The Indicators of Macroeconomic Policy in the Baltic Countries

Ismena REVINA

Edgars BRĒĶIS

University of Latvia Faculty of Economics and Management Faculty of Economics and Management Aspazijas 5, Riga, LV-1050 LATVIA

revina@lanet.lv

+3717034646

University of Latvia Aspazijas 5, Riga, LV-1050 LATVIA

edgars@lanet.lv

+371 7034746

June 2004

Annotation

The purpose of this paper is to compare Latvia's production structure in the late - 1990s to that in Lithuania and Estonia. Countries' economics growth rates are broadly similar, but there are disparities in gross domestic product per capita. The composition of total supply and value added is examined across countries. Differences arise as several industries are more important in countries' production structures.

JEL Classification: L16, O57, C22 country comparisons; economical activity; gross fixed capital formation; error Key words: correction model

Introduction

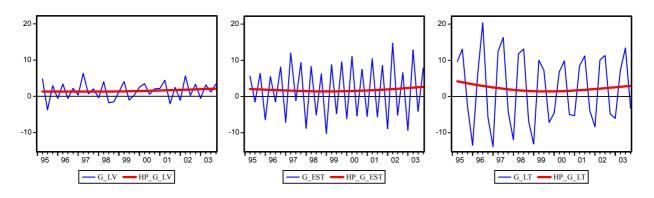
With economic growth it is understood expand of Gross Domestic Product (GDP) volume. For mutual comparison of the countries are used derived GDP volume index - Gross Domestic Product per capita. Nowadays are discussed two groups of factors which form growth dynamics and its tendencies. First, there are priority changes for economic growth. Second, there is reorganization of the growth factors to provide for the technical progress.

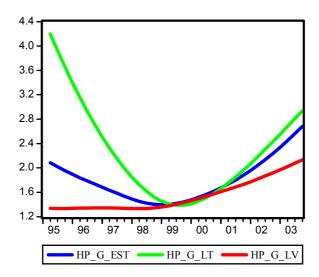
A comparative analyse of the Gross Domestic Product composition from expenditure side and the sectors of economic activity contribution to Gross Value Added is used to clarify similarities and dissimilarities in economic growth tendencies for Latvia, Lithuania and Estonia. Besides, there is utilised error correction method to analyse in short – run investments effect on import. The analyses cover a period from 1995 to 2003.

1 Economical Growth

Gross Domestic Product, which is one of the vital national account aggregates, represents in a concise form the activities of economic operators within a given economic territory. It corresponds to the value of all goods and services produced by economic units within a given period, less the value of intermediate goods used in the production process, less taxes minus subsidies on products, less the financial intermediation services indirectly measured. These aggregates are essential indicators for macroeconomic analysis and economic policy.

With economic growth it is understood expand of Gross Domestic Product (GDP) volume. For mutual comparison of the countries is used derived GDP volume index - Gross Domestic Product per capita.




Figure 1: Gross Domestic Product per capita growth, percent of previous period, at constant prices

G – the actual time series of Gross Domestic Product per capita

HP_G – the time series smoothed by the Hodrick – Prescott filter, λ =1600

Here and after: LV- Latvia, LT – Lithuania, EST – Estonia

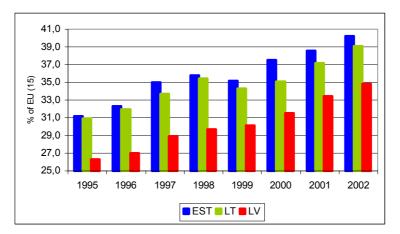

Data Source: national statistic offices

Figure 2: Gross Domestic Product per capita growth, percent of previous period, at constant prices (for smoothed data)

GDP per capita in Latvia, Lithuania and Estonia stable increases over viewed period. Growing rates of GDP per capita in Lithuania was higher than in Estonia and in Estonia it was higher then in Latvia. It was with exemption in period of 1998 – 2000 when economic growth of all three countries had to manage after-effects of Russian financial crisis. (Figure 1, 2)

The differences in GDP per capita growth affect countries converge to EU average level. That has to be shown by the volume index of GDP per capita in Purchasing Power Standards (PPS) expressed in relation to the European Union (EU-15) average which set to equal 100.

Figure 3 GDP per capita in PPS (EU15=100) Data Source: Eurostat

It follows from data shown in Figure 3 that GDP per capita in PPS difference between Lithuania and Latvia, and wherewith difference between Estonia and Latvia, remains. Difference in GDP per capita in PPS for Latvia and Estonia vary between 4,9 and 6,1 per cent points; and for Latvia and Lithuania – between 3,6 and 5,7 per cent points. Equally, difference between Estonia and Lithuania vary between 0,3 and 1,4 per cent points, with exemption in year 2000 when difference obtained 2,4 per cent points.

