7*+ 0.99 No 0.02 Yes 

Y8* 0.91 No 0 Yes 

L1* 0.92 No 0 Yes 

L2 0.78 No 0 Yes 

L3* 0.74 No 0 Yes 

L4* 0.67 No 0 Yes 

L5* 0.89 No 0.02 Yes 

L6* 0.97 No 0.04 Yes 

L7* 0.99 No 0.03 Yes 

L8* 0.7 No 0 Yes 

Credit 0.1 Yes     
Trade 0.89 No 0 Yes

 

 

Table A7: ADF test Sector 3 (Note: + denotes second difference) 

Original Variables First Differenced Variables 

 Variables p-value Stationarity p-value Stationarity 

Y1* 0.7 No 0 Yes 

Y2* 0.99 No 0 Yes 

Y3 0.99 No 0.07 Yes 

Y4* 0.27 No 0.01 Yes 

Y5* 0.91 No 0.05 Yes 

Y6* 0.85 No 0 Yes 

Y7*+ 0.99 No 0 Yes 

Y8* 0.67 No 0 Yes 

L1* 0.87 No 0.01 Yes 

L2* 0.89 No 0.04 Yes 

L3 0.99 No 0 Yes 

L4* 0.26 No 0.02 Yes 

L5* 0.48 No 0.01 Yes 

L6* 0.93 No 0.02 Yes 

L7* 0.99 No 0.03 Yes 

L8* 0.6 No 0 Yes 
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Credit 0.1 Yes     

Trade 0.89 No 0 Yes 
 

 

Table A8: ADF test Sector 4 (Note: + denotes second difference) 

Original Variables First Differenced Variables 

 Variables p-value Stationarity p-value Stationarity 

Y1* 0.57 No 0 Yes 

Y2* 0.99 No 0 Yes 

Y3* 0.6 No 0.01 Yes 

Y4+ 0.99 No 0.01 Yes 

Y5* 0.59 No 0.01 Yes 

Y6* 0.81 No 0.01 Yes 

Y7*+ 0.99 No 0 Yes 

Y8* 0.52 No 0 Yes 

L1* 0.88 No 0 Yes 

L2* 0.93 No 0.01 Yes 

L3* 0.58 No 0 Yes 

L4 0.98 No 0.04 Yes 

L5* 0.82 No 0 Yes 

L6* 0.97 No 0.03 Yes 

L7* 0.99 No 0.03 Yes 

L8* 0.55 No 0 Yes 

Credit 0.1 Yes     

Trade 0.89 No 0 Yes 
 

 

Table A9: ADF test Sector 5 (Note: + denotes second difference) 

Original Variables First Differenced Variables 

 Variables p-value Stationarity p-value Stationarity 

Y1* 0.64 No 0 Yes 

Y2* 0.99 No 0 Yes 

Y3* 0.84 No 0.01 Yes 

Y4*+ 0.61 No 0.01 Yes 

Y5* 0.99 No 0.02 Yes 

Y6* 0.85 No 0.02 Yes 

Y7*+ 0.99 No 0 Yes 

Y8* 0.78 No 0 Yes 

L1* 0.88 No 0 Yes 

L2* 0.68 No 0.01 Yes 

L3* 0.86 No 0 Yes 

L4* 0.65 No 0 Yes 
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L5* 0.95 No 0.04 Yes 

L6* 0.85 No 0 Yes 

L7* 0.99 No 0.03 Yes 

L8* 0.75 No 0 Yes 

Credit 0.1 Yes     

Trade 0.89 No 0 Yes 
 

 

Table A10: ADF test Sector 6 (Note: + denotes second difference) 

Original Variables First Differenced Variables 

 Variables p-value Stationarity p-value Stationarity 

Y1* 0.95 No 0 Yes 

Y2* 0.99 No 0.02 Yes 

Y3* 0.83 No 0.02 Yes 

Y4* 0.74 No 0 Yes 

Y5* 0.99 No 0.02 Yes 

Y6+ 0.99 No 0.02 Yes 

Y7*+ 0.99 No 0 Yes 

Y8* 0.99 No 0.03 Yes 

L1* 0.99 No 0.01 Yes 

L2* 0.86 No 0 Yes 

L3* 0.95 No 0.01 Yes 

L4* 0.85 No 0 Yes 

L5* 0.78 No 0 Yes 

L6 0.74 No 0 Yes 

L7* 0.99 No 0.03 Yes 

L8* 0.86 No 0.01 Yes 

Credit 0.1 Yes     

Trade 0.89 No 0 Yes 
 

 

Table A11: ADF test Sector 7 (Note: + denotes second difference) 

Original Variables First Differenced Variables 

 Variables p-value Stationarity p-value Stationarity 

Y1* 0.82 No 0 Yes 

Y2* 0.97 No 0 Yes 

Y3* 0.99 No 0,09 Yes 

Y4* 0.99 No 0,05 Yes 

Y5* 0.97 No 0,02 Yes 

Y6*+ 0.99 No 0 Yes 

Y7+ 0.99 No 0 Yes 

Y8*+ 0.99 No 0 Yes 

L1* 0.79 No 0 Yes 
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L2* 0.67 No 0 Yes 

