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Energy and environmental studies: when to use which method of decomposition? 

Paul de Boer1 

Abstract 

In many energy and environmental studies an aggregate change in a variable is either 

multiplicatively or additively decomposed into a certain number of factors. For each case this 

paper considers three widely used methods, all six sharing the properties of time and factor 

reversal. On the basis of theoretical and empirical considerations (consistency-in 

aggregation; change-in-sign robustness; completeness; simplicity of implementation) we 

provide an answer to the question of when using which method. In an example of the 

decomposition of sectoral carbon dioxide emissions into five factors we apply all methods 

and compare the outcomes. 

Keywords and phrases: Index number theory, Decomposition analysis, Consistency-in 

aggregation, Change-in-sign robustness, Completeness. 
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1. Introduction 

 

 In many energy and environmental studies an aggregate change in a variable   is 

decomposed into a certain number of factors.  It takes on two different forms: a multiplicative 

one (     ), where the superscript 1 denotes the comparison period and the superscript 0 

the base period, and an additive one        .   

 This paper considers six widely used methods, all of them sharing the property of ‘time 

reversal’ and being ‘ideal’, i.e. they satisfy the requirement of ‘factor reversal’. Five of them 

were already known in the field of the theory of indices and indicators2. The following table 

summarizes the names used in both fields. 

Table 1. 

Multiplicative Additive 

Decomposition Index  Decomposition Indicator 

SDA or generalized Fisher Fisher SDA or Sun-Shapley Bennet 

LMDI- I Montgomery-Vartia LMDI- I Montgomery 

LMDI- II Sato-Vartia (S-V) LMDI- II Additive S-V 

 

 In a previous paper De Boer (2018) dealt with the multiplicative and additive SDA 

decomposition; in terminology of the theory of indices and indicators with ‘Fisher’ and 

‘Bennet’. He used the generic formula of Siegel (1945) that generalizes the index of Fisher 

(1922), originally designed for the decomposition of total consumption expenditure into two 

factors (price and quantity), to the general case of n factors. By collecting duplicates the 

computation of the unweighted average of    permutations (‘elementary decompositions’) is 

reduced to the computation of the weighted average of      combinations. Since both 

decompositions use the same combinations and weights one Matlab program, given in the 

paper, suffices to deal with both of them. In the empirical example he dealt with a 

decomposition of carbon dioxide emissions in the Netherlands into five factors (emission 

coefficients, production techniques, final demand mix, demand structure and scale effects) 

so that the computation of 120 elementary decompositions is reduced to the computation of 

16 combinations. 

  

In this paper we apply the four LMDI methods to the very same example. We give one 

Matlab program that deals with these four methods at the same time. As expected, the 

methods for the multiplicative decomposition (Fisher, Montgomery-Vartia and Sato-Vartia) 

and the additive one (Bennet, Montgomery and Additive Sato-Vartia) yield similar results.  

 Based on theoretical and empirical arguments, we propose in Picture 1 below the following 

answer to the question when to use which method. 

 

 

 

 

 

 

 

 

                                                
2
 The Additive Sato-Vartia method is not known in the field of the theory of indicators, but, as we will 

see below, it is a 1-1 transformation of the Sato-Vartia index.  
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Picture 1:  

Multiplicative decomposition
(ratio)

Change–in–sign robustness
required?

Yes No

Consistency–in–
aggregation required?

Yes No

Montgomery–
Vartia

Sato–
Vartia

Fisher

Additive decomposition
(difference)

Change–in–sign robustness
required?

Yes No

Bennet Montgomery

 
The paper is structured in the following way. Section 2 is devoted to a theoretical treatment 

of ideal decomposition methods. In the historical overview (section 2.1) we first pay attention 

to the theory of indices and indicators. We argue that if in a multiplicative decomposition 

‘consistency-in-aggregation’ is required we have to apply Montgomery-Vartia rather than 

Sato-Vartia and take the non-fulfilment of ‘proportionality’ for granted. Next, we pay attention 

to the correspondence with structural decomposition analysis (SDA) and with index 

decomposition analysis (IDA). On empirical grounds we reject the use of the Additive Sato-

Vartia (additive LMDI-II) decomposition. On industry level this decomposition turns out to be 

complete (‘no residual term’), but not at sector level, whereas the decompositions according 

to Bennet and Montgomery are complete at both levels. In section 2.2 we give the general 

form of the n-factor decomposition to which the methods can be applied and in section 2.3 

the generic formula of Siegel from which the n-factor decompositions according to Fisher 

and Bennet can be derived. Section 2.4 contains the mathematics of the logarithmic mean 

which is defined for two positive numbers. In practice, we can replace zeros by epsilon small 

values so that it is ‘zero value robust’, but it is not ‘change-in-sign-robust’. The 

decompositions according to Fisher and Bennet can handle zero values and changes in sign 

so that in case ‘change-in-sign robustness’ is required we can only apply these methods and 

not one based on the logarithmic mean. In the final two subsections we give the 

mathematics of the n-factor decompositions according to Montgomery and Montgomery-

Vartia (LMDI-I) on one hand and according to Sato-Vartia and Additive Sato-Vartia (LMDI-II) 

on the other. We show that there is a one-to-one relationship between the additive 

decomposition and the multiplicative one which is advantageously used in the computer 

program given in Appendix A. In Section 3 we describe our example of the decomposition of 

sectoral carbon dioxide emissions into n = 5 factors and give the specific formula for all 

decomposition methods. The empirical outcomes are given in Section 4. In our dataset there 

are five final demand categories (consumption, government consumption, investments, 

change in stocks, and exports) of which one, ‘change in stocks’, exhibits changes in sign. 

