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Curve shapes and parameters in FLQ regional modelling: some 

alternative approaches 

 

ABSTRACT 

In this paper, we propose a novel way of implementing the FLQ (Flegg’s location quotient) 

approach to the regionalization of national input−output tables. Although the FLQ formula 

often yields the most accurate results of the pure LQ-based methods, the need to specify values 

of the unknown parameter δ in this formula presents an obstacle to its implementation. A 

possible solution is to use the FLQ+ method, which employs a modified cross-entropy method, 

along with a regression model, to estimate values of δ specific to both region and country. Here 

we develop a fresh approach to the use of the FLQ that substantially simplifies its application, 

while simultaneously enhancing its performance. As before, sectoral outputs (or employment) 

are the only regional data required. We focus on how regional size, R, is incorporated in the 

FLQ formula and simplify the way in which R affects the allowance made for imports from 

other regions. We call this new formula the reformulated FLQ or RFLQ. We also show how 

the unknown parameter in this formula can be estimated using readily available data. We test 

our proposal using the 2005 and 2015 Korean survey-based regional IO datasets. We contrast 

our estimates with survey-based values and compare results with those from several well-

known techniques. Furthermore, we examine two different information scenarios: with and 

without industry-specific information. The results suggest that one can produce regional IO 

tables with similar or even better accuracy without using unknown parameters. 

Keywords: Regional input−output tables; non-survey methods; FLQ; RFLQ 

JEL codes: C67, O18, R15 

 

1. INTRODUCTION 

1.1. Location quotients to produce regional input-output models: still a work in progress 

Location quotients (LQs) are still a widely used non-survey technique to regionalize national 

input−output (IO) tables and to generate interregional IO (IRIO) models. Their principal 

attraction is the minimal data requirements, namely regional and national output (or 

employment) by sector. Many different LQ-based formulae have been developed, which are 
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discussed in detail in Flegg et al. (2021) and other several papers. However, we only need to 

consider some of these methods here. The most basic formula is the simple LQ: 

𝑆𝐿𝑄𝑖 =

𝑥𝑖
𝑟

𝑥•
𝑟

𝑥𝑖
𝑛

𝑥•
𝑛

=

𝑥𝑖
𝑟

𝑥𝑖
𝑛

𝑥•
𝑟

𝑥•
𝑛

=
𝑤𝑥𝑖

𝑟

𝑤𝑥𝑟
  (1) 

Here xi
r and xi

n are the total output (production) of the ith regional and national sector, 

respectively, while x•
r  and x•

n are the corresponding regional and national aggregates. 𝑤𝑥𝑖
𝑟  

represents the weight of regional sector i in the national economy, whereas 𝑤𝑥𝑟 represents the 

weight of region r in the national economy, i.e., its relative size.  SLQ
i
  measures the degree of 

specialization of region r in sector i relative to the nation. The regional input coefficients are 

derived according to the following rule: 

�̂�𝑖𝑗
𝑟 = {

𝑎𝑖𝑗
𝑛 𝑆𝐿𝑄𝑖 𝑖𝑓 𝑆𝐿𝑄𝑖 < 1

𝑎𝑖𝑗
𝑛 𝑖𝑓 𝑆𝐿𝑄𝑖 ≥ 1

 (2) 

where �̂�𝑖𝑗
𝑟   is the estimated regional input coefficient and aij

n  is the corresponding observed 

national input coefficient (excluding inputs purchased from abroad). 

However, it has long been known that the SLQ tends to understate a region’s imports from 

other regions; this occurs because the SLQ rules out any ‘cross-hauling’ (Stevens et al. 1989). 

Cross-hauling takes place when a region simultaneously imports and exports a given 

commodity. For a systematic treatment of this issue, see Többen and Kronenberg (2015). 

The cross-industry LQ was one of the first refinements of the SLQ, as it considers the relative 

size of both supplying sector i and purchasing sector j. The formula is as follows: 

𝐶𝐼𝐿𝑄𝑖𝑗 =
𝑆𝐿𝑄𝑖

𝑆𝐿𝑄𝑗
=

𝑥𝑖
𝑟/𝑥𝑖

𝑛

𝑥𝑗
𝑟/𝑥𝑗

𝑛 (3) 

where the constraints are applied as in (2). Unlike the SLQ, however, the CILQ applies a cell-

by-cell adjustment. This means that it does, in principle at least, deal with the problem of cross-

hauling. What it does not do is to consider the relative size of a region, x•
r /x•

n, which cancels out 

in formula (3). By contrast, this ratio remains a component of the SLQ formula (1). 

