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Abstracts

Dietzenbacher proposed the concept of Average Propagation Length (APL) (Dietzenbacher
et al (2005) and Dietzenbacher et al (2007)). APL has been used as length of production process or
length of supply chain. On the other hand, international division of labor in the production process
is getting focused in face to globalization. The phenomenon of increasing cross-border transaction
of intermediate inputs is called the fragmentation of production process. APL is used as index of
fragmentation of production process (Romero et al (2009), Escaith et al (2013)).

However, APL includes both propagation in domestic transaction and that in cross-border
transaction. To capture fragmentation, two propagations should be separated. In this paper, new
concept of cross-border APL (APLxB) and the method of APL decomposition in general are proposed.

Finally, we show increase of APLxB.

1. Introduction

Dietzenbacher et al (2005) proposed Average Propagation Length (APL). Power weighted
sum of input coefficient produce measure how many transactions are repeated in the propagation
process. APL has been used as length of production process or length of supply chain.

On the other hand, in face to globalization, international division of labor in the production
process becomes increasingly focused. Production process does not complete within one country
and cross border transaction of intermediate input commodities occupies larger share international
trade. This phenomenon is called the firagmentation of production process®.

Sometimes, APL is used as index of fragmentation of production process. But, APL
includes domestic transaction. Fragmentation is really captured when APL excludes domestic
transaction.

We discuss how APL should be extended to treat fragmentation and name new index as cross
border APL (APLxB). Next, we show APLxB can be generalized and APL can be decomposed by

those of submatrices covering whole coefficient matrix. Finally, we compare APL and decomposed

APLs empirically.

L The concept of “trade in value added” is used in the same context.

1



2. Average Propagation Length and cross border transaction

To start with, we describe how original APL is. In the input-output framework, unit of

production in sector j requires & (aij >0) unit of product in sector i as first round. To produce

a;; unit of product i, &,;@; unit of product has second round, and so on. Summing up, we get

total effect of final demand increase.
Py =8+ Y andy + D, D8 8gdy o
h h g

P=A+A*+A*..=(1-A) =1 =B (1)
Where B is Leontief inverse. Number of rounds reflect distance between origin and destination of
demand. Therefore, average length can be obtained by ratio of sum of (1) weighted by number of

rounds to (1).

Weighted sum is
Sy =ay + 2; B ay + BEZaigaghahj 4o
g
or
S=A+2A"+3A%... )
Taking account that S — AS = A+ A? + A%...= B—1 , Matrix S can be rewritten as:
S=(1-A)'(B-1)=B(B-1) Q)

Length of propagation of sector j to product i is given by the ratio of (i, j) factor of (2) to that of (1).
APL; =s; I py
APL;; shows average number of transactions from demand sector j to production sector i. The larger

the APL, the longer path of propagation.
APL can be applied to international input-output table. Taking aif as sector j country s

input coefficient of sector i country r, input coefficient matrix is

11 12 1R rs rs rs
A A ... A all a12 v alN
A21 A22 . A2R ars ars . ars
A=l . , Ac=| R 2 3)
R1 R2 RR rs rs rs
A A .. A aNl aN , e aNN

Where R is number of countries.
For simplicity, we consider two country case where each country produces one commodity

as shown in Figure 1. a; and a, stand for domestic input coefficients and m; and m; stand for import



coefficient. The sum of formula shown outside rectangle is numerator of APL. Numerator of APL
(sij) captures all transaction including domestic transaction. Numerator of APL may increase by a;
or a; which means domestic production process is strengthened. On the other hand, increase of m1
or m2 with reduction of al or a2 may increase APL. In the latter case, fragmentation and APL

increase is consistent.

2 X Alal 3 Xalalal+3Xalm2ml
+ +
3Xm2mlal+ 3 Xm2a2ml

3Xmlalal+3 X ml m2ml

Country 2

+ +
2Xa2ml 3Xa2mlal+ 3 Xa2a2ml
First round Second round Third round

Figure 1 APL in two country case

0XAlal 0Xalalal+ 2Xalm2ml
+ +
0Xal 2Xm2ml 2Xm2mlal+ 2 X m2azml

1 X mlalal+3 X mlm2ml

Country 2
+ +
1Xaz2mil 1Xa2mlal+1XaZ2a2ml
First round Second round Third round
Figure 2