To find out background of these average value of GDP per capita growth first look on GDP expenditure side.

2 Uses of Gross Domestic Product

For the viewed period 1995:1 till 2003:4 the final consumption expenditure of household and non-profit institutions serving households share in GDP varied between 52% - 65% in Estonia, 57% - 71% in Lithuania, and 59% - 72% in Latvia. As it's seen from Figure 4, there is small tendency to decrease for the final consumption expenditure of household share in GDP, but in average this indicator in Latvia and Lithuania is higher than in Estonia by 5% of GDP.

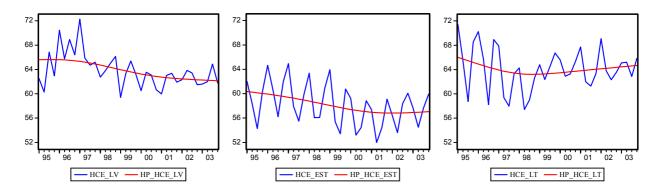
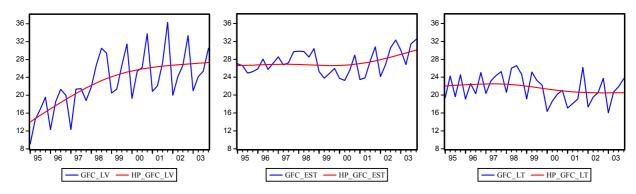


Figure 4: Main GDP aggregates: Final consumption expenditure of household and non-profit institutions serving households, in % of GDP


Data source: the International Financial Statistics (IFS) database

The final consumption expenditure of general government in Estonia and Lithuania as shares of GDP sustained grows down (Figure 5). In Estonia this indicator deceases for 7% points of GDP, from 26% till 19% level; in Lithuania - for 5% points of GDP, from 23% till 18% level. On the contrary, for Latvia this indicator has no tendency to decrease; it does vary between 20 % and 22% of GDP.

Figure 5: Main GDP aggregates: Final consumption expenditure of general government, in % of GDP Data source: the International Financial Statistics (IFS) database

Gross fixed capital formation consists of resident producers acquisitions, less disposals of fixed tangible or intangible assets. This covers in particular machinery and equipment, vehicles, dwelling and other buildings. Bigger increase of this indicator took place in Latvia as it's seen in Figure 6 on the left side; the gross fixed capital formation (investments) share in GDP grows up from 14% level to 27%. In Estonia the gross fixed capital formation share in GDP grows up only from 27% level to 30%. On the contrary, in Lithuania the gross fixed capital formation share in GDP grows down from 22% level to 20%.

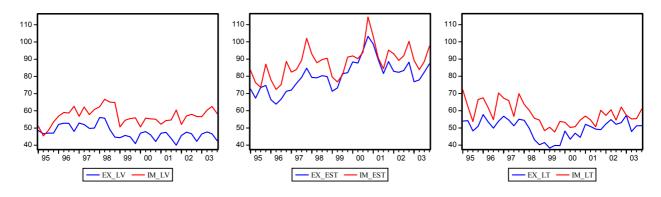


Figure 6: Main GDP aggregates: Gross fixed capital formation (investments), in % of GDP Data source: the International Financial Statistics (IFS) database

In Latvia exports amount as share of GDP in period 1995:1 till 2003:4 decreases from 50% to 45% level. Till 1998 import amount as share of GDP increased by 5% and obtained 58% level, after it was stay between 57-58% levels. Wherewith, the net import had tendency increase as export level decrease.

In Lithuania from 1995 till 1999 export decreased from 54% till 47% of GDP but from 2000 this indicator increased by 5% and in 2003 obtained 52% level. Import had tendency to decrease until 2000, from 66% till 55% of GDP, after it increased only by 2% of GDP; till 57%. As a result net import had strong tendency to decrease; from 12% in 1995 till 5% in 2003.

In Estonia export amount as share of GDP had sustainable tendency to increase from 1995 till 2001, from 68% till 86% of GDP; after it decreased a little to 85% level. The import amount as share of GDP on contrary to Latvia and Lithuania increases for all viewed period, from 78% till 93% of GDP.