Round (1978) argues that any adjustment formula should incorporate three elements: (i) the 

relative size of the supplying sector i, (ii) the relative size of the purchasing sector j and (iii) 

the relative size of the region. The CILQ satisfies (i) and (ii) but not (iii), whereas the SLQ 
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satisfies (i) and (iii) but not (ii). Round therefore suggests the following formula, which 

simultaneously satisfies all three requirements: 

𝑅𝐿𝑄𝑖𝑗 =
𝑆𝐿𝑄𝑖

log2(1 + 𝑆𝐿𝑄𝑗)
 (4) 

Nonetheless, Flegg et al. (1995) criticize the SLQ and RLQ on the grounds that both would 

tend to understate the imports of relatively small regions owing to the way in which the ratio 

x•
r /x•

n is implicitly incorporated in each formula. The FLQ  aims to correct this shortcoming. 

The crucial hypothesis underpinning the FLQ is that a region’s propensity to import from other 

domestic regions is inversely and nonlinearly related to its relative size. By incorporating 

explicit adjustments for regional size, the FLQ should yield more precise estimates of regional 

input coefficients and hence multipliers. Along with other non-survey methods, the FLQ aims 

to offer regional analysts a means by which they can build regional tables that reflect, as closely 

as possible, each region’s economic structure. See, for example, the application to Mexican 

regions by Dávila-Flores (2015). 

The FLQ is defined as follows (cf. Flegg and Webber 1997): 

𝐹𝐿𝑄𝑖𝑗 = {
𝜆𝐶𝐼𝐿𝑄𝑖𝑗 for 𝑖 ≠ 𝑗

𝜆𝑆𝐿𝑄𝑖 for 𝑖 = 𝑗
 (5) 

where  captures a region’s relative size. This scalar is defined as follows: 

𝜆 = [log2(1 +
𝑥•

𝑟

𝑥•
𝑛

)]𝛿 (6) 

Here 0 ≤ δ < 1 is a parameter that controls the degree of convexity in equation  (6). The larger 

the value of δ, the lower the value of λ, and the greater the allowance for extra regional imports. 

The FLQ formula is implemented just like other LQ methods as in equation (2). 

A variant of the FLQ is the augmented FLQ (AFLQ), which takes regional specialization into 

account. It is defined as follows (cf. Flegg and Webber 2000): 

𝐴𝐹𝐿𝑄𝑖𝑗 = 𝐹𝐿𝑄𝑖𝑗[log2(1 + 𝑆𝐿𝑄𝑗)] (7) 

which is applicable only when 𝑆𝐿𝑄𝑗 > 1. 

Several case studies, including Flegg and Tohmo (2016), have demonstrated that the FLQ can 

yield more accurate results than the SLQ and CILQ. This evidence is corroborated by the Monte 
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Carlo study of Bonfiglio and Chelli (2008). On the other hand, Lamonica and Chelli (2018) 

find that the FLQ performs better than the SLQ in smaller regions, yet worse in larger regions. 

The FLQ is strongly criticized by Fujimoto (2019) on both conceptual and empirical grounds. 

A response to these criticisms is given in Flegg et al. (2021). Finally, we may note that the 

FLQ’s use in a multiregional context is examined by Jahn (2017), Jahn et al. (2020) and Garcia-

Hernandez and Brouwer (2021). 

Pereira-López et al. (2020) propose a two-dimensional approach (2D-LQ) to estimate domestic 

coefficients at the sub-territorial level. This technique can be extrapolated to other contexts; for 

instance, generating intermediate flow matrices. In this approach, estimates of regional 

coefficients are calculated according to the following rule: 

�̃�𝑅 = �̂�(𝛼)𝐀𝑁�̂�(𝛽) (8) 

where 𝐀 is a matrix of intermediate domestic coefficients, and �̂�(𝛼) and 𝐬(𝛽) are diagonal 

matrices whose main diagonal elements work as weighting factors. Scalars 𝛼 and 𝛽 are the 

parameters influencing row and column rectifications, respectively. As in the CILQ, RLQ and 

FLQ, row and column corrections are addressed differently: 

𝐫(𝛼) = {

(𝑆𝐿𝑄𝑖)
𝛼 if 𝑆𝐿𝑄𝑖 ≤ 1

[
1

2
tanh(𝑆𝐿𝑄𝑖 − 1) + 1]

𝛼

if 𝑆𝐿𝑄𝑖 > 1

𝐬(𝛽) = (𝑤𝑥𝑗
𝑟)𝛽

 (9) 

One of the main novelties introduced by the 2D-LQ formulation is a modified hyperbolic 

tangent curve to describe the indirect relationships between input coefficients and location 

economies.  