3 Cross border APL



In order to evaluate fragmentation using APL, we should seek another APL, which reflects
cross border transaction. In figure 2, black arrows reflect cross border transaction and white arrows
reflect domestic transaction. We can extract cross border transaction using weighting of order of m1
and m2. In the propagation of round k, product of al, a2 mland m2 in order of k. The original APL
evaluates these products equally. On the other hand, APL reflecting cross border transaction should

ignore the domestic path, ie., al and a2. For example, the second round in country 1 caused by final

demand in country 1is 0x al2 +2xm,m, instead of 2 x a,l2 +2xm,m,. Numerator reflecting

cross border transaction is the sum of these value. Using new numerator and denominator of original
APL, new APL is defined. We call this APL reflecting cross border transaction as cross border APL
(APLxB)

To formulate APLxB in general, we divide international input coefficient matrix A into

domestic coefficient matrix (Ad) and import coefficient matrix (Af) as (**).

AL o ... 0 0 A2 ... AR
0 A%Z ... 0 AX 0 --- AXR

A=l . .. . VA= .. ) 4)
0 . AW AR ARZ g

Here, identity A=A, +A; holds. A to the power of k, A, equals to the sum of all

combination of product of Ag and Ar at order k.
A= (Ad +A )k
=ASHATAFATAA L AATEAS

To evaluate cross border transaction, each product is weighted by order of Af.
0x A +1x ATA, +1x A TPA A+ A+ (K=1)x A A +kx ALK

Weighted powers 2A2,3A3...in equation (2) become following T, Tz, Ts..., where Ty is weighted

propagation effect at round k.
T, =1xA; +0x A,
T, =2x A2 +1x(A A, + AA, )+0x A2

3 2 2 2 2 )
Ty =3x A +2X(Af A+ AAA +AA )+1X(AfAd +AA A+ A Af)+OXAd

Eliminating Aq using Ay = A— A, , we have



T, =A
T,=AA+AA, =A A+AT,

(6)
T,=A A% + AA A+ AZAf = A A% + AT,
We expect following relation holds in general.
T A fork =1 )
<TAT + A A fork =2,34,... M

Proposition1: Weighted sum of round k by power of A;, T,, is identical to equation (7).

As a preliminary definition, we introduce matrix poly-nominal function ®(G,H,k,l). Let G and

H be square matrices and consider the expansion of (G + H)k . Here, we define matrix poly-

nominal function, ®(G,H,Kk,I), as the sum of poly-nominal including order | product of H from

(G+H), where 0<I<Kk.

For example, in case of k=3,
(G+HY =G*+(G?H +GHG + HG? )+ (GH? + HGH + H?G }+ H®.
And ®(G,H 3,1)1=0123 are

®(G,H,30)=G*
®(G,H,31)=G’H +GHG + HG?
®(G,H,3,2)=GH? + HGH + H’G

®(G,H,33)=H?
Expanding (D(G, H,3, |) left side G or H, we get

®(G,H,3,0)=GG? =Gd(G,H,2,0)
®(G,H,31)=G(GH + HG)+ HG? = G®(G,H,2,1)+ HD(G,H,2,0)

®(G,H,32)=GH?+H(GH + HG)=G®(G,H,2,2)+ HD(G,H,21)
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®(G,H,3,3)= HH? = HD(G,H ,2,2)

In general, function CI)(G, H,Kk, |) has following properties:
®(G,H,0,0)=0

®(G,H,k,0)=G"
®(G,H k,k)=H*
G®(G,H,k -1,0) if 1=0
®(G,H,k,1)=1GD(G,H,k -11)+ HD(G,H k1,1 -1) if 0<I <k
H®O(G,H,k -1,k —1) if | =k

From definition of function (D(G, H,k,I ), following equality holds

Zk:CD(G,H,k,I)z(G+H)"

Using function (D(G, H,k,I ), propagation at k-th stage

Ak:Zk:CD(Ad,Af,k,I): ®(A- A, A k1)

K
1=0

®)
)

(10)

(11)

(12)

Definition of Ty is the sum of propagation ( A = (Aj + A )< ) at round k weighted by the order of Ar

(5). Tx can be written as:

k
T =Y Io(A- A A, k1)
1=0

[Proof of Proposition 1]
Equation (13) equals to (7) for for k=1:

T, =§1:|<1>(A— A A LN=0x (A=A )+Ix A, = A,
1=0
If following two equalities,
Zk:ICD(A— A ALK 1=0(A A k1) fork=234,..
1=0

D(A A k1)= AD(A A, k-11)+ A A fork =234,

Then (7) is proved, because

(13)

(14)

(15)

(16)



T, = Zk:kD(A— A A K= 0(A A k1)= AD(A A k—11)+ A A =T, , + A AL

1=0
(17)
Since the latter equality (16) is obvious from (11) in the case of I=k. We concentrate on (15).