Figure 7: Main GDP aggregates: exports and imports of goods and services, in % of GDP Data source: the International Financial Statistics (IFS) database

The basic macroeconomic identity states that

$$C + G + I + NX \equiv C + S + (TA - TR)$$
⁽¹⁾

where consumption denoted by C, investment spending by I, private sector savings by S, government purchases by G, transfer payments by TR, the amount of taxes received by the government TA and net export of goods and services by NX. From the identity (1) follows that

$$S + (TA - TR - G) \equiv I + NX .$$
⁽²⁾

The set of terms in parenthesis on the left – side is the government budget surplus. So the left – hand side of identity is the total country savings: the sum of the private sector savings and the government savings.

The savings shows country possibility to invest into domestic production or to buy foreign assets. Hence if net export decreases then it will reduce country's possibility to invest into domestic production.

In Figure 8 are shown countries savings as share of GDP changes for Latvia, Estonia and Lithuania in examined period; calculated from the right – hand side of identity (2). As it is seen from calculations and Figure 8, for all period of time savings level in Estonia was higher than in Latvia or Lithuania.

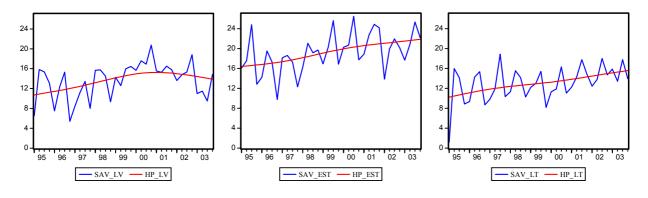


Figure 8: Savings, as % of GDP

(Calculated by authors using data from the International Financial Statistics (IFS) database)

The difference between saving levels in Estonia and Latvia arises from 5% points till 8% points of GDP, but between Estonia and Lithuania it's oscillated around 6% point level. The lowest saving rate in Estonia is in the region of the highest Latvia and Lithuania savings rates what confirms Estonian front-runner status.

Until 2002 the level of savings was higher in Latvia than in Lithuania, but after situation became counter. This may partly explain why Lithuania's economic growth rate overtakes Latvia's growth rate; in last few years Lithuania has bigger possibility than Latvia to invest into domestic production or to buy foreign assets.

3 Contribution to Gross Value Added by Sectors of Economic Activity

For analyses of Estonia, Lithuania and Latvia sectors of economic activity is utilized Gross Value Added (GVA). GVA just like GDP is an indicator for country's economic situation. GVA differs from GDP just with respect to valuation, which is at producers' prices. It does not include the value of taxes on products. The contribution to GVA by sector of economic activity in Estonia, Lithuania and Latvia is summarized in Table 1.

\setminus		Latvia		Estonia Lithuania			Estonia L		
	Services	Industry and Construction	Agriculture, Hunting, Forestry and Fishing	Services	Industry and Construction	Agriculture, Hunting, Forestry and Fishing	Services	Industry and Construction	Agriculture, Hunting, Forestry and Fishing
1995	56,6	33,5	9,9	60,3	31,0	8,7	54,0	34,3	11,8
1996	60,5	31,4	8,2	61,5	30,1	8,4	55,2	32,0	12,7
1997	62,1	32,2	5,6	62,8	29,3	7,9	56,4	32,0	11,6
1998	65,4	30,2	4,4	63,5	29,3	7,2	57,8	32,2	10,0
1999	68,6	27,1	4,3	66,2	27,1	6,7	60,5	31,1	8,4
2000	69,8	25,3	4,9	65,3	28,5	6,1	61,6	30,4	8,0
2001	70,3	24,8	4,8	65,6	28,7	5,7	61,3	31,5	7,2
2002	70,6	24,8	4,7	65,3	29,3	5,4	62,2	30,8	7,0

Table	1.6	Contribution	to Gross	Value	Added b	v sector	of economi	c activity	in %
1 and	1	Contribution	10 01 033	value	Auucu D	y sector	or ccononn	c activity,	, m 70

Source: Eurostat

In Lithuania is the biggest agriculture, hunting, forestry and fishing share in GVA comparing with Estonia and Latvia. This sector share in GVA 1995-2002 grows down in all three countries; in Latvia for 5,2 % points, in Lithuania for 4,8% points and in Estonia for 3,3% points. As result difference 3,1% points in 1995 between agriculture, hunting, forestry and fishing shares in GVA in Lithuania and Estonia decreased and in 2002 it was 1,6% points. On contrary between Lithuania and Latvia difference 1,9% points in 1995 increases and in 2002 it was 2,3% points.

The biggest industry (mining and quarrying; manufacturing; electricity, gas and water supply, construction) share in GVA until 1997 was in Latvia, after it in Lithuania. For all countries this sector share in GVA decreased: in Latvia for 8,7% points, in Lithuania for 3,5% points, in Estonia for 1,7% point. A difference between industry shares in GVA in 2002 for Lithuania and Estonia is 1,5% points but between Lithuania and Latvia four times bigger: 6,0 % points of GDP.

