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Many fields of economic theory can be represented by linear models. When the 
matrix of the coefficients of the linear system has certain properties, the system 
can be divided into subsets. The aim of this paper is to define a unique and 
general measure of interdependence between two or more parts of a linear system, 
such that it can be applied at every level: from the elementary variables of the 
system to the larger subsets of those variables. The recurrence relation allows us 
to provide the logical articulations linking “partial” interdependencies between 
subsets for any partition of the system and the “general” interdependence between 
its elementary components. This approach is illustrated by a comparison of two 
French tables (6 large regions and 6 large sectors, and 21 regions and 12 sectors 
respectively), each relating to two different years (1982 and 1992). In the last part 
of the paper, we suggest some calculus and methods that might be of use to 
regional policymakers. 
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This paper investigates the question of general interdependence, which has been tackled time 
and again in the literature. Our main aim is to provide a good measure of general 
interdependence for a simultaneous linear equations system where the values of the variables 
are determined all together. An intuitive example could be given by the following system: 
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the solution of which is obviously ( x y= =1 2; ). Both equations are of course interdependent, 
but in fact it is the first equation that determines the x  value and the second the y  value. This 
is due to the relative values of the coefficients and to the terms of the second member. Thus 
we can say that in this system, a weak degree of general interdependence prevails. 
 Our aim is to develop a method that would produce a global indicator of the degree of 
interdependence between the variables in a system of linear simultaneous equations (Miller, 
1986; Hewings, 2002). That might be quite simple if we limited ourselves to fixing some 
obvious conditions: lower bound (for example 0) if there is no interdependence at all, upper 
bound (for example 1) if there is maximum interdependence (this maximum remains to be 
defined), intuitive property of monotony of the indicator as a function of interdependence… 
The task becomes more difficult if we add one or more constraints: the indicator must be 
suitable for measuring interdependence between two or more subsets of the linear system as 
well as between two or more elementary variables. For simplicity’s sake, we focus on the 
paradigmatic case of a generalized input-output system such as the Defourny-Thorbecke 
(1984) system. This limitation is justified in so far as Leontief’s work constitutes the first 
operational representation of the Walrasian general equilibrium. 
 The main intuition of Leontief equations is derived from the Walrasian assumption of 
constant production coefficients1. According to Leontief’s assumption, well corroborated by 
the accounting measures, the technical coefficients remain quite constant. However, even if 
they are regarded as variables, that would be a mere technical sophistication if their 
variations, taken part by part, remain linearizable in a dynamic perspective. The point is still 
the analysis of interdependence between linear variables. 
 Thus the core of an input-output system is not linked mainly to the invariability of the 
coefficients, since the effects of linearizable variations can be dealt with by the Bode formula 
(1945) or any other way of endogenizing the variations (see for example Guzzi, 2000). The 
most important thing is that a Leontief matrix is productive. Technically, it means that if (I-A) 
represents the technical coefficients matrix, (X) the output column-vector and (F) the final 
demand vector, a necessary and sufficient condition of consistency of the static system (I-A) . 
(X) = (F) (that is to say the existence of a single and significant solution of this equation) is 
that all the main minors of matrix (I-A) are positive. This theorem is known as the Hawkins-
Simon condition (1949). 
 Our concern here is with the properties of general interdependence in linear productive 
systems only. Anti-productive or consumptive systems are ignored. Having clarified these 
points, we now attempt to analyze and measure the level of interdependence in linear 
productive systems. 
 The first section analyzes the impact of partial feedbacks on interdependence. Section 
2 suggests some methods for reducing the complexity of the representative graph of an input-
output matrix. Thereafter, section 3 provides the theoretical relations linking the partial 
interdependencies between parts of a matrix to the general interdependence between the 
variables. Lastly, starting from a reshaping of an inter-industrial and inter-regional table (see 
methodological appendix), section 4 applies the previous methods and measures to the 
regional connections in the French economy. 
 
 
1. Measures of the Impact of Partial Feedbacks on Interdependence 
 
Formal presentation 
                                                           

1 In his last works, Léon Walras considered the production coefficients as variables, a point of view shared 
by  Vilfredo Pareto. 