Papers presenting the 2D-LQ and subsequent variants (Sánchez-Chóez et al. 2022) report better 

results than previous LQ regionalization methods. Such promising results are obtained at the 

cost of an additional trouble: providing estimates for the 𝛼 and 𝛽 parameters that capture the 

effect of supply-side location economies. Nevertheless, the 2D-LQ’s accuracy appears to be 

less sensitive to variation in 𝛼 and 𝛽 than is true for the FLQ and its sole parameter 𝛿 (Pereira-

López et al. 2021). Martínez-Alpañez et al. (2023) propose a way to estimate 𝛼 and 𝛽 via an 

econometric model. They report satisfactory results for Korean regions, yet their experiments 

on different Spanish regions fall far behind.  
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1.2. Open debates on curve shapes and parameters 

The way we model the indirect relationships between regional size and input coefficients might 

also be open to discussion. For instance, McCann and Dewhurst (1998) suggested that the FLQ 

might not necessarily be the best way to capture relationships between regional size and 

interindustry structures. Figure 1 depicts the relationship between λ, δ and regional size, R, 

which is measured in terms of a region’s share of total national output or employment. The 

graphs are based on a formulation proposed by Flegg and Webber (1997). A key feature of the 

graphs is that they pass through the points [0,0] and [1,1]. Furthermore, the gradients decline 

smoothly and continuously as R increases. 

However, the authors offer no rationale for the shape of the graphs in between [0,0] and [1,1], 

which is an aspect that is worth reconsidering. In particular, in the smallest regions, a relatively 

small rise in R would result in a large increment in λ. There is no obvious reason why that 

should be so.  Figure 1. How  varies with  and R
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Figure 1. Convexity for different 𝜹 values in the FLQ formula 

Source: own elaboration 

Perhaps a critical mass of plants and employment is needed before industrial take-off and 

clustering dynamics appear within a region, which would tend to reduce imports from other 

regions? The impact of regional heterogeneity should also be considered, especially in the case 

of big (i.e.: more representative) regions in relatively small nations. In this regard, it  might be 

desirable to have some control over how far the estimated regional input coefficients could 

diverge from their national counterparts as R varies.  
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According to Jarne et al. (2007), S-shaped curves are capable of describing processes 

characterized by emergent, inflexion and saturation phases. Such phases can be captured in a 

logistic function, whose general form is as follows: 

𝑓(𝑥) =  
𝑘

1 + 𝑏𝑒−𝑎𝑥
, 𝑘, 𝑎, 𝑏 ∈ ℜ (10) 

For our purposes, a special case of this logistic equation, namely the hyperbolic tangent, is the 

most appropriate. It can be derived by setting 𝑘 = 2, 𝑎 = 2 and 𝑏 = 1, which gives: 

𝑓(𝑥) = tanh (𝑥) =  
2

1 + 𝑒−2𝑥
 (11) 

Here we use 𝑥 − 1 instead of 𝑥, so that: 

𝑓(𝑥) = tanh(𝑥 − 1) + 1 =  
2

1 + 𝑒−2(𝑥−1)
 (12) 

Equation (12) has the following notable properties: 

lim
𝑥→∞

=
2

1 + 𝑒−2(𝑥−1)
= 2

lim
𝑥→−∞

2

1 + 𝑒−2(𝑥−1)
= 0

 (13) 

 

Crucially, we have 𝑓(1) = 1 and 𝑓(0) > 0. 

Figure 2 illustrates the type of logistic function we have in mind. Admittedly, this is one 

possibility among many. For instance, U-shaped (Duarte et al. 2022; Stöllinger, 2021) and 

inverted U-shaped curves (Kitsos et al. 2023) are also used to model regional economic 

dynamics. 