The only methods that can directly handle this situation are ‘Fisher’ for the multiplicative 



 

4 
 

case and ‘Bennet’ for the additive one. However, as argued by de Boer (2008) it is not a 

genuine final demand category and we follow his proposal of splitting it over the other items 

of a row according to the pertinent shares in total output. Then, we can apply the four 

methods based on the logarithmic mean. This procedure entails that the number of final 

demand categories is reduced from five to four. For the multiplicative case it turns out that 

the results of the three decompositions (Fisher, Montgomery-Vartia, and Sato-Vartia) are 

very close to each other. This means that the split of ‘change in stocks’ over the other items 

has no effect and that the non-fulfilment of proportionality of the Montgomery-Vartia 

decomposition can be taken for granted. Unsurprisingly, the results for the additive case of 

the three decompositions (Bennet, Montgomery, and Additive Sato-Vartia) turn out to be 

very close to each other, as well. Section 5, finally, concludes. 

2. Ideal decomposition methods 

2.1. Historical overview 

Theory of indices and indicators 

In the traditional theory of indices and indicators an aggregate value change, expressed as 

ratio (index) or difference (indicator), is decomposed into two factors, price and quantity. In 

the 19th century two famous price and quantity indices were due to Laspeyres (1871) and 

Paasche (1874). These indices do not satisfy time reversal and factor reversal. In order to 

overcome these deficiencies Fisher (1922) derived his ‘ideal index’ by taking the geometric 

mean of the Laspeyres and Paasche indices. Balk (2003) remarked that the additive 

counterpart of the Fisher index is the indicator of Bennet (1920). 

Balk (2003) gave simple derivations of the Montgomery-Vartia and Sato-Vartia indices, and 

of the Montgomery indicator. In Balk (2008) it is proven that the indices of Fisher and of 

Sato-Vartia (Sato, 1976; Vartia, 1974, 1976) obey time and factor reversal, they satisfy the 

axiom of ‘proportionality’3, but are not ‘consistent-in-aggregation’4. The index of Montgomery-

Vartia (Montgomery, 1929, 1937; Vartia, 1976) is shown to obey time and factor reversal, but 

it does not satisfy ‘proportionality’. On the other hand it is proven to be ‘consistent-in-

aggregation’5. That is the reason why in Picture 1, on theoretical grounds, we advise to apply 

the Montgomery-Vartia index only in case ‘consistency-in-aggregation’ is required, but if it is 

not required, to apply either the Fisher index or the Sato-Vartia one. In Balk (2008) it is 

proven that the indicators of Bennet and of Montgomery (1929, 1937) obey time and factor 

reversal, and are ‘consistent-in-aggregation’. That is the reason why we have no preference 

on theoretical grounds. The Additive Sato-Vartia indicator, as we named it, is a ‘by-product’ 

of the Sato-Vartia decomposition. It is, however, unknown in the theory of indices and 

indicators so that we have no theoretical ground to exclude it.  

 

 

                                                
3
 If all the price relatives are the same, the price index is equal to these relatives. 

4
 Commodities used in the construction of the consumer price index are frequently grouped in four or 

five levels of sub-aggregates. At the lowest level prices are combined into price indices, whereas at 

higher levels, these price indices are combined into higher level indices. If at each stage the same 

functional form is used, the price index is called ‘consistent-in-aggregation’.   
5
 In equation (3.168) Balk (2008) gives the formalization he proposed in earlier work (1995, 1996). 
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Correspondence with Structural Decomposition Analysis (SDA) 

De Boer (2008) showed the correspondence between the theory of indices and indicators 

and applied the Montgomery indicator to the additive SDA decomposition of the example6 of 

Dietzenbacher and Los (1998). They decompose the change in labor cost of 214 sectors in 

the Netherlands between 1986 and 1992 into four components: the effects of a change in 

the labor cost per unit of output; the effects of technical change; the effects of changes in the 

final demand mix; and the effects of the changes in the final demand levels. De Boer 

replicated their results and showed that the Montgomery decompositions were very close to 

the arithmetic mean of all elementary decompositions. In de Boer (2018) it is shown that this 

arithmetic mean is equivalent to the generalization of Siegel (1945) of the Bennet indicator. 

De Boer (2009a) applied the index of Sato-Vartia to the SDA multiplicative decomposition in 

the framework of the same example (Dietzenbacher, Hoen and Los, 2000). He replicated 

their results and showed that the Sato-Vartia decompositions were very close to the 

geometric averages of all elementary decompositions. De Boer (2009b) showed that this 

geometric average is equivalent to the generalization of Siegel of the index of Fisher to n 

factors.  

Correspondence with Index Decomposition Analysis (IDA) 

Boyd et al (1987) introduced their so-called ‘Divisia index approach’. It is assumed that all 

variables are continuous and each is given as a function of time. The resulting equation is 

differentiated with respect to t, integrated over the time interval 0 to T, and the integral path 

is approximated using the arithmetic mean weight function. It results in the so-called AMDI 

method (‘Artihmetic Mean Divisia Index’.) In the theory of indices and indicators this method 

is known under the name of ‘Törnqvist index’ (Törnqvist and Törnqvist, 1937) which is 

defined as the geometric mean of the Geometric Laspeyres and Geometric Paasche indices 

(Balk, 2008, p.72.) Since it is not an ideal index we do not consider it in this paper. Ang and 

Choi (1997) introduced ‘A refined Divisia index method’ by replacing the arithmetic mean by 

the logarithmic mean weight scheme proposed by Sato (1976). It is renamed to LMDI- II 

method by Ang and Liu (2001). Obviously, it is equivalent to the Sato-Vartia index in the 

theory of indices and indicators. Ang, Zhang and Choi (1998) proposed ‘a refined Divisia 

index method based on decomposition of a differential quantity’. This method is nothing but 

the Montgomery indicator. Ang and Liu (2001) propose the so-called LMDI-I method which is 

equivalent to the Montgomery-Vartia index. They rename the method proposed by Ang et al 

(1998) to (additive) LMDI-I. The mathematical derivations of the multiplicative LMDI-I and 

LMDI-II methods and of the additive LMDI-I method (or Montgomery-Vartia, Sato-Vartia and 

Montgomery, respectively) are mathematically involved. As said before, Balk (2003) supplied 

much simpler derivations. The additive LMDI-II method is introduced in Appendix B of Ang, 

Liu and Chew (2003). As said before, this method in unknown in the theory of indices and 

indicators. We do not recommend to use it because, as pointed out by Ang, Huang and Mu 

(2009), it has one serious drawback. They show in their example that on industry level the 

decomposition is complete (‘no residual term’), but that at sector level the decomposition is 

not complete since the residuals are unequal to zero. It can be shown that the 

decompositions according to Bennet and Montgomery are not only complete at industry 

level, but also at sector level so that use of one of these methods is recommended. 

