
The Application of the Entrop Procedure

Uwe Blien1, Friedrich Graef2

1 Institute for Employment Research,
Regensburger Str. 104, D-90327 Nürnberg, Germany

2 Institute of Applied Mathematics, University of Erlangen-Nuremberg,
Martensstr. 3, D-91058 Erlangen, Germany

Abstract: A procedure for the problem of recovering tabular data in case of
incomplete or inconsistent information is presented. It generalizes the well kown
RAS (or IPF) algorithm by allowing a wider class of constraints concerning the
table entries such as equalities and inequalities over arbitrary cross sections. The
theoretical background of the procedure is outlined and some examples of appli-
cations are reported.

1 Introduction

A frequently encountered problem in econometrics, empirical economics, and
statistics is that of recovering matrices or multidimensional tables from in-
complete information.

To problems of this type usually the RAS procedure (known from input-
output analysis) is applied, which is identical to the Iterative Proportional
Fitting Algorithm (IPF) used with log-linear models in statistics. With the
RAS method a matrix is computed which is structurally similar to a given
prior matrix and whose column and row sums attain prescribed values.

The Entrop procedure presented here is a generalization of the RAS method.
With Entrop not only values for column and row sums can be prescribed.
It may be applied whenever the information about the structure of the ma-
trix (in the following also called table) to be estimated is given by a set
of linear equations and/or inequalities with respect to the table entries. In
addition, an a priori known reference table can be specified. The structure
of the table resulting from this computational procedure will be as close as
possible to that of the reference table.

Entrop is a procedure minimizing the relative entropy. The result can be
interpreted according to criteria from statistics and formal information the-
ory (Shannon, Weaver (1949), Kullback (1968)). Under certain conditions
the table estimated by this method may be interpreted as the most likely
one.

Originally the Entrop procedure had been developed as a tool for the Edu-
cational Accounting System of the Institute for Employment Research in
Germany. Its purpose is the estimation of large matrices (with approxi-
mately 30000 elements) of transition rates between the labour market and
the educational system.
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Beyond this specific application it may serve many purposes. Typical tasks
within the range of applicability of Entrop are the disaggregation of data
available only in a summarized form, the weighting of random samples , i.e.
their adjustment to distributions known from official statistics, the estima-
tion of tables from heterogeneous, incompatible and incomplete data, the
computation of transition matrices of Markov processes, and the construc-
tion of forecasts (e.g. of the joint distribution of some variables from esti-
mates of their univariate distributions)

2 Computing Tables

The computation of two-dimensional input-output tables may be considered
as a representative example for the application of the method. Table 1
illustrates a matrix X t to be estimated.

Table 1: input-output matrix X t

inputs to industries 1 − J Σ
x11 x12 . . . x1J br

1

outputs x21 x22 . . . x2J br
2

of ind. x31 x32 . . . x3J br
3

1 − I
...

...
. . .

...
...

xI1 xI2 . . . xIJ br
I

Σ bc
1 bc

2 . . . bc
J brc

In input-output analysis the rows of the table are the outputs of industries.
The columns are the inputs. The entry at row i and column j is that part of
the total output of industry i which is used as input to industry j during a
given time period t. In most cases the number of rows I equals the number
of columns J . Here, for generality it is assumed that I is not necessarily
equal to J .

The unknown values of the elements xij of X t have to be estimated from
heterogeneous information. If, e.g., the concrete numbers of the row and
column totals are given, then the following equations have to be observed:

∑J
j=1 xij = br

i for all i, and
∑I

i=1 xij = bc
j for all j (1)

Frequently there is some information about the internal structure of X t

which might be drawn from different surveys and other sources. It can be
included into the estimation process if is possible to define appropriate linear
equations and inequalities. If—as a simple example—an estimate of a single
entry xij stemming from a representative survey is given and it has to be

2



expected that the value is affected by certain random sample and survey
errors an inequality of the form

bl ≤ xij ≤ bu (2)

may be adequate where bl and bu are the assumed lower and upper limits of
the real value corresponding to an error estimate.