Regardless of our choice of curve, the main obstacle in applying the FLQ formula is in 

determining a value for δ in equation (6). This is crucial because its value might vary across 

regions, countries and time. This problem has been addressed by applying the FLQ+ approach 

proposed by Flegg et al. (2021). Another issue is that δ is apt to vary across sectors too (Flegg 

and Tohmo 2019). The 2D-LQ and non-LQ approaches (e.g.: gravity models) offer no solution 

to this problem either since they rely on more than one parameter to derive their estimates. 
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Figure 2. Example of a logistic function versus FLQ for different 𝛿 values
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Figure 2. Example of a logistic function (hyperbolic tangent) versus the FLQ for different 𝜹 values 

Source: own elaboration 

 

1.3. The aim of the present paper 

In this paper, we explore an alternative treatment of the indirect relationships between regional 

attributes (e.g.: regional size) and economic integration across industries. We use a particular 

form of the logistic function to model such indirect linkages, in the vein of some literature on 

innovation and technological change. We posit a relationship starting at a non-zero parameter, 

with a gradient that rises gently as regional supply self-sufficiency increases. Our hypothesis 

is that, when compared with Figure 1, the logistic curve depicted in Figure 2 can more 

successfully capture the initial stages, take-off and maturing dynamics of a given industry 

across both time and space.  

We also provide an example of how our method could be implemented without involving 

parameter estimations. We evaluate if our new method works well with non-parametric 

rectifications. To this end, we choose a proxy for regional supply self-sufficiency and introduce 

it directly into our calculations. Moreover, we study the extent to which introducing industry-

specific information improves the accuracy of our estimates.  

The remainder of this paper is organized as follows. In section 2, we provide a detailed 

description of our methodological proposal. We first revise Flegg’s original method to 

introduce an alternative S-shaped hyperbolic tangent treatment in its CILQ part. We next 

present a non-parametric alternative rectification of the CILQ estimates. Section 3 illustrates 
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our findings, with an empirical application using the Korean 2005 and 2015 IRIO models. 

Finally, section 4 concludes with some final remarks and suggestions for future research. 

2. METHODOLOGICAL PROPOSAL 

We start by considering a transformation of the CILQ formula using a sigmoidal function. 

Thus, we account for supply/demand relative sizes. Following the FLQ approach, we retain a 

rectification parameter 𝜇 related to a region’s degree of supply self-sufficiency but, unlike the 

CILQ, we prevent excessive rectifications. We call this formula the reformulated FLQ or 

RFLQ, which is specified as follows: 

𝑅𝐹𝐿𝑄𝑖𝑗 = 𝜇(tanh(𝐶𝐼𝐿𝑄𝑖𝑗 − 1) + 1) (14) 

In this equation, we still rely on a parameter 𝜇. Our aim is to capture the effect of using an 

alternatively shaped curve. In doing so, we employ the same hyperbolic tangent modification, 

as explained in equations (10) to (13) and depicted in Figure 2. Furthermore, we explore if the 

value of 𝜇 can be determined a priori according to available or estimated data. We apply the 

same smoothing to our proxy data as we do to the CILQ. Thereafter, we employ equation (14). 

Now let 𝐙 stand for a matrix of intermediate flows. Our first non-parametric scenario, NP1, can 

be formalized as follows: 

𝑁𝑃1𝑖𝑗 = �̅�𝑟(tanh(𝐶𝐼𝐿𝑄𝑖𝑗 − 1) + 1) (15) 

where: 

�̅�𝑟 = tanh (
𝑧••

𝑟𝑟

𝑧••
•𝑟

− 1) + 1 𝑟 ⊂ 𝑛 (16) 

In equation (16), a dot (•) stands for summation across a given dimension: in superscripts, 

denoting origin or destination; in subscripts, denoting supplying or demanding industries. 

Therefore, 𝑧••
𝑟𝑟 stands for domestically (i.e. intraregionally) supplied intermediates and 𝑧••

•𝑟 for 

nationally supplied intermediates (domestic + interregional imports). �̅�𝑟 denotes our non-

parametric estimate of 𝜇 for region r. Even though such data might not be available in all 

countries and regions, literature suggests several ways to estimate these figures. See Thissen et 

al. (2018) for a recent application to build the EUREGIO dataset. 

Finally, we conceive a more information-demanding scenario, NP2, with industry-specific 

rectifications, as in Zhao and Choi (2015). We proceed as in NP1. Formally: 
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𝑁𝑃2𝑖𝑗 = �̅�𝑗
𝑟(tanh(𝐶𝐼𝐿𝑄𝑖𝑗 − 1) + 1) (17) 

where: 

�̅�𝑟 = tanh (
𝑧•𝑗

𝑟𝑟

𝑧•𝑗
•𝑟 − 1) + 1 𝑟 ⊂ 𝑛 (18) 

In equation (18), 𝑧•𝑗
𝑟𝑟 stands for domestically (i.e. intraregionally) supplied intermediates by 

industry j and 𝑧•𝑗
•𝑟 for nationally supplied intermediates (domestic + interregional imports) by 

this industry. Because of the amount of data required, this equation only provides an ideal 

scenario, which we use for counterfactual comparisons. 