In examined period services share in GVA increases; for 5,0% points in Estonia, 8,2% points in Lithuania and 14,0% points in Latvia. In 2002 services share in GVA for Latvia was 70,6%, for 5,3% points and 8,4% points more than in Estonia and Lithuania accordingly.

In Table 2 are showed the number of economically active enterprises by main kind of activity (the same grouping as in table 1). In Latvia and Lithuania breakdown by main kind of economical activity are stable and similar for both countries in examined period. In Estonia agriculture and an industry share of economically active enterprises had tendency to decrease and wherewith services share increases.

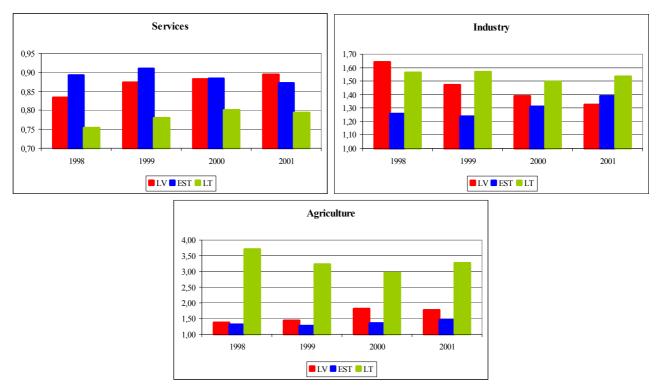
\setminus		Latvia				Esto	nia			Lithu	ania	
	Services	Industry and Construction	Agriculture, Hunting, Forestry and Fishing	TOTAL	Services	Industry and Construction	Agriculture, Hunting, Forestry and Fishing	TOTAL	Services	Industry and Construction	Agriculture, Hunting, Forestry and Fishing	TOTAL
1000	28311	6651	1168	36130	19467	6358	1492	27317	37311	9986	1320	48617
1998	78,4%	18,4%	3,2%	100%	71,2%	23,3%	5,5%	100%	76,7%	20,6%	2,7%	100%
1000	29591	6904	1133	37628	24200	7285	1771	33256	46549	11908	1540	59997
1999	78,6%	18,4%	3,0%	100%	72,8%	21,9%	5,3%	100%	77,6%	19,8%	2,6%	100%
2000	33192	7657	1143	41992	22711	6662	1379	30752	45272	11949	1583	58804
2000	79,1%	18,2%	2,7%	100%	73,8%	21,7%	4,5%	100%	77,0%	20,3%	2,7%	100%
2001	31984	7604	1080	40668	24628	6777	1285	32690	49062	12993	1405	63460
2001	78,6%	18,7%	2,7%	100%	75,3%	20,7%	3,9%	100%	77,3%	20,5%	2,2%	100%
2002	33437	7957	1154	42548	n.a	n.a	n.a		n.a	n.a	n.a	
2002	78,6%	18,7%	2,7%	100%	n.a	n.a	n.a		n.a	n.a	n.a	

Table 2: Economically Active Enterprises and Business Companies by Main Kind of Activity¹

Source: Statistical Yearbook of Latvia 2003/ Central Statistical Bureau of Latvia, Riga, 2003 Statistical Yearbook of Lithuania 2001, 2002/ Department of Statistics, Vilnius, 2001, 2002

Statistical Yearbook of Estonia 2002/ Statistical Office of Estonia, Tallinn, 2002

¹ excluding peasant farms


Next, to compare sectors by it productivity in Latvia, Estonia and Lithuania there is calculated contribution of each per cent of enterprises by kind of activity to GVA. Results for annual data 1998 – 2001 are shown in Figure 9.

It is seen that enterprises productivity in services has tendency to increase in Latvia and Lithuania. In Latvia each per cent of enterprises in services contribute up to 0,9 per cent to country

GVA. This level of productivity is close to Estonia level. In Lithuania this indicator is lower for 0,1 per cent point.

In Lithuania each per cent of enterprises from industry contribute to GVA upwards 1,5 per cents. In Estonia there is tendency to rise productivity up to 0,15 per cent points but still it is lower than in Lithuania for 0,1 per cent points. In Latvia there could be observed strong tendency to reduce productivity in industry, from 1,6% in 1998 to 1,3% in 2001.

Conspicuous in Lithuania enterprises in agriculture has productivity that is two times bigger than in Latvia and Estonia.