By an appropriate choice of these limits information with various degrees
of reliability can be handled. The fact that a single xij is known only from
relatively vague judgements of experts can be treated by entering a relatively
large difference between bl and bu in (2) or by introducing a lower or upper
bound only. By contrast, if the given data can be regarded as “hard”, for
example because they are taken from an overall survey of the population,
then by setting bl = bu the inequality becomes an equation.

Specifying inequalities to include information affected by sample errors is
important, because contradictions between different data sources may lead to
intolerable consequences for the whole system which requires the consistency
of all accounts.

If only aggregated information on X t is available, then sums have to be taken
into account. The method developed for the estimation of tables works if
the information on the table can be given the form of K linear inequalities:

I
∑

i=1

J
∑

j=1

akijxij ≤ bk (3)

for k = 1 . . . K. A system (3) includes inequalities like (2) and—with the
akij being either equal to 0 or to 1—equations like (1). Thus, the row and
colummn sums of the tables can also be specified as conditions which must
be fulfilled by the estimates.

Under special conditions the system (3) could be solved exactly. In many
cases there are not enough inequalities to obtain an exact solution. Thus an
estimation procedure has to be applied.

In some cases an estimation can be based on additional information on the
structure of the matrix. This is possible if a matrix U t−1 for one year is
already available, whereas only incomplete and heterogeneous information
is given for the adjacent years. If it can be assumed that transition behaviour
varies only relatively slightly from year to year, the unknown matrix should
be estimated in accordance with the structure of the known matrix.

With a given reference matrix U t−1 the estimation problem can be solved
if it is possible to redefine it as an optimization problem, e.g. to minimize
a distance measure D(X t, U t−1) with the inequalities (3) representing the
constraints of the optimization process. Proceeding this way will also be
appropriate if the reference matrix U t−1 itself is the result of an estimation
(then U t−1 = X t−1), but is based on far more information than is available
for the matrix X t.

3



3 Minimizing the Relative Entropy

The above description of the estimation problem requires the definition of a
distance measure D(X,U) between tables X and U (cf. Blien, Graef (1991,
1992)). After considering the properties of some distance functions, the
relative entropy

Eu(X) =
M
∑

m=1

xm ln
(

xm

um

)

(4)

was chosen. Since the estimation procedure does not rely on a specific order-
ing of the table entries it is assumed for the following that they are linearly
numbered by m = 1, . . . ,M (with M = I · J in case of a two-dimensional
table).

Measuring the degree of similarity between two tables by (4) has a long tra-
dition in natural sciences and engineering1. Minimizing the relative entropy
can also be justified from a statistical viewpoint. If the reference matrix
has been normalized such that

∑

m um = 1, then um can be interpreted
as the probability of a certain object to be in state m. If a total number
N =

∑

m xm of objects is distributed independendly over the possible states
according to this probability law and xm is the number of objects occupying
state m then the probability of the table X = (xm) follows a multinomial
distribution:

P (X) =
N !

x1!x2! . . . xM !
ux1

1 ux2

2 . . . uxM

M

The logarithm of P (X) is closely related to the relative entropy Eu(X).
Using the Stirling-formula ln(s!) ≈ s ln(s) − s it can be shown by some
algebra that

ln(P (X)) ≈ N ln(N) − Eu(X)

The natural logarithm being an increasing function the table X maximizing
ln(P (X)) also maximizes P (X). Thus, assuming a stochastically indepen-
dent placement of the N objects under the specified constraints (5) the table

1A particular impressive example is computer tomography in medicine, as the relation-
ship to the problem under discussion is especially clear. In computer tomography x-ray
pictures of an organ are taken from various angles. From these photographs a sectional
picture of the corresponding organ is made. The resulting picture can be imagined as
an extremely finely gridded table which contains the grey values for the individual dots.
The x-ray photographs correspond to the row and column sums of the table. The picture
is generated with an entropy optimizing algorithm. It shows the organ in question with
all details, including any possible pathological changes. Other cases of application for
entropy optimizing are pattern recognition in research on artificial intelligence. In partic-
ular new approaches usually summarized under the title neuronal networks make use of
these methods (cf. eg. Hinton, Sejnovski (1987), Kosko (1992)).
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minimizing the relative entropy is asymptotically equal to the table repre-
senting the distribution of objects with the highest probability2.