3. EMPIRICAL APPLICATION 

3.1. Methods and data 

We now present an empirical application to illustrate our approach. We aggregate the Korean 

IRIO models for 2005 and 2015 up to 31 sectors. Despite possible biases induced by 

aggregation (Lahr and Stevens 2002), that is the only way we could find to establish 

straightforward comparisons across time. We subsequently aggregate all trade flows into 

national IO models. Our aim is to extract a regional model for each region from the national 

matrices using our methodology. 

Our detailed results for the two years are presented in Tables 1 and 2, which display the values 

of the following statistic for each region and measure: 

𝑆𝑇𝑃𝐸 = 100 
∑ ∑ |�̃�𝑖𝑗

𝑟 − 𝑎𝑖𝑗
𝑟 |𝑛

𝑗=1
𝑛
𝑖=1

∑ ∑ 𝑎𝑖𝑗
𝑟𝑛

𝑗=1
𝑛
𝑖=1

 (19) 

where STPE is the standardized total percentage error, �̃�𝑖𝑗
𝑟  stands for the estimated regional 

input coefficients and 𝑎𝑖𝑗
𝑟  for their true counterparts. For the four parametric methods (FLQ, 

AFLQ, 2D-LQ and RFLQ), we take the parameter value that minimizes the STPE for a 

sequence from 0 to 1, with steps of 0.01. 

3.2. Results 

It is helpful to start by considering the rankings of the parametric methods in terms of the STPE, 

which are shown in Tables 4 and 5 in the appendix. A key finding is the excellent performance 

of the 2D-LQ approach. It gives the best results for 13 of the 16 regions in 2005 and takes 

second place in the others. This outstanding performance is mirrored in 2015. By contrast, the 
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CILQ is clearly the worst approach in both years. We may note too that the FLQ outperforms 

the AFLQ in 11 out of 16 cases in 2005 and in 13 out of 17 cases in 2015.  

The comparative outcomes for the FLQ and RFLQ are also very interesting. Here the RFLQ 

gives better results than the FLQ for 13 of the 16 regions in 2005. The only exceptions are 

Seoul, Busan and Gangwon. In 2015, the RFLQ outperforms the FLQ in all regions apart from 

Seoul, where its performance is very poor. Even so, in terms of rankings, it is evident that the 

RFLQ is a big improvement on the FLQ. Taking the rankings as a whole, what is striking about 

the outcomes in the two years is how similar they are, notwithstanding the gap of ten years. 

Table 3 provides some useful extra information regarding the parametric methods. One can see 

that the mean values of 𝛼, 𝛽 and δ are very similar in the two years, while there is a more 

noticeable difference in the mean values of 𝜇. In terms of dispersion, this is clearly much 

greater for 𝛼 than it is for 𝛽. It is worth noting here that 𝛼 and 𝛽 are the influential parameters 

in the correction by rows and columns, respectively. It is also evident that 𝛼 fluctuates 

substantially more than does δ. Finally, it is interesting to see that parameter 𝜇 for the RFLQ 

exhibits substantially less dispersion than does δ for the FLQ. 

The optimal values of 𝜇, shown in parentheses in Tables 1 and 2, are also worth examining. 

For the initial year 2005, we can discern a tendency for 𝜇 to decline as regions get smaller: for 

the four largest regions, the mean value of 𝜇 is 0.530; for the next seven regions, it is 0.394; 

while, for the four smallest regions, it is 0.298. By contrast, the values of 𝜇 for the year 2015 

do not vary so greatly across regions: the mean is 0.553 for the four largest regions, whereas it 

is 0.464 for the next seven and 0.460 for the five smallest regions. We have ignored the new 

and very small region of Sejong in this comparison. Figures 3 and 4 in the appendix illustrate 

how sensitive STPE values are to the parameter choice in FLQ, AFLQ and RFLQ. 

Notwithstanding the impressive results for the 2D-LQ revealed in Tables 1 and 2, there is a 

potential problem in the application of this method: it involves two unknown parameters, 𝛼 

and 𝛽, whose optimal values vary noticeably across regions, especially so in the case of 𝛼.1 By 

contrast, the FLQ only involves one unknown parameter. Whilst it is true that the values of δ 

also vary noticeably across regions, this problem can be overcome by using the FLQ+ method.  

 
1 Based on an analysis of Eurostat data for six European countries in 2005, Pereira-López et al. (2020, 

table 5) provide some reassurance that the range of suitable values of α and β is relatively small and 

that analysts would not go far wrong by choosing an α of 0.1 or 0.15 and a β in the range 0.8 to 1.2. 