Figure 9: Contribution of each per cent of enterprises by kind of activity to GVA, % of GVA (Calculated by authors)

So it's seen that contribution of each per cent of enterprises from production sector (agriculture and industry) to GVA has tendency to increase in Estonia and to keep in current level in Lithuania. In Latvia this indicator increases in agriculture and services but substantially decreases for industry. Comparing these results with tendencies of the gross fixed capital formation (investments) in each country there is clear that in Estonia increase of investments involves rise of contribution of each per cent of enterprises from industry and agriculture to GVA. In Latvia increase of investments generally involves rise of contribution of each per cent of enterprises services to GVA. In Lithuania investment level (as share of GDP) is stable and contribution of each per cent of enterprises by kind of activity to GVA is stable too.

4 Fixed Capital Formation and Import

Gross fixed capital formation (investments) has not necessary to be resident producers spending on domestic goods. These spending may be partly for imported goods. As was shown above, in Estonia and Latvia an import as share of GDP increases, but in Lithuania until 2000 import level had tendency to decrease and after it increase a little. As all three countries economies are in transition to free market economy, there is necessary to raise competitiveness of domestic producers and wherewith required addition investments in fixed capital. To estimate fixed capital formation effect on import in short – run there is used error correction method.

Herewith there was estimated the long – run equilibrium relation by regressing import level on gross fixed capital formation and export levels:

$$IM_{t} = b_{0} + b_{1}FCF_{t} + b_{2}EX_{t} + u_{t}, \qquad (3.1)$$

where IM_t – import; FCF_t – gross fixed capital formation; EX_t – export; u_t – error term; b_0 , b_1 , b_2 – parameters and $b_1 > 0$, $b_2 > 0$. All data is quarterly and expressed as share of GDP for period from 1995:1 till 2003:4.

First, the time series *IM*, *EX* and *FCF* was pre tested for stationarity. As could be seen from Appendixes 1a-c, these time series contained unit root.

Second, to test that model's variables are cointegrated there is used the Johansen method. This method is included in software package EViews. A result shows (Appendix 2) that for all countries' the time series are cointegrated under assumption about persistence of linear deterministic trend (restricted). Wherewith there is showed that IM, EX and FCF are cointegrated, that is, there is a long term relationship between them. Of course, in the short – run there may be disequilibrium. To show the short – run behaviour of the import to its long – run value there is used the Engle – Granger error correction mechanism (ECM) below.

The empirical counterparts of (3.1) for the each country are:

Latvia:
$$I\hat{M}_{t} = -7,808 + 0,676 FCF_{t} + 1,035 EX_{t}$$
 $R^{2} = 0,642$ $d = 1,632$ (3.2)

Estonia: $I\hat{M}_{t} = -4,611 + 0,906 FCF_{t} + 0,850 EX_{t}$ $R^{2} = 0,831$ d = 1,937 (3.3)

Lithuania: $I\hat{M}_{t} = -11,973 + 0,922 FCF_{t} + 1,013 EX_{t}$ $R^{2} = 0,720$ d = 1,711 (3.4)

Since used time series are individually nonstationary, there is the probability that these regressions are spurious. Performing a unit root test on the residuals obtained from (3.2), (3.3) and (3.4), it is shown that residuals from each regression are I(0) – they are stationary (Appendix 3).

Now for ECM consider the following model:

$$\Delta IM_t = c_0 + c_1 \Delta FCF_t + c_2 \Delta EX_t + c_3 u_{t-1} + \varepsilon_t$$
(3.5)

where Δ denotes the first difference operator, ε_t is a random error term and u_{t-1} is the one – period lagged value of the error from regressions (3.2), (3.3) or (3.4).

The empirical counterparts of (3.5) are below.

Latvia:

$$\Delta I \hat{M}_{t} = -0,035 + 0,505 \Delta F C F_{t} + 0,594 \Delta E X_{t} - 0,806 \hat{u}_{t-1}$$

$$R^{2} = 0,662 \qquad d = 1,862$$
(3.6)

Estonia:

 $\Delta I \hat{M}_{t} = \underbrace{0,005}_{[0,008]} + \underbrace{0,652}_{[2,518]} \Delta F C F_{t} + \underbrace{0,800}_{[5,811]} \Delta E X_{t} - \underbrace{1,027}_{[-5,411]} \hat{u}_{t-1}$ $R^{2} = \underbrace{0,812}_{R} d = 1,859$ (3.7)

Lithuania:

 $\Delta I \hat{M}_{t} = -0,315 + 0,900 \Delta F C F_{t} + 1,185 \Delta E X_{t} - 1,065 \hat{u}_{t-1}$ $R^{2} = 0,817 \quad d = 1,951$ (3.8)

As it's seen from the long – run equilibrium regressions (3.2), (3.3), (3.3) in Estonia and Lithuania gross fixed capital formation has bigger effect on import than in Latvia. In Estonia and Lithuania rise of fixed capital formation by 1 % of GDP extend import for 0,9 % of GDP but in Latvia for up to 0,7%.