                                                
6
 The author is indebted to Bart Los for putting the data at his disposal. 
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2.2. Applicability of methods 

 We can only apply the methods given in this section if the n-factor decomposition can be 

written in the following form: 

      
 
                                                                                                                            (1) 

where:  

y: aggregate to be decomposed; 

    : set of summation indices; 

   : factor           . 

As a consequence, decompositions where in the Leontief inverse the matrix of technical 

coefficients is written as a Hadamard product of two matrices, like for instance in Xu and 

Dietzenbacher (2014), or more than two, like for instance in Zhang and Lahr (2014),  cannot 

be decomposed according to the methods given in this section.  

2.3 Fisher and Bennet 

 Siegel’s generic formula for the geometric mean,  , reads: 

               
 
                         

        
    

                                                                      (2) 

where 

 : number of factors; 

  : number of elementary decompositions; 

       : number of ‘1’ in the numerator (including the ‘1’ that is always present); 

             : number of components, i.e.  
   
   

 ; 

             : number of duplicates; 

         : one of the components with exponent: 
            

  
,        

   
   

 . 

The Bennet decomposition is the additive counterpart to the Fisher decomposition (Balk, 

2003). It is the weighted arithmetic mean with the same components, the weights being the 

same as the exponents of the Fisher decomposition. 

2.4 The logarithmic mean 
 
The logarithmic mean for two positive numbers a and b is defined as: 

       
   

       
 and                                                                                                      (3)                                                                      
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For our purposes, the most important property is symmetry in its arguments7, i.e.: 

                                                                                                                                

as can easily be verified from (3).  

The logarithmic mean is very convenient when switching from a ratio to a difference and vice 
versa (Balk, 2003). It follows straightforwardly from (3) that: 

                                                                                                                          (4)                                                                                   

and      

                                                                                                                           (5)                                                                                  

The logarithmic mean is ‘zero value robust’: in practice we can replace zeros by epsilon 
small positive numbers (Ang and Liu, 2007a). If a and b are both negative, it can still be 
used. However, if there is a change-in-sign, that is to say when a is positive (negative) and b 
is negative (positive), the logarithmic mean (3) is not defined so that it is not ‘change-in-sign 
robust’. According to Ang and Liu (2007b) the logarithmic mean might handle changes in 
sign using the so-called ‘Analytical Limit Strategy’. Their procedure has to be applied to each 
change in sign individually. This is so cumbersome that we advise to use the decompositions 
according to Fisher or Bennet which are change-in-sign, as well as zero value robust. 
 

2.5 Montgomery (additive LMDI- I) and Montgomery- Vartia (multiplicative LMDI-I) 

Define (cf. (1)): 

      
 
                                                                                                                              (6) 

In decomposition according to Montgomery the weight of all factors               is equal 

to: 

                                                                                                                                  (7) 

The effect of factor    reads: 

   
        

  
 

  
               ;                                                                                         (8) 

and the Montgomery decomposition is equal to: 

               
 

 

   

 

The multiplicative decomposition (i.e. Montgomery-Vartia) can be derived from the 

Montgomery decomposition using the transformation given in (4): 

   
          

                                                                                                     (9) 

The weight for of all factors                is equal to: 

                                                
7
Other properties are:                         ;        is continuous;                 ; 

                  . For more details, we refer to section 3.11, Appendix 1 of Balk (2008).  



 

8 
 

    
  

        
                                                                                                                      (10) 

Using Jensen’s Inequality Balk (2003) proves that 

     
                                                                                                                             (11) 

implying that the Montgomery-Vartia decomposition does not satisfy the requirement of 

‘proportionality’. 

The effect of factor    reads: 

   
     

  
 

  
  

   

                                                                                                       

and the Montgomery-Vartia decomposition is equal to: 

   
  

  
     

  

 

   

 

2.6 Sato-Vartia (multiplicative LMDI-II) and Additive Sato-Vartia (additive LMDI-II) 

Define (cf. (1)): 

  
   

 
   

 
 

 

 
                                                                                                                      (12) 

The weight for all factors    (           is equal to: 

    
        

            
                                                                                                                   (13) 

It follows straightforwardly that 

     
                                                                                                                             (14) 

implying that the Sato-Vartia decomposition satisfies the requirement of ‘proportionality’. 

The effect of factor    reads: 

   
     

  
 

  
  

   

            ;                                                                                          (15) 

and the Sato-Vartia decomposition is equal to: 

   
  

  
     

  

 

   

 

The Additive Sato-Vartia decomposition can be derived from the Sato-Vartia decomposition 

using the transformation given in (5): 

   
                  

                                                                                              (16) 
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The weight for of all factors                is equal to: 

                                                                                                                            (17) 

The effect of factor    reads: 

   
         

      
  

 

  
            ;                                                                      

and the Additive Sato-Vartia decomposition is equal to: 

               
 

 

   

 

3. Example  

3.1. The model and the decompositions 

De Boer (2018) disposed of two input-output tables and of the sectoral carbon dioxide 
emissions. The number of sectors is denoted by ‘s’ and the number of final demand 
categories by ‘m’. 