However, these values are not consistent with those reported in our Tables 1 and 2. 
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Tables 1 and 2. STPE results for alternative regionalization techniques, years 2005 and 2015. Source: own elaboration. 

 Region Regional size 

(%) 

CILQ FLQ AFLQ 2D-LQ RFLQ NP1 NP2 

 (𝛿) (𝛿) (𝛼;  𝛽) (𝜇)   
1 Gyeonggi 20.14 69.90 41.56 42.73 37.49 39.16 39.32 35.50 
    (0.56) (0.62) (0.68; 0.42) (0.55)   
2 Seoul 18.20 54.36 51.11 57.42 41.80 68.94 68.96 58.07 
    (0.19) (0.71) (0.72; 0.25) (0.58)   
3 North Gyeongsang 8.42 82.39 61.06 67.54 53.64 54.43 54.53 49.47 
    (0.69) (0.81) (0.32; 0.29) (0.49)   
4 South Gyeongsang 7.35 73.56 55.56 60.53 52.45 51.66 51.67 47.28 
    (0.45) (0.53) (0.52; 0.30) (0.50)   
5 Ulsan 7.11 106.77 79.79 83.60 64.28 61.43 64.34 57.01 
    (0.56) (0.89) (0.16; 0.28) (0.37)   
6 South Jeolla 6.46 84.98 75.68 75.22 53.80 61.93 69.88 54.24 
    (0.38) (0.95) (0.40; 0.22) (0.40)   
7 South Chungcheong 6.33 112.65 69.24 66.41 53.05 53.14 55.41 49.80 
    (0.64) (0.67) (0.16; 0.32) (0.39)   
8 Incheon 5.49 116.02 57.61 58.69 50.30 46.68 48.00 46.02 
    (0.54) (0.70) (0.32; 0.36) (0.40)   
9 Busan 5.06 85.35 52.99 52.59 49.70 54.66 55.32 49.07 
    (0.40) (0.44) (1.04; 0.23) (0.42)   
10 North Chungcheong 2.92 100.61 68.98 70.35 61.99 62.13 63.06 56.39 
    (0.50) (0.52) (0.40; 0.32) (0.36)   
11 Daegu 2.88 84.62 57.78 58.34 50.50 55.23 55.45 49.96 
    (0.30) (0.34) (0.88; 0.25) (0.42)   
12 North Jeolla 2.74 107.54 69.88 70.15 58.24 62.49 65.41 58.57 
    (0.46) (0.54) (0.52; 0.29) (0.32)   
13 Gangwon 2.16 97.97 71.99 72.15 58.16 73.62 76.23 67.83 
    (0.18) (0.33) (0.64; 0.15) (0.38)   
14 Gwangju 2.15 112.48 72.81 72.55 60.65 65.47 68.35 61.63 
    (0.37) (0.44) (0.64; 0.28) (0.30)   
15 Daejeon 1.93 152.24 87.61 87.27 74.61 74.96 86.06 76.18 
    (0.67) (0.75) (0.84; 0.36) (0.19)   
16 Jeju 0.67 94.19 83.92 86.23 53.10 79.24 84.20 72.86 
    (0.20) (0.33) (0.96; 0.13) (0.30)   
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Region 

Regional size 

(%) 

CILQ FLQ AFLQ 2D-LQ RFLQ NP1 NP2 

 (𝛿) (𝛿) (𝛼;  𝛽) (𝜇)   

1 Gyeonggi 22.85 61.53 39.41 40.44 34.23 33.25 33.28 31.04 

    (0.55) (0.58) (0.44; 0.42) (0.55)   

2 Seoul 18.97 56.93 56.59 61.66 41.99 70.25 70.37 60.95 

    (0.16) (0.58) (0.76; 0.17) (0.62)   

3 North Gyeongsang 7.00 76.31 55.67 61.52 44.65 45.46 45.57 41.89 

    (0.35) (0.41) (0.28; 0.29) (0.48)   

4 South Gyeongsang 6.93 67.13 55.82 63.74 46.83 45.19 45.61 41.59 

    (0.27) (0.52) (0.36; 0.23) (0.56)   

5 Ulsan 6.32 99.33 73.55 75.35 56.51 52.68 53.37 49.67 

    (0.65) (0.73) (0.04; 0.30) (0.43)   

6 South Jeolla 4.89 75.21 65.82 72.03 46.69 54.22 55.16 46.53 

    (0.29) (0.30) (0.52; 0.19) (0.49)   