 3

 
Following Walras, Pareto, Leontief (1986), Arrow and Hahn (1971), let us call general 
interdependence the interdependence between all the elementary variables of the system. If Q 
is a partition of the Leontief matrix into square submatrices, we may call “partial” 
interdependence the interdependence between two or more parts (i.e. submatrices) defined by 
the partition Q. The general interdependence is naturally linked with the partial 
interdependencies. The former is strongly connected with the latter but those connections look 
complex. The paper aims to define a function of the terms of the system in order to produce a 
good indicator of the general interdependence in this system and to find a simple relation 
between indicators of interdependence of the submatrices and the global indicator of general 
interdependence. Optimally, the partial interdependencies and the general interdependence 
could be expressed in the same way. 
 We begin by defining the system by its Leontief matrix: let a vertex (e.g. a sector p in 
a region r) delivering goods to another vertex (e.g. a sector q in a region s ) be denoted by i 
and j respectively. Thus the assumption that the matrix is a productive one can be written as 
follows: in the system of all the regional sectors (I-A) . (X) = (F), where A =  [aij] and where 
(X) is the output vector and (F) the final demand vector, each vertex j has a positive or nil 
value added : ∑ ≤

i
ija 1. The general interdependence between the elements of set (X) is a 

complex result of the architecture of matrix (I-A). 
 
 A trite solution appears when matrix (I-A) is a block-diagonal one: 
 

     (I-A) =
A

B
C
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0 0
0 0
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⎤
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⎥
⎥

 

 
 We may consider that, in this case, the general interdependence between variables is 
reduced to the internal interdependencies between the variables of A, B and C respectively. 
 This deliberately simple example corroborates the recursivity condition: 
- the measure of general interdependence will be robust only if it is independent from the 
possible partitions of the matrix; 
- there are some components of partial interdependencies that contribute to general 
interdependence: this being so, a measure of interdependence must make it possible to 
distinguish between partial interdependencies and general interdependence. 

For this purpose, Influence Graph theory can be very useful, not in order to draw a 
representation of the system but to get specific properties of matrices based on mathematical 
graph theory (Harary et al., 1966; Diestel, 1997), which do not appear merely using matricial 
calculus (Maybee et al., 1989; Horn and Johnson, 1991). 
 
The Influence Graph of the I-O structure 
 
The influence graph of the I-O structure is defined as follows: 
1) each regional sector i is represented by a vertex i; 
2) each exchange Xij is represented by an arc; all the arcs are oriented in the same direction: 
either from the supply to the demand or from the demand to the supply; 
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3) the arcs of the influence graph are valuated by the technical coefficient2 aij and the loops 
are valuated by the coefficients i = 1 - aii 
 
The theorem of loops and circuits 
 
 We denote as "Hamiltonian" any set of circuits and loops where each vertex of the 
influence graph belongs once and only once to the set. Further, we call Gh the hth Hamiltonian 
set of circuits and loops. These Hamiltonian sets are often called Hamiltonian partial graphs 
(HPGs); in the hth HPG Gh, the number of (oriented) circuits of two or more arcs is denoted 
by ch; the "signed product" of the coefficients of all its loops and arcs is called the value of the 
set Gh and is denoted by Vh. Let vh denote the product of the coefficients of all the loops and 
circuits of HPG Gh. In accordance with loops and circuits theorem (Lantner, 2001), the value 
Vh is given by : 
 
         Vh = (-1)ch . vh           (1) 

 
The determinant D of the Leontief matrix may be written: 

 
      D = |I - A| = |I - T| = 

h
∑ Vh          (2) 

 
The theorem of the partition 
 
Let us divide the vertices of the initial graph of influence into a certain number of parts. Some 
of the HPGs have no circuit belonging to two different subgraphs of the partition. Let us 
denote them by Gd (for "disconnected" HPGs). We will call "connected" and denote by Gc the 
HPGs having at least one circuit linking the vertices of two (or more) subgraphs of the 
partition. 
 As an HPG must be either disconnected or connected, the theorem of the loops and 
circuits can be written as follows: 
 
      D  = 

h
∑ Vh   = 

d
∑ Vd + 

c
∑ Vc           (3)

  
 The sum ∑ dV    is the product of the determinants Dp of the submatrices defined by the 
partition itself. The relation becomes: 
 
       D  = 

p
∏ Dp  + 

c
∑ Vc         (4)

         
  
 As circuits lead to a decrease in the value of the determinant, it is easy to prove that  
∑ cV  is negative or equal to zero. The product is : 
 

                                                           
2 We could have chosen an alternate presentation with the trade coefficients tij: ∑ ≤

j
ijt 1  (∀i). The arcs of the 

influence graph would be valuated by the trade coefficients tij and the coefficients of the loops would remain 
unchanged. 
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              D  ≤ 
p
∏ Dp           (5)

   
 
THEOREM. However the Leontief matrix is divided into square submatrices, the determinant 
of the Leontief matrix is smaller than the product of the determinants of the submatrices. The 
difference is a measure of the interdependence between the submatrices (due to the linkage 
terms between them). 
 