Defining the following vectors and matrices: 

   :      vector of sectoral emissions of carbon dioxide; 

 :         vector of sectoral outputs; 

 :        vector of sectoral emissions per unit of output; 

  :         diagonal diagonal matrix with   on the main diagonal; 

  :        matrix of input-output coefficients     measuring the input from sector i in sector j, 

per unit of sector j’s output; 

  :        matrix of bridge coefficients    measuring the fraction of final demand in 

category k that is spent on products from sector j; 

  :        vector of shares    of final demand category k in total final demand; and 

 :     total final demand. 

he considers the model: 

                                                                                                                                       

         

of which the solution is: 

                                                                                                                                 (18)                                                                                                                   

 where:           is the Leontief inverse. 

In sum notation (18) reads: 

                 
 
   

 
                                                                                                   (19)                                                                                                         
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Consequently, the aggregate to be decomposed,   in (1), is ‘carbon dioxide emissions’ 

      , the set of summation indices        ; and the factors are:    (‘emission coefficients’ 

   ;    (‘production techniques’          (‘final demand mix’     ;    (‘demand structure’    ; 

and    (‘size of economy’   , respectively. We want to decompose the change in carbon 

dioxide emissions from the base period, denoted by the superscript ‘0’, to the comparison 

period, denoted by the superscript ‘1’, into the changes of these five factors.  

Multiplicative (ratio) decomposition 

 The ratio change in carbon dioxide emissions of sector i is defined to be: 

          
      

    

From (19) we obtain 

      
    

    
    

   
    

   
 
   

    
    

    
   

    
   

 
   

                                                                                                (20) 

 We want to decompose (20) into the ratio changes in emission coefficients (   ), production 
techniques (   ), final demand mix     , demand structure (   ) and size of the economy 

(   ), i.e.: 

                         . 

Additive (difference) decomposition 

The difference change in carbon dioxide emissions of sector i is defined to be: 

          
      

     

From (19) we obtain: 

           
    

    
   

      
    

    
   

     
   

 
                                                                 (21)                                            

We want to decompose (21) into the difference changes in emission coefficients (   ), 
production techniques (   ), final demand mix     , demand structure (      and size of the 

economy (   ), i.e.: 

                          

3.2 The Fisher and Bennet decompositions  

 Without proof de Boer (2009b) supplied a table with the combinations, the number of 

duplicates and the weights for the case of the decomposition of a variable into five factors.  

Table 1. Summary for the case of five factors 

Appendix A 
Equation: 

Number  
of ones 

Combinations Number of 
duplicates 

Weight 

A.1 0 {0,0,0,0}    24 1/5 

A.2 1 {1,0,0,0} {0,1,0,0} {0,0,1,0} {0,0,0,1} 6 1/20 

A.3 2 {1,1,0,0} {1,0,1,0} {1,0,0,1}  4 1/30 

A.3 2 {0,0,1,1} {0,1,0,1} {0,1,1,0}  4 1/30 

A.4 3 {0,1,1,1} {1,0,1,1} {1,1,0,1} {1,1,1,0} 6 1/20 

A.5 4 {1,1,1,1}    24 1/5 
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 From this table we can derive the decomposition formulas for each of the five factors. For 

factor 18, ‘ratio change in emission coefficients’, it results in:  

 
   

   
   

   
   

 

   
   

   
   

   
  

   

  
   

   
   

   
   

 

   
   

   
   

   
  

    

    
   

   
   

   
   

 

   
   

   
   

   
  

    

  
   

   
   

   
   

 

   
   

   
   

   
  

    

          



    
   

   
   

   
   

 

   
   

   
   

   
  

    

  
   

   
   

   
   

 

   
   

   
   

   
  
 
    

    
   

   
   

   
   

 

   
   

   
   

   
  

    

   
   

   
   

   
   

 

   
   

   
   

   
  

   

                                                                                                                               

In the very same way, we use Table 1 for the Bennet decomposition. For factor 1, ‘difference 

change in emission coefficients’ we obtain: 

 

 

 
         

   
   

   
   

 

  
        

   
   

   
      

 

  
         

   
   

   
    

                                                                                                                                             (23)                                                                      

 
 

  
         

   
   

   
     

 

  
         

   
   

   
   

 

  
         

   
   

   
    

   
 

  
          

   
   

   
    

 

 
        

   
   

   
    

 De Boer (2018) gives the derivation of Table 1 from Siegel’s formula in his Appendix A, 

whereas in his Appendix B one Matlab program is given that performs the Siegel and Bennet 

decompositions at the same time. His results of the Siegel decomposition are mentioned in 

Table 3 below and are compared to those of the Sato-Vartia and Montgomery-Vartia 

decompositions. The results of the Bennet decomposition are mentioned in Table 4 below 

and are compared to those of the Montgomery and Additive Sato-Vartia decompositions. 

3.4 The Montgomery and Montgomery-Vartia decompositions 

Montgomery 

According to equations (6) and (19) we have  

    
    

    
    

   
    and     

    
    

    
   

        

so that equations (7) and (8) imply: 

    
        

      
                                                                                                                 (24) 

   
        

  
   

 
      

  
 

  
                     

        
  

   
 
      

   
 

   
    

   
        

  
   

 
      

   
 

   
                    

        
  

   
 
      

  
 

  
                                   (25) 

   
        

  
   

 
      

  

      

                                                
8
 The same formulas are used for the other factors. 
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Montgomery-Vartia 

 

Using the transformation (9), i.c.  

                  
      

      (? =                                                                               (26) 

and (10), we arrive at: 

    
       

         
      

                                                                                                     (27) 

and: 

   
      

  
 

  
  

    
  

   
   

 
   

  
 

  
          because of       

     
   

 
    (cf. (11))                                                                                                                                                                       

   
      

   
 

   
  

    
  

 
   

 
            

      
   

 

   
  

    
  

 
   

 
       

      
  

 

  
  

    
  

 
   

 
    

   
      

  

   
    

  

  
  

  
 
   

 
                                                                                            (28) 

Sato-Vartia and Additive Sato-Vartia decompositions 

Sato-Vartia 

Equation (12) implies: 

     
      

      
  and        

      
      

           

Consequently, the equation (13) becomes:         

    
   

      
      

  

     
     
   

     
   

    
 
    

                                                                                                     (29) 

Obviously:       
     

   
 
    (fulfillment of ‘proportionality’). 