In case of k=1, (11) holds as follows:

T,=0x(A- A, )J+1x A, =®(A A, 11)

Next, we assume (15) holds in case of (k-1) as the assumption of mathematical induction,

that is,
k-1
T =D Id(A- A, A k-11)=d(A A k-11) (18)

1=0

We will show (15) holds in case of k. Let’s expand Left hand side of (15) for left term ( A — A,

and A;). From (11) in the case of (1=0),

Tk:zk]@(A—Af,Af,k,l): ‘ (A=A Jo(A= A, A k-11)+ AD(A- A, A k-11-1)]
1=0 1=0
Then,
k-1 k
T =(A-A D 1o(A- AL A k-L1)+ A YI(A- A, A, k=11 -1) (19)
1=0 =1

The first term of RHS of (19) is sum of | =0,1,...k —1. It does not include the case of
I=k in (11). Similarly, the second term of RHS of (19) is sum of | =1,2,...K. It does not contain
the case of 1=0.

Furthermore, from the assumption of mathematical induction (18), the first term of RHS of

(19) is
k-1

(A- A, )ZI(D(A— A AL k=11)=(A- A, Jo(A A, k-11) (20)

The second term of RHS of (19) can be rewritten as

k k-1
A ID(A- AL A k-11-1)= A S (1 +)D(A- A, A, k-11)
1=1

1=0

k-1 k-1
—A D ID(A-A LA K-L1)+A Y d(A-A A, k-11)
1=0 1=0

21
We rewrite the first term of RHS of (21) from assumption of mathematical induction (18), and the

last tern of RHS of (21) from (12). Then, we get



Af ,ZZ:ICD(A_ Af :Af :k —1,| —1): qu)(A, Af ,k —1,1)+ Af [(A_ Af )+ Af ]k—l (22)

= AD(A A k-11)+ A A
From (20) and (22), we can rewrite (19) as:
T =[(A= A Jo(A A, k-11)]+[A ®(A A, k-11)+ A, A]
= AD(A A, k—11)+ A, A" = (A, A, k1)

Now, (15) holds.
Since (15) and (16) hold, (17) holds. Therefore proposition 1 is proved

[End of proof]
Let T be the sum of T
T= Zk:lTk @3)
Average number of cross border transaction is given by the ratio of ;" to p;™ in (1)
APLXB;S :tf/ p" (24)

]

We call (9) as Average Length of Propagation cross border (APLxB). Using APLxB, we can measure

the degree of fragmentation.

4 Decomposition of APL
Af, discussed in previous section, is an off diagonal sub matrix. In the proof of Theorem,
the character of Af is not used. Therefore, Theorem applies to any sub matrix of A.  Suppose that

there are several sub matrices A,s of which sum equals to overall matrix A.
A=D A
g
We call APLq corresponding to submatrix Aq in the same way as APLxB corresponds to Af. In this

section, we show the sum of APLq equals to APL. It means APL can be decomposed to sum of APLq.

Weighted propagation effects at k-th stage Tqk is expressed as

T, = =t (25)
“OLAATHAT,, ifk>1



Proposition 2: Sum of Tqk equals to
_ LAk
quk =kA
q

[Proof]
If k=1, then the sum of Tql equals to A

;M:;%:A

We suppose (** T k 1)A*" holds for k>1 as mathematical induction assumption.
pp gk 1=

q q

ST, = S (A AL AT, )= (Z AqJAk 1y AZqu = A (K —1)AA = KAK

Then, we confirm the sum of Tqk equals to Sk in APL.
DT, =kA =S, fork=12,..
q

[end of proof]

Summing above equations for all round k, we have

> YT, - Z S

k=1 q

Since numerator of APLq and APL are the sum of Tqk and Sk, sum of APLq equals to APL

APLq corresponding to submatrix Aq is the quotient of (i,j,1,s) factor of sum of (25), T Zk Tk

to (i,),1,s) factor of(1).

APLXB =t / p’ (26)

q1 ai

APLq shows how many times pass through submatrix Aq in the propagation process of country r sector
i caused by final demand in country s sector j.