7 South Chungcheong 6.96 94.44 67.93 68.15 58.66 57.42 58.58 53.88 

    (0.64) (0.69) (0.08; 0.37) (0.41)   

8 Incheon 4.96 100.01 51.33 52.64 48.56 49.46 49.74 46.41 

    (0.48) (0.55) (0.80; 0.26) (0.42)   

9 Busan 4.73 68.68 49.95 49.93 42.74 46.64 47.37 41.78 

    (0.28) (0.33) (0.92; 0.20) (0.58)   

10 North Chungcheong 3.47 100.86 72.38 73.68 62.01 64.18 64.39 58.28 

    (0.48) (0.62) (0.12; 0.34) (0.41)   

11 Daegu 2.82 77.21 58.77 58.16 44.53 51.39 51.71 46.50 

    (0.29) (0.31) (1.04; 0.19) (0.51)   

12 North Jeolla 2.82 82.42 62.71 64.11 50.30 55.35 55.35 49.04 

    (0.33) (0.33) (0.64; 0.19) (0.49)   

13 Gangwon 1.97 88.31 67.63 64.74 52.46 67.15 67.17 59.90 

    (0.40) (0.42) (0.88; 0.19) (0.46)   

14 Gwangju 2.07 91.12 69.87 72.12 52.27 59.53 59.56 53.60 

    (0.35) (0.41) (1.08; 0.18) (0.46)   

15 Daejeon 1.92 124.34 79.82 78.86 59.84 64.35 64.38 58.37 

    (0.44) (0.47) (1.04; 0.25) (0.41)   

16 Jeju 0.81 77.16 71.21 71.37 48.13 69.39 69.39 60.85 

    (0.19) (0.27) (0.68; 0.13) (0.48)   

17 Sejong 0.50 183.03 87.88 88.30 72.63 76.65 87.41 78.75 

    (0.59) (0.60) (0.60; 0.29) (0.19)   
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Table 3. Means and coefficients of variation of parameters 

Formula FLQ 2D-LQ RFLQ 

Parameter δ α β μ 

Mean 2005 0.44 0.58 0.28 0.40 

Mean 2015 0.40 0.60 0.25 0.47 

V (%) 2005 38 47 27 25 

V (%) 2015 38 57 32 20 

Note: V = coefficient of variation. Source: own elaboration. 

Turning now to the choice between 2D-LQ and RFLQ, a considerable advantage of using the 

RFLQ rather than the 2D-LQ is that one can avoid the complex task of finding suitable values 

for 𝛼 and 𝛽. Like the FLQ, the RFLQ has only one unknown parameter 𝜇 and it is important 

to consider how one might obtain a value in a practical application. Here our non-parametric 

scenario NP1, which is much less information-demanding than the alternative scenario NP2, 

can be of some assistance. 

In fact, Table 2 reveals that the outcomes for NP1 in 2015 very closely match those for the 

RFLQ, with a negligible difference in the STPE in all regions except for the smallest, Sejong. 

This is a very important finding, as it offers a way of obtaining good estimates of 𝜇 for use in 

the RFLQ method. It should be recalled that the RFLQ results displayed in Table 2 were 

computed using the optimal values of 𝜇 obtained from a full set of survey-based data. Such 

data would rarely be available in a practical application. Looking now at the outcomes for 2005 

in Table 1, it is evident that there is a negligible difference in the outcomes for NP1 and RFLQ 

in half of the regions. Of the other regions, South Joella and Daejeon stand out as having fairly 

large differences in the outcomes. There is no obvious reason why NP1 should perform so well 

in 2015 yet produce rather more mixed results in 2005. 

Furthermore, Figures 5 and 6 in the appendix show how NP1 outperforms the 2D-LQ for a 

majority of 𝛼, 𝛽 combinations for 13 regions in 2015 and 11 in 2005. These results also suggest 

that the 2D-LQ would generally be preferable in small regions and in Seoul. Nevertheless, the 

problem of estimating 𝛼 and 𝛽 in such regions would remain. 

As expected, the NP2 scenario yields a substantially more accurate set of results than does the 

NP1 scenario. However, the sector-specific data underlying NP2 would not normally be 

available to analysts and the results are presented merely for illustrative purposes. 
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Finally, it is worth remarking that our results for the RFLQ and NP1 are very encouraging in 

the sense that they demonstrate that, with reasonable information requirements, we can gain 

estimates almost as good as those from methods often cited in the literature. What is more, this 

specification does not rely on any unknown parameter. 