For arbitrary um ≥ 0 the optimization problem for table estimation may
now be stated as follows:

Minimize the function Eu(X) subject to the constraints

∑M
m=1 akmxm ≤ bk for k = 1, . . . , K (5)

and the nonnegativity constraints

xm ≥ 0 for m = 1, . . . ,M (6)

The nonnegativity constraints are stated because all elements of X should
be equal to or greater than 0 (note that all um ≥ 0 by definition). The
general structure of the resulting table can be obtained via the Kuhn-Tucker-
Karoush theorem (cf. for example Chiang (1974)). The conditions for the
minimum are:

ln
(

xm

um

)

+ 1 +
K

∑

k=1

µkakm = 0 (7)

µk ≥ 0 (8)

µk(
∑

m

akmxm − bk) = 0 (9)

The µk are the dual variables. If we solve (7) for the xm then

xm = ume−1e−
∑

k
µkakm (10)

From (10) some properties3 of the estimated table can be seen:

2By some algebra it can be shown (cf. Blien, Graef (1991)) that the relative entropy
is proportional to another distance measure, to Kullback’s information gain (cf. Kull-
back (1968), see also Ireland, Kullback (1968)), which is identical to (4), but defined for
probability distributions, i.e. matrices with component sum equal to 1. The informa-
tion gain is common in applications of the formal information theory (originally founded
by Shannon, cf. Shannon, Weaver (1949)). Another term for information gain is mini-
mum discriminant information. Haberman (1984) discusses the case of continuous data.
Golan, Judge et al. (1996) use information gain minimization for parameter estimation
in underdetermined linear models.

3There is a growing literature about the properties of estimates obtained by this min-
imum information principle (see Wauschkuhn (1982), Kullback (1968), Snickars, Weibull
(1977), Batten (1983), Batten, Boyce (1986)). One property should be noted: an estima-
tion via this principle is approximately equivalent to an optimization of a weighted sum
of squares, a modified Chi-square statistic:

χ
2

Q =
∑

m

(pm − qm)2

qm

where the pm are the normalized xm’s and the qm the normalized um’s. This relationship
was proved by Kadas and Klafszky (1976, p. 442).
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- nonnegativity: all xm ≥ 0

- conservation of zeroes: for each um = 0 the corresponding xm is also
equal to zero.

4 The Entrop algorithm

To estimate a table our task is to minimize the relative entropy (4) under
the constraints (5) and (6). There exists a variety of methods known from
the theory of nonlinear optimization (cf. Gill, Murray, Wright (1981)) to
achieve this, as the relativ entropy has the property of global convexity. To
solve the problem some authors have already proposed special applications of
the Newton-Raphson algorithm (Wauschkuhn (1982)), geometric program-
ming (Kadas, Klafsky (1976)), stochastic optimization (Ablay (1987)) and
simulated annealing (Paass (1988)).

The algorithm finally chosen was designed for the application in the Educa-
tional Accounting System (BGR) of the Institute for Employment Research.
As a primary goal the computer program implementing this algorithm should
handle large scale problems on computers with limited memory. In addition
it should be a robust procedure with respect to inconsistent constraints.

The Entrop procedure developed under these premisses is an iterative algo-
rithm of the row action type, i.e. only one out of the total set of constraints
is used at each iteration step. It is based on so called entropy projections.
These projections are nonlinear equations originally introduced by Censor
(1982)4 to maximize absolute entropy5 It can be shown that they may also be
applied to minimize the relative entropy with respect to arbitrary reference
tables.

The algorithm is an iterative procedure. Its starting values are:

xm = um for all m, and
µk = 0 for all k.

(11)

Every step in the iteration process includes the following operations:

1. Computation of the entropy projection on restriction k: compute a δ
so that

∑

m

akmxmeδakm = bk (12)

2. Correction of the sign: If δ > µk, set δ = µk.

4See also Censor and Lent (1981) and Censor (1981). Censor’s method is based on a
general principle found by Bregman (1967).

5The (absolute) entropy of a table is −
∑

m xm ln(xm). It coincides with the negative
relative entropy in the case of um = 1 for all m.
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3. Updating the values for xm and µk:

xm = xmeδakm for all m
µk = µk − δ for all k

(13)

By means of the criteria given by Censor and Lent (1981) it can be shown
that the iteration process converges against the solution of (10), (8), and
(9), if a solution exists. The procedure is rather simple.