Regressions (3.6), (3.7), (3.8) shows that in Estonia and Lithuania one unit deviation from long – run import level in previous period will be eliminated at present period. In Latvia 80 per cent of deviation from long – run import level in previous period will be eliminated at present period.

Besides, in Lithuania short - run changes in fixed capital formation level are faster reflected in the import level than in Estonia for 1,5 times; but compare to Latvia for 2 times. Equally, in Lithuania short – run changes in export level are faster reflected in the import level than in Estonia for 1,4 times; and compare to Latvia for 1,8 times.

As stated above, in Lithuania sectors of industry and agriculture are more important than in Estonia and Lithuania. To keep competitive capacity of industry and agriculture there is necessary to renew particular machinery and equipment, vehicles, dwelling and other buildings; therefore Lithuania have a higher acquisition of foreign goods in fixed capital formation than Estonia and Latvia. As Lithuania less than Estonia and even less than Latvia are services – guided, then short – run changes of export are quickly reflected in import level.

Summary and Conclusions

In this paper is made comparative analysis of production structure in Latvia, Lithuania and Estonia using analysis of main GDP aggregates and by contribution to GVA by sectors of economical activity.

The error correction method is used to estimate fixed capital formation effect on import in short – run.

The analysis shows that in Estonia country savings level is higher than in Lithuania and Latvia. It shows that Estonia has bigger possibility to invest into domestic production or to buy foreign assets than two other countries. Some differences arise as some economical activity is more important in some countries. For example, the contribution to value added from agriculture and industry is larger in Lithuania relative to Estonia and Latvia; the contribution to value added from services is larger in Latvia relative to Estonia and Lithuania.

The economically active enterprise breakdown by main kind of economical activity is similar for all three countries. The main reason for industry and services comparatively larger contribution to value added in Lithuania, it is a higher fixed capital formation relationship to import in short - run. This shows that import more than in Estonia and Latvia is used to renew particular machinery and equipment, vehicles, dwelling and other buildings and so to keep higher competitive capacity of industry and agriculture.

References

- Davidson, R. and MacKinnon, J.G. "Estimation and Inference in Econometrics", Oxford University Press, 1993
- Enders, W. "Applied Econometric Time Series", 2nd ed., Wiley, 2003
- Gärtner, M. "Macroeconomics", Pearson Education, 2003
- Gujarati, D.N. "Basic Econometrics", 4th ed., McGraw-Hill, 2003
- "Statistical Yearbook of Estonia 2002", Statistical Office of Estonia, Tallin, 2002
- "Statistical Yearbook of Latvia 2003", Central Statistical Bureau of Latvia, Riga, 2003
- "Statistical Yearbook of Lithuania 2002, Department of Statistics to the Government of the Republic of Lithuania, Vilnius, 2002
- "Statistical Yearbook on Candidate Countries. Data 1997 2001", Office for Official Publications of the European Communities, 2003

The Augmented Dickey – Fuller (ADF) Tests for Latvia's time series

Null Hypothesis: D(FCF) has a unit root Exogenous: None Lag Length: 2 (Automatic based on SIC, MAXLAG=9)

t-StatisticProb.*Augmented Dickey-Fuller test statistic-12.020930.0000Test critical values:1% level-2.6392105% level-1.95168710% level-1.610579

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(FCF,2) Method: Least Squares Sample (adjusted): 1996Q1 2003Q4 Included observations: 32 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(FCF(-1)) D(FCF(-1),2) D(FCF(-2),2)	-3.384911 1.564809 0.777865	0.281585 0.203972 0.115047	-12.02093 7.671689 6.761253	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.895291 0.888070 3.799770 418.7094 -86.54909	S.D. depe Akaike in Schwarz	endent var indent var fo criterion criterion Vatson stat	11.35754

Null Hypothesis: D(IM) has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

		t-Statistic	Prob.*
Augmented Dickey-	Fuller test statistic	-8.486692	0.0000
Test critical values:	1% level	-2.634731	
	5% level	-1.951000	
	10% level	-1.610907	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IM,2) Method: Least Squares Sample (adjusted): 1995Q3 2003Q4 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(IM(-1))	-1.360046	0.160256	-8.486692	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.685774 0.685774 4.084618 550.5753 -95.58217	S.D. depe Akaike in Schwarz	fo criterion	7.286692