Original APL equals to the sum of APLq if submatrix Aq covers A.
APL}® = Z APLXB: 27)

5 Numerical results of APLxB and decomposition of APL
In this section, we show brief result of new indicators APLXxB and APLq. We use World
Input Output Database (WIOD) which contains 41 regions (40 countries and Rest of the World), 35



sectors and 17 years (1995-2011). We calculate various APL as effect of country s sector j on country

r
APL;" =>" APL;"

APL, APLq and APLxB are 41 by 1435 matrix, which show average length of origin (j,s) to

final destination (r).

We choose each country’s domestic input coefficient matrix as Aq ,(@=1,...R) and other

parts of whole coefficient matrix as A; 2. To illustrate this, consider five country case. As is

depicted in Fig 3, the sum of Aq and Af covers A. Therefore, original APL equals to the sum of Aq
and APLxB.

APLq, =2

APLq, g=3 APLq, =4 APLgq, g=5

i N

Figure 3 example of division of A

First we show descriptive statistics of APLs. APLq is divided into three categories, APLqj:
demand origin (q=j), APLqi: demand destination (q=i), and APLgs: third countries (sum of q except i

and j). We distinguish effect on foreign countries (1 # J, “Abroad” in the table) and effect on own

2 The smallest submatrix Aq is one entry 8; " case

A, = a. ifi=i&j=j &r=r"&s=s"
0 else

*k ek ok

APLg jrs calculated from such Aq reflects how many times pass through (i*,j",r",s") during

propagation process from (j, s) to (i,r).
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country (i = j,“Domestic” in the table). In the domestic case, main body of APL is own country’s
APLgj and third country APLq and cross border APL is small.  On the other hand, in the abroad case,
cross border APL is near to half of original APL.

Table 1 Descriptive statistics of APLs®

All|  Abroad|Domestic
No.of Sample 971,782| 948,080 23,702
APL 3.2319 3.2724 1.6104
APLqj 0.9601 0.9451 1.5624

Mean APLqi 0.5659 0.5410
APLgs 0.2655 0.2719 0.0101
APLxB 1.4785 1.5145 0.0379

Next, we show scatter diagrams of abroad case and domestic case. In the abroad case, APL
positively correlates to APLqi, APLqj, APLgs and APLxB. APLgs positively correlates to APLxB.
In the domestic case, APL positively correlates to APLqj, APLgs and APLxB. APLgs positively
crrelates to APLxB. APLgj negatively correlate to APLgs and APLxB.

APL abroad APL domestic
origin and destination are different origin and destination are the same
Criginal .
Original
APL ADL
Within 34 N
Crigi e _
Corlﬁlt% 24 ¢ Within
pél Origin
L | Country
Within 0 Ox
Destination ]
Country 19
‘ Through
- |- 5 Third
afds Trjl_rr?_ugh o Countries
: & ir o e
- : : . 2] 3 g . ::..
e |l i e - . . . Cross
|§F | goraer o e Border
2 40 1 20 1 2 1.2 3 40 1 2 30 5 1
Figure 4 Figure 5

3 Origin of demand (41x35), destination of demand(41) sample period (1995-2011)
have 41x35x41x17= 1,000,195 combinations. Some of them have zero denominator of
APL. These cases are omitted from sample.
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Lastly, we estimated time trend of various APLs as shown in Table 2. In two cases, same trends are
observed. First, APL has upward trend. We criticized increase in APL does not automatically
mean fragmentation, because domestic transaction may increase instead of cross brder transaction
increase. But APLqi and APLqj have downward trend which mean APL within origin and

destination of demand is decreasing, while APLqgs and APLxB have upward trend.

Table 2 Estimation result of time trend

All cases Abroad Domestic
Coef z value |Coef z value [Coef z value
APL 0.005533 81.80| 0.00564 81.43| 0.00145 8.66
APLqj |-0.002968 -68.73|-0.00303 -68.70|-0.00033 -2.84
APLqi |-0.000487 -34.28|-0.00049 -34.41
APLqgs | 0.002517 140.08| 0.00257 140.08| 0.00030 5.54
APLxB | 0.006463 209.86| 0.00659 210.36| 0.00148  9.53

Estimation method: Fixed Effect model

6 Conclusion

Original APL reflects both domestic transaction and cross border transaction. We defined
cross border APL (APLxB) as expansion of APL. Empirically, we found APL and APLxB have
upward trend. We also decomposed APL into APLxB, APL within origin of demand, APL within
destination od demand and APL within third countries. We found APL within origin and
destination are decreasing and APL within third countries is increasing. Now, we confirm

fragmentation in production process is going on.
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