If no reference matrix is present the Entrop method can also be used. In
this case calculations are made with all um in the reference table set equal
to 1. The method then attempts to occupy the resulting matrix as evenly
as possible. Whether this is a reasonable proceeding depends on the specific
problem. In this case the optimization of the relative and the absolute
entropy are identical (see footnote 4).

5 Generalization of the RAS method

The Entrop method contains as a special case the iterative proportional
fitting algorithm (IPF) already familiar from loglinear models of statistics
(Bishop, Fienberg et al. (1975)). The RAS method (cf. Stone (1962),
Bacharach (1970)) used in input-output analysis (also known as the Deming-
Stephan algorithm after Deming, Stephan (1940), cf. Bachem, Korte (1979)),
is also included, as it is identical with the IPF. Gorman (1963) proved that
the RAS method is also a procedure for entropy optimizing.

For the special case that the constraints consist of column and row sum
prescriptions only, it can be seen easily that the steps carried out in the
RAS method are identical with the computation of entropy projections in
Entrop.

If the constraints are sums

∑

m∈Mk

xm = bk

over cross sections Mk of table entries the equations (12) can be solved
explicitly for δ. Substitution of δ in (13) then results in the recursion

xt+1

m =
xt

mbk
∑

r∈Mk
xt

r

(14)

where t is the respective iteration step. Returning to double-index nota-
tion ij for the row and column constraints (1) of input-output analysis the
iteration formula (14) reads as

xt+1

ij =
xt

ijb
c
j

∑

r xt
rj

(15)
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for column constraints and

xt+1

ij =
xt

ijb
r
i

∑

s xt
is

(16)

for row constraints which is precisely one of the iteration steps of the RAS
or the IPF method.

6 Examples of Applications of the Entrop

procedure

The Entrop procedure was developed for a task very similar to our example
from input-output analysis. It was designed for the Educational Accounting
System (Bildungsgesamtrechnung : BGR) of the Institute for Employment
Research (in Germany). To fix ideas a simple application with artificial
data will be presented first before giving an overview of the type and size of
estimation problems within the framework of the BGR.

6.1 A simple example

Assume table 2 to be the input-output matrix of a fictitious economy at
time period t− 1. For the next period t as a first approach assume only the
sums of the column entries (the total input to the respective industries) and
the row sums (the total output) to be known.

Table 2: Input-output table for time period t − 1 and totals for period t

Inputs to industries 1–5 totals totals at
1 2 3 4 5 period t

1 9 71 54 66 11 211 226
outputs 2 20 189 60 53 17 339 372
of 3 31 159 21 25 9 245 333
indu- 4 15 56 0 11 3 85 142
stries 5 1 3 5 5 1 15 50

6 2 10 51 0 5 68 153
totals 78 488 191 160 46 963

totals at t 119 638 252 225 42 1276

In estimating the entries of the table for time period t it often is plausible
to assume that the basic structure of the relationships between the different
industries is nearly constant over time. Thus, the structure of the estimated
table should be as similar as possible to that of the a priori matrix of table

8



2 while at the same time the row entries and column entries should sum up
to the quantities known for period t.

It is well known that this can be done with the RAS algorithm. An appli-
cation of the Entrop method yields the same result, shown in table 3.

Table 3: Input-output table for time period t, estimated with the Entrop

method on the basis of table 2 and of the column and row totals for period
t (the result equals a RAS estimation)

Inputs to industries 1–5 totals
1 2 3 4 5

1 10.9 78.2 48.2 80.9 7.8 226
outputs 2 24.8 213.4 54.9 66.6 12.3 372
of 3 46.5 217.3 23.3 38.0 7.9 333
indu- 4 27.0 91.8 0.0 20.1 3.2 142
stries 5 3.8 10.4 14.1 19.4 2.2 50