According to equation (15), we have: 

   
      

  
 

  
  

    
  

   
   

 
   

  
 

  
                                                                                                                                                                                          

   
      

   
 

   
  

    
  

 
   

 
                       

      
   

 

   
  

    
  

 
   

 
                                           (30) 

   
      

  
 

  
  

    
  

 
   

 
                        

      
  

   
    

  

  
  

  
 
   

 
                                               

Additive Sato-Vartia 

Using the transformation (16):  

            
      

            (? =                                                                                 (31) 
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we arrive at the weighting factors: 

    
          

      
      

                                                                                                       (32) 

so that: 

   
         

    
      

  
 

  
                     

          
    

   
 
      

   
 

   
    

   
          

    
   

 
      

   
 

   
           

          
    

   
 
      

  
 

  
    

   
          

    
   

 
      

  

     

4. Results 

4.1. Dataset9 

 The dataset consists of two Excel files. In ‘Base period’ the emissions of carbon dioxide (in 

million kg) are given for 60 sectors of the Dutch economy in 2004, together with the 60 x 60 

matrix of intermediate deliveries (in million €) and the 60 x 5 matrix of final deliveries 

(consumption, government consumption, investments, change in stocks, and exports.) In 

‘Comparison period’ the same data are given for 2005, the matrices of intermediate and final 

deliveries are recorded in prices 2004. 

In the last row of Table 2 below we give the percentages of the ten largest emitters in the 

total economy. Together they count for slightly more than 80% of the emissions while their 

share in total final demand is 18.5%. Between brackets we give the percentages in the total 

economy of the largest emitter. Not unsurprisingly it is sector number 25 ‘Electricity and gas 

supply’. It counts for about one third of total emissions whereas its share in total final 

demand is only 1.3%. From the column ‘DCO2’ we gather that the largest emitter accounts 

for 51.8% of the reduction of carbon dioxide emissions from 2004 to 2005. The next nine 

largest sectors account for 1% only. Consequently, the share in the reduction by the 

remaining 50 sectors is equal to 47.2% 

In de Boer (2018) this dataset was used for the decomposition, according to Fisher and 

Bennet, of the change of carbon dioxide emissions into the five factors: emission 

coefficients, production techniques, final demand mix, demand structure  and size of the 

economy. The results are given in the Tables 3 and 4 below. 

 

 

 

 

                                                
9
 The author is indebted to Sjoerd Schenau of Statistics Netherlands for putting these two tables at his 

disposal. 
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Table 2. Carbon dioxide emissions (million kg), ratio and difference change, and total final 

demand (million €) for the ten largest emitters and for the total economy. 

# Sector    CO2 
   2004 

   CO2 
   2005 

RCO2 DCO2     Final 
    2004 

    Final 
    2005 

25 Electricity and 
gas supply 

  56,538   55,076 0.974 -1,462     7,689        7,657 

13 Chemicals; 
man-made 
fibres 

  15,149   15,215 1.004       66   19,978      20,605 

12 Petroleum 
products, 
cokes, etc. 

  12,941   12,826 0.991    -115   13,217      13,097 

36 Air transport   12,425   12,940 1.041     515     5,910        6,332 

34 Land transport     8,821     8,478 0.961    -343     8,121        8,195 

35 Water transport     7,409     7,709 1.041     300     4,980        5,265 

16 Basic metals     7,280     6,957 0.956    -323     5,306        5,108 

55 Sewage; refuse 
disposal  

    7,234     7,268 1.005       34     1,213        1,166 

  2 Horticulture     6,846     6,821 0.996      -25     7,030        6,963 

  8 Food, 
beverages, 
Tobacco 

    4,439     4,305 0.970    -134   34,232      34,962 

 Ten largest 
emitters, 2004 

139,082 137,594 0.989 -1,488 107,676    109,350      

 Total economy  171,419 168,599 0.984 -2,820 580,936    592,633 

 % ten largest in 
total economy  

81.1 
(33.0) 

81.6 
(32.7) 

 52.8 
(51.8) 

    18.5         
  (1.3) 

       18.5 
       (1.3) 

 

4.2 Empirical implementation of the decompositions based on the logarithmic mean 

As stated before, the logarithmic mean is ‘zero value robust’ that is to say: in practice we can 

replace zeros by epsilon small positive numbers (Ang and Liu, 2007a). In the Matlab 

program (Appendix A)       is used. However, it is not ‘change-in-sign robust’. We cannot 

apply the decompositions on our data set because of the presence of the final demand 

category ‘change in stocks’. However, as argued by De Boer (2008), this is not a genuine 

final demand category. A correct treatment is the following: in the final demand matrix a 

column should be included with the (non-negative) ‘addition to stocks’ and in the input-output 

table a row with the (non-negative) ‘depletion of stocks’. Due to problems of data collection, 

national account statisticians only include the balancing item ‘change in stocks’. De Boer 

(2008) solved the problem of changes-in-sign for stocks by splitting them over the other 

items of a row according to the pertinent shares in total output. The column sums are not 

any longer equal to total output so that he added a row (which plays no role in 

decompositions) in which he recorded the adjustment for the stocks. In the example this 

procedure is applied. As a consequence, the number of final demand categories is reduced 

from 5 to 4. 

4.3 Matlab program for the methods based on the logarithmic mean 

 In the first part of the Matlab program (Appendix A) the original data are read; the change in 

stocks are split over the other items of a row according to the pertinent shares in total output; 
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and transformed to the data for the five factors: emission coefficients, production techniques, 

final demand mix, demand structure  and size of the economy.  

In the second part we program the methods based on the logarithmic mean. Since the 

weight for the Montgomery decomposition (cf. (24)) is easier to program than the one for 

Montgomery- Vartia (cf. (27)) we choose performing the Montgomery decomposition and to 

use transformation (26) for Montgomery- Vartia. The weight for the Sato- Vartia 

decomposition (cf. (29)) is easier to program than the one for the Additive Sato- Vartia (cf. 