Null Hypothesis: D(EX) has a unit root Exogenous: None

Lag Length: 0 (Fixed)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	-6.049122	0.0000
Test critical values: 1% level	-2.634731	
5% level	-1.951000	
10% level	-1.610907	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(EX,2) Method: Least Squares Sample (adjusted): 1995Q3 2003Q4 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EX(-1))	-1.067847	0.176529	-6.049122	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.525726 0.525726 3.472962 398.0284 -90.06668	S.D. depe Akaike in Schwarz	fo criterion	-0.064706 5.042960 5.356863 5.401756 2.020466

The Augmented Dickey – Fuller (ADF) Tests for Estonia's time series

Null Hypothesis: D(FCF) has a unit root Exogenous: None Lag Length: 3 (Automatic based on SIC, MAXLAG=9)

		t-Statistic	Prob.*
Augmented Dickey-I	Fuller test statistic	-2.683852	0.0090
Test critical values:	1% level	-2.641672	
	5% level	-1.952066	
	10% level	-1.610400	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(FCF,2) Method: Least Squares Sample (adjusted): 1996Q2 2003Q4 Included observations: 31 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(FCF(-1)) D(FCF(-1),2) D(FCF(-2),2) D(FCF(-3),2)	-1.592153 0.234555 -0.204408 -0.410080	0.593234 0.470202 0.325549 0.187096	-2.683852 0.498839 -0.627887 -2.191813	0.0123 0.6219 0.5354 0.0372
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.793234 0.770260 2.094561 118.4540 -64.76542	S.D. depe Akaike in Schwarz	bendent var endent var ifo criterion criterion Vatson stat	4.369930

Null Hypothesis: D(EX) has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

		t-Statistic	Prob.*
Augmented Dickey-I	Fuller test statistic	-5.664469	0.0000
Test critical values:	1% level	-2.634731	
	5% level	-1.951000	
	10% level	-1.610907	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(EX,2) Method: Least Squares Sample (adjusted): 1995Q3 2003Q4 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EX(-1))	-0.983994	0.173713	-5.664469	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.492192 0.492192 5.457269 982.7989 -105.4327	S.D. depe Akaike in Schwarz	fo criterion	7.658177

Null Hypothesis: D(IM) has a unit root Exogenous: None Lag Length: 4 (Automatic based on SIC, MAXLAG=9)

		t-Statistic	Prob.*
Augmented Dickey-I	Fuller test statistic	-3.557714	0.0009
Test critical values:	1% level	-2.644302	
	5% level	-1.952473	
	10% level	-1.610211	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IM,2) Method: Least Squares Sample (adjusted): 1996Q3 2003Q4 Included observations: 30 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(IM(-1))	-1.470200	0.413243	-3.557714	0.0015
D(IM(-1),2)	0.716201	0.382652	1.871678	0.0730
D(IM(-2),2)	0.368045	0.302916	1.215006	0.2357
D(IM(-3),2)	0.101491	0.222425	0.456291	0.6521
D(IM(-4),2)	0.550627	0.160181	3.437522	0.0021
R-squared	0.826050	Mean dep	endent var	0.491533
Adjusted R-squared	0.798218	S.D. depe	ndent var	11.85550
S.E. of regression	5.325509	Akaike in	fo criterion	6.333906
Sum squared resid	709.0262	Schwarz	criterion	6.567438
Log likelihood	-90.00858	Durbin-W	atson stat	2.214573

The Augmented Dickey – Fuller (ADF) Tests for Lithuania's time series

Null Hypothesis: D(FCF) has a unit root Exogenous: None Lag Length: 3 (Automatic based on SIC, MAXLAG=9)

t-StatisticProb.*Augmented Dickey-Fuller test statistic-3.0402240.0036Test critical values:1% level-2.6416725% level-1.95206610% level-1.610400

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(FCF,2) Method: Least Squares Sample (adjusted): 1996Q2 2003Q4 Included observations: 31 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(FCF(-1)) D(FCF(-1),2) D(FCF(-2),2) D(FCF(-3),2)	-2.063073 0.513612 -0.002154 -0.410867	0.678593 0.526491 0.361476 0.180347	-3.040224 0.975538 -0.005959 -2.278202	0.0052 0.3380 0.9953 0.0308
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.922532 0.913924 2.083401 117.1952 -64.59982	S.D. depe Akaike in Schwarz		7.101223