L3* 0.94 No 0,01 Yes 

L4* 0.92 No 0,01 Yes 

L5* 0.82 No 0 Yes 

L6* 0.99 No 0,01 Yes 

L7 0.99 No 0,03 Yes 

L8* 0.29 No 0,01 Yes 

Credit 0.1 Yes     

Trade 0.89 No 0 Yes 
 

 

Table A12: ADF test Sector 8 (Note: + denotes second difference) 

Original Variables First Differenced Variables 

 Variables p-value Stationarity p-value Stationarity 

Y1* 0.73 No 0 Yes 

Y2* 0.99 No 0 Yes 

Y3* 0.56 No 0.01 Yes 

Y4* 0.26 No 0 Yes 

Y5* 0.82 No 0.01 Yes 

Y6* 0.98 No 0.03 Yes 

Y7*+ 0.99 No 0 Yes 

Y8*+ 0.99 No 0 Yes 

L1* 0.54 No 0 Yes 

L2* 0.23 No 0 Yes 

L3* 0.31 No 0 Yes 

L4* 0.3 No 0 Yes 

L5* 0.84 No 0 Yes 

L6* 0.56 No 0.04 Yes 

L7* 0.99 No 0.03 Yes 

L8*+ 0.99 No 0.01 Yes 

Credit 0.1 Yes     

Trade 0.89 No 0 Yes 
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Table A13: Matrix Q for US economy for the year 1995 

 Sector
s 1 2 3 4 5 6 7 8

1 119.14 0.57 -14.71 -8.81 208.63 107.03 71.75 1.89

2 8.10 361.77 61.34 12.97 65.26 125.08 70.09 23.10

3 5.57 11.94 2283.96 36.87 107.24 124.43 1660.22 76.99

4 4.02 5.64 78.71 710.01 50.34 63.89 391.24 36.29

5 5.38 1.96 49.69 42.92 4201.09 31.22 323.00 24.60

6 29.11 20.27 210.50 103.96 336.25 1694.70 1789.44 121.36

7 11.43 12.67 99.72 41.08 100.82 343.09 21769.84 429.05

8 0.02 0.66 20.40 3.39 9.96 21.76 227.25 2436.41
 

 

Table A14: Matrix Q for US economy for the year 2000 

 Sector
s 1 2 3 4 5 6 7 8

1 141.85 0.04 -35.90 -22.26 426.81 137.01 47.84 -2.11

2 14.20 498.28 124.65 23.80 87.58 204.53 249.20 50.48

3 10.32 8.94 3601.53 61.45 158.50 179.77 758.83 64.46

4 4.92 3.36 45.71 1223.40 29.96 29.65 273.54 23.39

5 6.85 3.16 96.31 69.36 6539.99 56.71 458.88 35.48

6 28.68 25.63 273.95 182.63 427.18 2321.09 2035.91 125.59

7 17.14 28.98 308.70 115.12 353.68 806.56 39202.54 695.52

8 2.43 5.55 46.91 32.42 69.69 163.60 1304.63 2691.96
 

 

 

Table A15: Matrix Q for US economy for the year 2005 

 Sector
s 1 2 3 4 5 6 7 8

1 187.10 0.51 -63.43 -39.46 674.51 296.24 -37.25 -25.71

2 18.76 748.28 251.14 46.89 146.51 442.32 580.00 83.78

3 10.29 11.42 5905.73 92.61 252.55 310.14 1393.11 131.49

4 5.41 4.01 80.68 2116.26 38.70 48.22 558.65 58.66

5 8.17 4.08 161.22 122.39 9904.94 78.39 966.18 90.77

6 29.24 36.79 467.39 328.61 691.09 3296.05 4550.47 450.53

7 20.77 34.37 265.89 128.83 385.76 990.89 72175.80 1248.84

8 2.64 9.24 110.81 64.00 120.21 262.94 2908.37 9133.89
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Table A16: GVAR Estimation Effects of Foreign Variables on their sector-specific counterparts  
  Y1 L1 Y2 L2 Y3 L3 Y4 L4 Y5 L5 Y6 L6 Y7 L7 Y8 L8 

Y1*     -14.59 -68.02 -5.86 22.21 38.17 263.71 -1.34 10.49 -3.68 -453.7 23.8 -70.17 -50.77 -14.47 

t-stat     -0.57 -2.14* -1.03 0.7 3.64* 1.89* -0.75 0.55 -1.4 -3.57* 1.2 -0.62 -1.27 -0.17 

L1*     -3.4 -18.5 0.92 27.43 22.9 162.55 0.54 8 -1.77 -241.07 -11.59 25.57 -41.51 -115.45 

t-stat     -0.36 -1.58 0.23 1.78* 5.11* 2.72* 0.69 1.07 -1.74* -4.92* -2.59* 0.75 -1.51 -2.09* 