(32)). Therefore we choose to perform the Sato-Vartia decomposition and use the 

transformation (31) to obtain its additive counterpart. 

4.4 Results for the multiplicative decompositions 

Table 3 Results of the three multiplicative decompositions  

Sector Method RF RD RB RU RY* 

25 Fisher 
Montgomery-Vartia 
Sato-Vartia 

0.9093 
0.9102 
0.9093 

1.0670 
1.0646 
1.0655 

0.9839 
0.9854 
0.9853 

1.0010 
1.0003 
1.0003 

 
1.011939 

13 Fisher 
Montgomery-Vartia 
Sato- Vartia 

0.9850 
0.9857 
0.9857 

0.9899 
0.9899 
0.9899 

1.0002 
1.0005 
1.0005 

1.0088 
1.0084 
1.0084 

 
1.021028 

12 Fisher 
Montgomery-Vartia 
Sato-Vartia 

0.9960 
0.9949 
0.9949 

0.9962 
0.9962 
0.9962 

0.9732 
0.9734 
0.9734 

1.0073 
1.0071 
1.0071 

 
1.020125 

36 Fisher 
Montgomery-Vartia 
Sato-Vartia 

0.9734 
0.9734 
0.9734 

1.0070 
1.0064 
1.0064 

1.0354 
1.0356 
1.0356 

1.0065 
1.0063 
1.0063 

 
1.020129 

34 Fisher 
Montgomery-Vartia 
Sato-Vartia 

0.9449 
0.9449 
0.9499 

0.9920 
0.9920 
0.9920 

0.9980 
0.9974 
0.9974 

1.0024 
1.0024 
1.0024 

 
1.020130 

35 Fisher 
Montgomery-Vartia 
Sato-Vartia 

0.9912 
0.9912 
0.9912 

0.9950 
0.9950 
0.9950 

1.0257 
1.0260 
1.0260 

1.0090 
1.0081 
1.0081 

 
1.020134 

16 Fisher 
Montgomery-Vartia 
Sato-Vartia 

0.9982 
0.9982 
0.9982 

0.9990 
0.9983 
0.9984 

0.9469 
0.9473 
0.9473 

1.0088 
1.0084 
1.0084 

 
1.020125 

55 Fisher 
Montgomery-Vartia 
Sato-Vartia 

1.0402 
1.0402 
1.0402 

0.9960 
0.9651 
0.9651 

0.9949 
0.9949 
0.9949 

0.9860 
0.9860 
0.9860 

 
1.020125 

  2 Fisher 
Montgomery-Vartia 
Sato-Vartia 

1.0039 
1.0039 
1.0039 

1.0011 
1.0010 
1.0010 

0.9635 
0.9638 
0.9638 

1.0088 
1.0084 
1.0084 

 
1.020130 

  8 Fisher 
Montgomery-Vartia 
Sato-Vartia 

0.9516 
0.9516 
0.9516 

0.9979 
0.9979 
0.9979 

0.9962 
0.9963 
0.9963 

1.0050 
1.0049 
1.0049 

 
1.020132 

* For Fisher and Sato-Vartia all figures are equal to 1.020135 

As we conclude from Table 3 all decompositions are very close to each other. From an 

empirical point of view the split of ‘change in stocks’ over the other items of the pertinent row 

has no effect. If ‘change-in-sign robustness’ is required we need to apply the Fisher 

decomposition, but if it is not required, like in this example, we advise to use either the 

Montgomery- Vartia or the Sato-Vartia decomposition since the latter two are easier to 
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program than Fisher’s. The decompositions according to Fisher (cf. equation (22)) and Sato- 

Vartia (cf. equation (14)) satisfy ‘proportionality’ which implies that for all sectors the effect of 

the factor ‘size of the economy’         is equal to 1.020135. Because           

(equation (28)) Montgomery-Vartia does not satisfy ‘proportionality’. As we conclude from 

Table 3, all reported effects of ‘size of the economy’ of Montgomery-Vartia are very close to 

the ones of Fisher and Sato-Vartia. For all 60 sectors the minimum effect is equal to 

1.019438; the maximum to 1.020134; while the mean effect is equal to 1.020098 with a 

standard deviation of 0.000119. If in this example we desire to have consistency-in-

aggregation, we can easily take the non-fulfilment of ‘proportionality’ for granted and apply 

Montgomery- Vartia. If not, we advise to use Sato-Vartia since it satisfies proportionality. 

4.5 Results for the additive decompositions 

Table 4 Results for the additive decompositions 

Sector Method DF DD DB DU DY 

25 Bennet 
Montgomery 
Additive S-V 

-5,314 
-5,253 
-5,304 

3,662 
3,492 
3,540 

-912 
-821 
-829 

  17 
  18 
  18 

1,115 
1,102 
1,112 

13 Bennet 
Montgomery 
Additive S-V 

   -219 
   -218 
   -219 

  -154 
  -153 
  -153 

     3 
     8 
     8 

132 
128 
128 

   303 
   303 
   303 

12 Bennet 
Montgomery 
Additive S-V 

     -66 
     -66 
     -66 

    -49 
    -49 
    -49 

-351 
-347 
-348 

  94 
  91 
  91 

   257 
   257 
   257 

36 Bennet 
Montgomery 
Additive S-V 

   -342 
   -341 
   -342 

     81 
     81 
     81 

 441 
 443 
 443 

  82 
  80 
  80 

   253 
   253 
   253 

34 Bennet 
Montgomery 
Additive S-V 

   -445 
   -445 
   -445 

    -69 
    -70 
    -70 

  -22 
  -22 
  -22 

  20 
  21 
  21 

  172 
  172 
  172 

35 Bennet 
Montgomery 
Additive S-V 

-67 
-67 
-67 

-38 
-38 
-38 

192 
194 
194 

63 
61 
61 

151 
151 
151 

16 Bennet 
Montgomery 
Additive S-V 

-128 
-128 
-128 

-12 
-12 
-12 

-388 
-385 
-386 

62 
60 
60 

142 
142 
142 

55 Bennet 
Montgomery 
Additive S-V 

286 
286 
286 

-257 
-258 
-258 

-37 
-37 
-37 

-103 
-102 
-102 

145 
144 
145 

  2 Bennet 
Montgomery 
Additive S-V 

26 
26 
26 

7 
7 
7 

-254 
-252 
-252 

60 
57 
57 

136 
136 
136 

  8 Bennet 
Montgomery 
Additive S-V 

-217 
-217 
-217 

-9 
-9 
-9 

-17 
-16 

-16 

22 
21 
21 

87 
87 
87 

 