Null Hypothesis: D(EX) has a unit root Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

		t-Statistic	Prob.*
Augmented Dickey-I	Fuller test statistic	-7.463233	0.0000
Test critical values:	1% level	-2.634731	
	5% level	-1.951000	
	10% level	-1.610907	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(EX,2) Method: Least Squares Sample (adjusted): 1995Q3 2003Q4 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EX(-1))	-1.255835	0.168270	-7.463233	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.627958 0.627958 4.047413 540.5911 -95.27106	S.D. depe Akaike in Schwarz	bendent var endent var ifo criterion criterion Vatson stat	-0.007230 6.635623 5.663003 5.707896 2.033484

Null Hypothesis: D(IM) has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

		t-Statistic	Prob.*
Augmented Dickey-	Fuller test statistic	-8.366055	0.0000
Test critical values:	1% level	-2.634731	
	5% level	-1.951000	
	10% level	-1.610907	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IM,2) Method: Least Squares Sample (adjusted): 1995Q3 2003Q4 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(IM(-1))	-1.336894	0.159800	-8.366055	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.678973 0.678973 5.911776 1153.320 -108.1526	S.D. depe Akaike in Schwarz	endent var ndent var fo criterion criterion Vatson stat	10.43391 6.420740 6.465633

Testing for Cointegration - the Johansen Method

Sample (adjusted):1995Q3 2003Q4Included observations:34 after adjustmentsTrend assumption:Linear deterministic trend (restricted)Series:EX FCF IMLags interval (in first differences): 1 to 1

Latvia

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	e Prob.**
None *	0.595576	55.34334	42.91525	0.0019
At most 1	0.369639	24.56346	25.87211	0.0721
At most 2	0.229714	8.873756	12.51798	0.1883

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	e Prob.**
None *	0.595576	30.77988	25.82321	0.0102
At most 1	0.369639	15.68970	19.38704	0.1590
At most 2	0.229714	8.873756	12.51798	0.1883

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Lithuania

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.860244	90.05074	42.91525	0.0000
At most 1	0.434322	23.14353	25.87211	0.1053
At most 2	0.105028	3.772720	12.51798	0.7747

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rar	k Test (Maximum Eigenvalue)
--------------------------------	-----------------------------

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None * At most 1	0.860244 0.434322	66.90721 19.37081	25.82321 19.38704	0.0000 0.0503
At most 2	0.105028	3.772720	12.51798	0.7747

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Estonia

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.652491	55.23525	42.91525	0.0019
At most 1	0.380242	19.29844	25.87211	0.2635
At most 2	0.085314	3.031920	12.51798	0.8727

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank	Test (Maximum Eigenvalue)
---------------------------------	---------------------------

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.652491	35.93682	25.82321	0.0017
At most 1	0.380242	16.26652	19.38704	0.1342
At most 2	0.085314	3.031920	12.51798	0.8727

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Appendix 3

The Unit Root Tests for Residuals of Regressions (1.1), (1.2), (1.3)

(1.1)

Null Hypothesis: D(U) has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	e -9.702203	0.0000
Test critical values: 1% level	-2.634731	
5% level	-1.951000	
10% level	-1.610907	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(U,2) Method: Least Squares Sample (adjusted): 1995Q3 2003Q4 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(U(-1))	-1.430964	0.147489	-9.702203	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.740333 0.740333 3.143405 326.0728 -86.67683	S.D. depe Akaike in Schwarz	endent var indent var fo criterion criterion /atson stat	6.168677 5.157461 5.202354

(1.3)

Null Hypothesis: U has a unit root Exogenous: None Lag Length: 0 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-	Fuller test statistic	-7.247180	0.0000
Test critical values:	1% level	-2.632688	
	5% level	-1.950687	
	10% level	-1.611059	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(U) Method: Least Squares Sample (adjusted): 1995Q2 2003Q4 Included observations: 35 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
U(-1)	-1.019873	0.140727	-7.247180	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.604570 0.604570 2.858693 277.8523 -85.91832	S.D. depe Akaike in Schwarz	bendent var endent var of criterion criterion Vatson stat	-0.354819 4.546036 4.966761 5.011200 1.767034

(1.2)

Null Hypothesis: U has a unit root Exogenous: None Lag Length: 0 (Fixed)

t-Statistic	Prob.*
-5.695181	0.0000
-2.632688	
-1.950687	
-1.611059	
	-5.695181 -2.632688 -1.950687

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(U) Method: Least Squares Sample (adjusted): 1995Q2 2003Q4 Included observations: 35 after adjustments

Variable	Coefficient	Std. Error t-Statistic	Prob.
U(-1)	-0.974502	0.171110 -5.695181	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.488037 0.488037 3.705090 466.7414 -94.99533	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat	5.178210