6 5.9 27.0 111.5 0.0 8.6 153
totals 119 638 252 225 42 1276

However, the RAS method only permits an estimation using prescribed row
and column sums and an a priori matrix. The Entrop algorithm allows the
specification of general linear equations and inequalities serving as restric-
tions to the estimation. As an example let it be assumed that there exists
additional information about the input-output relations for time t. It might
be known from a survey that the output of industries 2 and 3 to industries
3 and 4 is at least 250. The output of industry 3 to industry 2 might be less
than two times the output of industry 4 to industry 2. This can be stated
by two additional inequalities:

x23 + x24 + x33 + x34 ≥ 250 (17)

x32 − 2x42 ≤ 0 (18)

Table 4 shows the result of an application of the Entrop procedure, which
includes table 2 as a reference matrix, the column and the row sums for
time period t and the two additional inequalities (17) and (18). The entries
affected by (17) and (18) have been emphasized for easy comparison with
table 3. Both inequalities are met. The sums of the row entries and column
entries are the same as in tables 3 and the structure of table 4 is as similar
as possible to that of table 2.

6.2 Application to the Educational Accounting Sys-
tem (BGR)

Demographic accounting approaches provide a means of relating the pop-
ulation in different states at the beginning and the end of a period. Such
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Table 4: Input-output table for time period t, estimated with the Entrop

method on the basis of table 2, the column and row totals of period t and
additional information concerning the structure of the table

Inputs to industries 1–5 totals
1 2 3 4 5

1 14.5 106.4 37.1 58.7 9.3 226
outputs 2 20.5 180.1 75.7 86.6 9.2 372
of 3 41.4 197.5 34.5 53.2 6.3 333
indu- 4 28.5 98.9 0.0 11.5 3.0 142
stries 5 5.4 15.2 11.6 15.0 2.9 50

6 8.6 39.9 93.2 0.0 11.3 153
totals 119 638 252 225 42 1276

approaches differ from cross-sectional analyses in that the gross flows of in-
dividuals into, within, and out of the states during that period are examined
(cf. Stone (1981), Stone, Weale (1986), see also Land, Juster (1981b) and
Land, McMillen (1981)).

A system of that kind, the Educational Accounting System (Bildungsge-
samtrechnung - BGR) was developed by the Institute for Employment Re-
search (IAB) (cf. Blien, Tessaring (1988) and (1992), Tessaring (1986) and
(1987), Tessaring et al. (1991) and (1992)). In the BGR the German popu-
lation is classified according to defined categories: pupils attending different
kinds of general and vocational schools, apprentices, students, gainfully em-
ployed, unemployed and economically non-active individuals.

Thus, the BGR forms the basis for improved analyses as well as for forecasts
on the relationship between education and the labour market. The long-
term development of the labour supply in various segments of the labour
market can be examined.

The relation between the stocks of adjacent years is given by the inflow-
outflow matrix X t. In X t the individuals are classified by their opening
states in the rows and by their closing states in the columns. An element
xij of this matrix shows the number of people, who change from state i to
state j. The so called stayers , i.e. xij with i = j are included as well. The
system is consistent, i.e.:

∑n
j=1 xij = bt

i for all i, and
∑n

i=1 xij = bt+1
j for all j (19)

The bt
i are the row totals (i.e. the states at t), the bt+1

j the column totals
(i.e. the states at t + 1), n is the number of states.

Most of the BGR stock data were taken from German official statistics.
Available transition data, however, stem from surveys and are often incom-
patible or affected by sample errors. In order to use such heterogeneous and
incompatible information to estimate the matrix of the flows of individuals
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in the BGR the Entrop procedure was developed.

The matrices estimated by the Entrop method are very large. Since they
contain about 30 000 elements in four dimensions (year t, year t+1, sex, age)
it is shown that the Entrop procedure is not restricted to two dimensional
tables. The calculations are based on a-priori matrices. Additionally, they
use about 2000 inequality and equality restrictions.

The procedure originally was programmed in FORTRAN on a BS2000 main-
frame. A program written in C is available as well for Personal Computers
running DOS, Windows, or OS/2 and UNIX workstations under the Sun
Solaris operating system. The memory management of Entrop algorithm
is so efficient, that PCs can be used for most problems.

Other applications of the Entrop procedure are in preparation, e.g. an
analysis of regional differences of unemployment in Eastern Germany and
an analysis of voting mobility.
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