Obviously, the results for the additive decompositions show the same picture as those of the 

multiplicative decompositions with the same conclusion that the three methods yield the 

same results so that the split of ‘change in stocks’ over the other items of a row has no 

effect. If ‘change-in-sign robustness’ is required we need to apply the Bennet decomposition, 

but if it is not required, like in this example, we advise to use the Montgomery decomposition 

because it easier to program than Bennet’s decomposition.  
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5. Concluding remarks 

In this paper we paid attention to six widely used decomposition methods which all share the 

properties of time reversal and of being ideal, i.e. satisfying factor reversal. On the basis of 

theoretical and empirical considerations we gave an answer to the question of when using 

which method.  

Multiplicative decomposition 

We considered: 

1. Fisher (SDA) which is zero value and change-in-sign robust, satisfies proportionality, but 

is not consistent-in-aggregation; 

2. Montgomery- Vartia (multiplicative LMDI-I) which is zero value robust, but not change-in-

sign robust, is consistent-in-aggregation, but does not satisfy proportionality; and 

3. Sato-Vartia (multiplicative LMDI-II) which is zero value robust, but not change-in-sign 

robust, satisfies proportionality, but is not consistent-in-aggregation. 

If there are changes in sign in the data set which cannot be resolved the only method that 

can be applied is ‘Fisher’. If the data set is ‘change-in-sign robust’ we can apply all three 

methods. If we wish to apply a method which is ‘consistent-in-aggregation’, we have to apply 

the Montgomery-Vartia decomposition and take the non-fulfilment of proportionality for 

granted. If we are not interested in consistency in aggregation we can either apply Sato-

Vartia or Fisher which both satisfy proportionality. Since the first method is simpler to 

implement than the latter we recommend to use Sato-Vartia. 

Additive decomposition 

We considered: 

4. Bennet (SDA) which is zero value and change-in-sign robust, and complete at industry 

and sector level; 

5. Montgomery (additive LMDI-I) which is zero value robust, but not change-in-sign robust, 

and is complete at industry and sector level; and 

6. Additive Sato-Vartia (additive LMDI-II) which is zero value robust, but not change-in-sign 

robust, and is complete at industry level, but not at sector level. That is the reason why we 

do not recommend the use of this method. 

If there are changes in sign in the data set which cannot be resolved, only Bennet can be 

applied. Otherwise, we can use either Montgomery or Bennet, but since the first method is 

simpler to implement we recommend the use of Montgomery.  

Example 

We applied all methods to an example in which the change from 2004 to 2005 in sectoral 
carbon dioxide emissions of the Netherlands are decomposed into five factors: emission 
coefficients, production techniques, final demand mix, demand structure and size of the 
economy. The data set is not change-in-sign-robust because of the presence ‘change in 
stocks’ which, as argued by de Boer (2008), is not a genuine final demand category. It was 
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resolved by spreading the change in stocks over the other items of the pertinent row in the 
input-output table. We applied the methods of Fisher and Bennet to the full data set, i.e. 
including the change in stocks, and the other methods which are based on the logarithmic 
mean to the data set where the number of final demand categories is reduced to four. 

Multiplicative decomposition 

From Table 3 it followed that all decompositions are very close to each other so that the split 

of ‘change in stocks’ over the other items of the pertinent row has no effect. We advise to 

use either the Montgomery- Vartia or the Sato-Vartia decomposition since the latter two are 

easier to program than Fisher’s. The effect of the factor ‘size of the economy’ for the 

Montgomery-Vartia decomposition turned out to be so close to the effect according to the 

decompositions of Fisher and Sato- Vartia which both satisfy ‘proportionality’. Consequently, 

we can take its non-fulfilment for granted. If one wishes to adopt a method that is consistent-

in-aggregation Montgomery-Vartia needs to be applied, if not, Sato-Vartia is recommended 

since it satisfies ‘proportionality’.  

Additive decomposition 

Again, the split of ‘change in stocks’ over the other items of a row has no effect. We advise 

to use the Montgomery decomposition because it easier to program than Bennet’s.  
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Appendix A  Matlab code for the decompositions of Montgomery (MO), Montgomery-
Vartia (MV), Sato-Vartia (SV) and Additive Sato-Vartia (ASV). 
 
clc; clear; 
  
% Number of factors 
n = 5; 
% Number of final demand categories 
m = 4;  
% Number of sectors 
s = 60;  
  
%% Base Period 
  
% Read the original data 
CO20 = xlsread('Base Period','C2:BJ2'); 
CO20(CO20==0) = 10^-14; 
data = xlsread('Base Period','C3:BQ62'); 
  
% Splitting stocks  
temp1 = data(1:60,[61:63 65]); 
stocks = data(:,64); 
  
temp2 = temp1./repmat(sum(temp1,2),1,4); 
temp2(60,:) = 0; 
  
temp1 = temp1 + temp2.*repmat(stocks,1,4); 
temp = [data(1:60,1:60) temp1]; 
  
transaction = temp(1:60,1:60); 
x = data(1:60,67); 
z = temp(1:60,61:64); 
  
% Transformation of original data to data for the five factors 
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% Carbon dioxide emissions per unit of output 
f0 = diag(CO20./x'); 
  