Y2* 7.84 83.5     3.01 6.32 21.48 112.63 9.86 -14.59 1.11 88.42 11.85 25.17 116.59 27.23 

t-stat 0.7 1.71*     1.87* 0.71 2.28* 0.9 -1.45 -0.2 0.89 1.48 4.07* 1.34 9.45* 1.1 

L2* 3.2 4.83     -1.9 20.72 21.63 117.7 -12.74 54.57 4.56 -560.17 20.03 -13.84 -126.65 -260.9 

t-stat 0.4 0.14     -0.46 0.98 1.34 0.54 -1.09 0.44 2.34* -5.06* 3.71* -0.43 -2.99* -3.05* 

Y3* 4.12 -83.78 -2.95 8.93     65.14 1080.94 49.15 480.62 5.34 1933.26 -14.68 -20.03 386.1 404.18 

t-stat 0.37 -2.13* -0.64 1.47     1.77* 2.33* 1.48 1.36 0.46 3.05* -4.46* -0.94 1.84* 1.24 

L3* -0.42 6.84 0.71 -1.31     -4.67 -110.98 -14.67 -57.05 -2.68 -342.28 0.11 -3.14 -25.68 -75.82 

t-stat -0.36 1.33 0.79 -1.41     -0.97 -1.73* -1.74* -0.57 -1.17 -3.09* 0.22 -0.97 -1.58 -2.32* 

Y4* -2.35 25.33 -6.04 -4.67 -5.17 109.75     21.17 222.44 -1.46 375.77 -2.75 7.35 48.64 287.05 

t-stat -2.11* 5.24* -2.87* -1.78* -1.79* 6.8     1.33 6.16* -2.76* 14.78* -3.04* 1.25 2.44* 7.14* 

L4* 0.45 -4.33 -0.61 2.32 0.81 -8.32     2.69 -12.12 0.24 -33.5 1.61 -1.26 11.54 -7.02 

t-stat 0.66 -1.44 -0.49 1.49 0.91 -1.68*     1.91* -0.81 1.38 -3.89* 5.58* -0.52 2.76* -1.09 

Y5* -0.42 4.07 2.17 -2.73 -10.66 38.03 13.42 -13.09     -5.2 -262.43 3.38 23.95 -123.88 -131.49 

t-stat -0.38 1.74* 0.6 -0.6 -1.47 1.09 1.91* -0.14     -4.05* -3.98* 1.17 1.28 -3.04* -1.6 

L5* 0.03 -0.36 -0.39 -0.45 0.74 2.65 -1.22 23.77     0.5 9.97 -0.58 -1.62 7.77 6.92 

t-stat 0.48 -1.22 -0.73 -0.9 1.29 0.82 -1.38 2.13*     3.69* 1.51 -2.11* -0.9 3.5* 1.51 

Y6* 0.09 50.1 1.47 -9.85 3.3 -71.82 -8.09 -115.04 -7.18 -76.66     0.92 -1.27 -66.83 -57.98 

t-stat 1.12 1.76* 0.29 -1.27 0.35 -1.73* -1.2 -1.14 -0.95 -0.95     2.17* -0.46 -3.82* -1.64* 

L6* 0.09 -0.77 -0.71 0.17 0.15 0.14 -0.79 0.53 0.11 0.91     0.17 0.27 3.02 -0.98 

t-stat 1.03 -2.1* -0.73 1.74* 1.8* 0.33 -1.98* 1.01 1.27 0.85     4.49* 1.07 8.02* -1.3 
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Y8* 26.4 -217.92 2.48 27.1 3.78 -27.71 -26.44 -255.7 -39.06 47.87 4.29 306.78 4.45 -8.84     

t-stat 1.36 -2.59* 0.29 1.65* 0.45 -0.59 -3.13* -2.27* -1.83* 0.24 1.32 2.01* 2.17* -4.71*     

L8* -1.48 11.27 0.17 -0.6 -0.22 1.43 1.67 21.1 4.68 8.94 -0.42 -30.5 -0.92 -1.65     

t-stat -1.22 2.13* 0.29 -0.66 -0.62 0.7 2.22* 2.09* 1.8* 0.31 -1.5 -2.22* -3.27* -0.91     

Trade 0 -0.01 0.01 0.01 0 0 0 -0.01 0 0 -0.01 0.01 -0.01 0 -0.01 0 

t-stat 0.48 -4.05* 1.55 2.35* 0.2 -1.12 -1.32 -1.67* 0.45 0.04 -2.77* 2.56* -5.01* -0.08 -3.36* 0.12 

Credit 0 0 0 -0.01 0.01 0.01 0 0.01 0 0 0.01 -0.01 0.01 0 0.01 0 

t-stat 0.1 0.42 0.36 -2.83* 2.16* 2.16* -0.28 3.22* 0.45 -0.32 4.28* -3.39* 4.22* 0.55 5.01* 0.41 
 

 

*: denotes statistical significance at the 10% or higher 
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