4. CONCLUDING REMARKS 

In this paper, we have addressed two open and relevant improvement opportunities related to 

the LQ regionalization literature. First, we have explored if alternative functional shapes can 

be used to model indirect relationships between regional size, regional self-sufficiency and 

regional interindustry linkages. Secondly, we have assessed if our alternative functional shapes 

allow for the substitution of unknown parameters with proxies set a priori. 

We draw two tentative conclusions from our empirical work. These should be taken with the 

caveat that they might be biased owing to the use of peculiar data. First, methods using S-

shaped functions appear to be well suited to capture the relations between regional size, 

regional self-sufficiency and regional technologies. We find that our proposed RFLQ 

(reformulated FLQ) approach outperforms more conventional methods for most regions in both 

the 2005 and 2015 Korean datasets. Secondly, our results suggest that combining regional 

supply self-sufficiency measures with our formula might be a good way to obtain parameters 

without seriously compromising accuracy in the estimated coefficients. 

Various research avenues might be considered to continue the work presented here. Most 

importantly, a stronger rationale connecting regional characteristics with regional 

technological structures is needed. Isard’s (1960) first channel of synthesis – connecting 

regional IO with location theory – should be revisited and extended if possible. In this vein, 

perhaps it would be interesting to evaluate more distinctive functions for modelling regional 

disparities. Secondly, it might be fruitful to study how sensitive each method is to changes in 

parameter values. This could allow for more informed choices between parametric and non-

parametric techniques. Finally, the combination of our approach with econometric or machine-

learning-based estimates (Pakizeh and Kashani 2022) could be considered in the future. 
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APPENDIX 

Table 4. Ranking of alternative parametric regionalization techniques: year 2005. Source: table 1. 

 Region Regional size (%) 
CILQ FLQ AFLQ 2D-LQ RFLQ 

     

1 Gyeonggi 20.14 5 3 4 1 2 

2 Seoul 18.20 3 2 4 1 5 

3 North Gyeongsang 8.42 5 3 4 1 2 

4 South Gyeongsang 7.35 5 3 4 2 1 

5 Ulsan 7.11 5 3 4 2 1 

6 South Jeolla 6.46 5 4 3 1 2 

7 South Chungcheong 6.33 5 4 3 1 2 

8 Incheon 5.49 5 3 4 2 1 

9 Busan 5.06 5 3 2 1 4 

10 North Chungcheong 2.92 5 3 4 1 2 

11 Daegu 2.88 5 3 4 1 2 

12 North Jeolla 2.74 5 3 4 1 2 

13 Gangwon 2.16 5 2 3 1 4 

14 Gwangju 2.15 5 4 3 1 2 

15 Daejeon 1.93 5 4 3 1 2 

16 Jeju 0.67 5 3 4 1 2 
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Table 5. Ranking of alternative parametric regionalization techniques: year 2015. Source: table 2. 

 

Region Regional size (%) 
CILQ FLQ AFLQ 2D-LQ RFLQ 

      

1 
Gyeonggi 22.85 5 3 4 2 1 

2 
Seoul 18.97 3 2 4 1 5 

3 
North Gyeongsang 7.00 5 3 4 1 2 

4 
South Gyeongsang 6.93 5 3 4 2 1 

5 
Ulsan 6.32 5 3 4 2 1 

6 
South Jeolla 4.89 5 3 4 1 2 

7 
South Chungcheong 6.96 5 3 4 2 1 

8 
Incheon 4.96 5 3 4 1 2 

9 
Busan 4.73 5 4 3 1 2 

10 
North Chungcheong 3.47 5 3 4 1 2 

11 
Daegu 2.82 5 4 3 1 2 

12 
North Jeolla 2.82 5 3 4 1 2 

13 
Gangwon 1.97 5 4 2 1 3 

14 
Gwangju 2.07 5 3 4 1 2 

15 
Daejeon 1.92 5 4 3 1 2 

16 
Jeju 0.81 5 3 4 1 2 

17 Sejong 0.50 5 3 4 1 2 

 



20 

 

 

Figure 3. STPE sensitivity to values of parameters for Korean regions: year 2005 

Source: own elaboration 

 

 

 

Figure 4. STPE sensitivity to values of parameters for Korean regions: year 2015 

Source: own elaboration 
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Figure 5. Comparison between STPE values for NP1 (grey) and 2D-LQ: year 2005 

Source: own elaboration 

 

 

 

Figure 6. Comparison between STPE values for NP1 (grey) and 2D-LQ: year 2015 

Source: own elaboration 

 