% Leontief inverse 
A = transaction./repmat(x',60,1); 
D0 = inv(eye(60)-A); 
D0(D0==0) = 10^-14; 
  
% Total final demand 
y0 = sum(sum(z,1)); 
  
% Shares of final demand categories in Total final demand 
u0 = transpose(sum(z,1)/y0); 
  
% Bridge matrix 
B0 = z./repmat(transpose(u0*y0),s,1); 
B0(B0==0) = 10^-14; 
  
%% Comparison period 
  
% Read the original data 
CO21 = xlsread('Comparison Period','C2:BJ2'); 
CO21(CO21==0) = 10^-14; 
data = xlsread('Comparison Period','C3:BQ62'); 
  
% Spreading stocks over other final demand categories 
temp1 = data(1:60,[61:63 65]); 
stocks = data(:,64); 
  
temp2 = temp1./repmat(sum(temp1,2),1,4); 
temp2(60,:) = 0; 
  
temp1 = temp1 + temp2.*repmat(stocks,1,4); 
temp = [data(1:60,1:60) temp1]; 
  
transaction = temp(1:60,1:60); 
x = data(1:60,67); 
z = temp(1:60,61:64); 
  
% Transformation of original data to data for the five factors 
  
% Carbon dioxide emissions per unit of output 
f1 = diag(CO21./x'); 
  
% Leontief inverse 
A = transaction./repmat(x',60,1); 
D1 = inv(eye(60)-A); 
D1(D1==0) = 10^-14; 
  
% Total final demand 
y1 = sum(sum(z,1)); 
  
% Shares of final demand categories in Total final demand 
u1 = transpose(sum(z,1)/y1); 
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% Bridge matrix 
B1 = z./repmat(transpose(u1*y1),s,1); 
B1(B1==0) = 10^-14; 
  
%% Decompositions 
  
% Sato-Vartia (SV) and Additive Sato-Vartia (ASV) 
[sv,asv] = SV(f0,f1,D0,D1,B0,B1,u0,u1,y0,y1,CO20,CO21,n,m,s); 
  
% Montgomery (MO) and Montgomery-Vartia (MV) 
[mo,mv] = MO(f0,f1,D0,D1,B0,B1,u0,u1,y0,y1,CO20,CO21,n,m,s); 
  
 
 
 

 
% This function computes the logarithmic mean of two positive numbers 
 
function l = L(a,b) 
  
% Adjust for the case when a/b equals 1, which leads to a division by 
% zero. 
if a/b == 1 || b == 0 
    l = (a-b)/log(1+10^-14); 
else 
    l = (a-b)/log(a/b); 
end 
  
end 
 

% This function performs the Montgomery (MO) and Montgomery-Vartia decompositions 
  
function [mo,mv] = MO(f0,f1,D0,D1,B0,B1,u0,u1,y0,y1,CO20,CO21,n,m,s) 
%% Montgomery (MO) 
  
mo = zeros(s,n); 
for i = 1:s 
    for j = 1:s 
        for k = 1:m 
            weight = L(f1(i,i)*D1(i,j)*B1(j,k)*u1(k)*y1,f0(i,i)*D0(i,j)*B0(j,k)*u0(k)*y0); 
            mo(i,1) = mo(i,1) + weight * log(f1(i,i)/f0(i,i)); 
            mo(i,2) = mo(i,2) + weight * log(D1(i,j)/D0(i,j)); 
            mo(i,3) = mo(i,3) + weight * log(B1(j,k)/B0(j,k)); 
            mo(i,4) = mo(i,4) + weight * log(u1(k)/u0(k)); 
            mo(i,5) = mo(i,5) + weight * log(y1/y0); 
        end 
    end 
end 
  
%% Montgomery-Vartia (MV) 
mv = zeros(s,n); 
for i = 1:s 
    if CO20(i)==10^-14 || CO21(i)==10^-14 
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        mv(i,:) = 1; 
    else 
        mv(i,:) = exp(mo(i,:)./L(CO20(i),CO21(i))); 
    end 
end 
  
end 
 
---------------------------------------------------------------------------------------------------------------------------
---- 
% This function performs the Sato-Vartia (SV) and Additive Sato-Vartia decompositions 
  
function [sv,asv] = SV(f0,f1,D0,D1,B0,B1,u0,u1,y0,y1,CO20,CO21,n,m,s) 
%% Sato Vartia (SV) 
  
sv = ones(s,n); 
  
for i = 1:s 
    sum = 0; 
    for j1 = 1:s 
        for k1 = 1:m 
            sum = sum + 
L(f1(i,i)*D1(i,j1)*B1(j1,k1)*u1(k1)*y1/CO21(i),f0(i,i)*D0(i,j1)*B0(j1,k1)*u0(k1)*y0/CO20(i)); 
        end 
    end 
  
    for j = 1:s 
        for k = 1:m 
            weight = 
(L(f1(i,i)*D1(i,j)*B1(j,k)*u1(k)*y1/CO21(i),f0(i,i)*D0(i,j)*B0(j,k)*u0(k)*y0/CO20(i))/sum); 
            sv(i,1) = sv(i,1) * ((f1(i,i)/f0(i,i)) ^ weight); 
            sv(i,2) = sv(i,2) * ((D1(i,j)/D0(i,j)) ^ weight); 
            sv(i,3) = sv(i,3) * ((B1(j,k)/B0(j,k)) ^ weight); 
            sv(i,4) = sv(i,4) * ((u1(k)/u0(k)) ^ weight); 
            sv(i,5) = sv(i,5) * ((y1/y0) ^ weight); 
        end 
    end 
end 
  
 
%% Additive Sato-Vartia (ASV) 
asv = zeros(s,n); 
for i = 1:s 
    asv(i,:) = L(CO21(i),CO20(i)).*log(sv(i,:)); 
end 
  
end 
  
--------------------------------------------------------------------------------------------------------------------------- 
  
  