Another way to obtain the proof would be to note that, in any case, the determinant D of a 
Leontief matrix is always smaller or equal to the product of the diagonal terms of the matrix. 
 
 
 
    
 
     
 
 
 
 
 
 
 

 
Fig. 1. The  Partition  Theorem 

 
 An immediate consequence of the partition theorem is that, for a partition Q dividing 
an input-output matrix into square submatrices the determinants of which are Dp: 
 
           D  ≤  

p
∏ Dp            (6)

  
 If there is at least one circuit connecting two (or more) subgraphs of the associate 
graph of influence, we get: 
 
                                                 D  <  ∏ Dp                                                             (7) 
                                                                                               
Let the interdependence between the parts p of the partition Q be denoted by IQ. It can be 
written: 
 
     IQ = - ∑ Vc  (where ∑ cV  is negative or equal to zero)       (8) 

    
Another expression of the partition theorem is that D can be written as a function of the Dp 
and of a non-negative "linkage" or interdependence term denoted by IQ: 
 
                                                D = ∏

∈Qp
Dp - IQ                                                          (9) 

  
Determinant 

D1 

 
Determinant 

D2 

 
Determinant 

D3 

The determinant D of the matrix (I-A) is 
smaller than the product D1×D2×D3 except 
if there is no circuit linking the vertices of 
two or more of the three subgraphs defined 
by the partition. 
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The example of the interdependence between two parts of a partition 
 

One of the advantages of the theorem of the partition is that it can be used for any 
partition: between sectors, regions, some sectors in some regions... and hence reinvigorates 
analysis of structural decomposition (Dietzenbacher, 1988; Hewings et al., 1999) and, more 
generally, the problem of disaggregation (Malinvaud, 1955; Miller and Blair, 1985; Leontief, 
1986; de Mesnard and Dietzenbacher, 1995; Miller, 1999...). Here, we would like to focus on 
a partition between n sectors and m regions. 
 Let us assume now that, in this partition, region r and region s are joined to form a 
single region called u with u = r ∪ s. Applying the theorem of the partition, we get: 
 
     Du = Dr × Ds - Iu         (10) 
 
where Iu is the interdependence term resulting from the different circuits between region r and 
region s. 
 The determinant Du is lower than the product Dr × Ds only if there are some circuits 
connecting sectors in region r with sectors in region s. 
 
 
 
 
 
 
        Du = Dr × Ds - Iu  
 
 
 
 
 
  Fig. 2.  The  Aggregation  of  Two  Parts  of  the  Partition 
  
 
 
2. To Reduce the Complexity of an Input-Output Matrix 
 
 There are two main ways of reducing the complexity of an input-output structure. 
 
Strongly connected components 
 
 The first method is to use a concept of Graph theory called strong connectivity: a 
subgraph or component of a directed graph is said to be strongly connected if for every pair of 
distinct vertices i and j, there is a path from i to j as well as from j to i. 
 Consider an influence graph whose arcs represent the (directed) flows between a 
group of poles (regions, sectors, regional sectors...). If the graph is strongly connected, then a 
change in each pole has an influence on every other pole: two distinct vertices i and j are 
always interdependent. 
 Let us call maximally strongly connected (MSC) subgraph g of a directed graph G a 
subgraph made up of m vertices of the graph G (and both their loops and the arcs joining 

  
 

Dr 

 
 

Ds 
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them) in such a way that is impossible to retain the property of strong connectivity if any new 
vertex of the graph G is added to the subgraph g. 
 Let us then define the skeleton S of the graph G as the minimally reduced graph made 
up of vertices v, w, ... (and both their incident loops v ,  w , ... and arcs avw) in such a way 
that: 
- every MSC subgraph of G is represented by one and only one vertex with an incident loop. 
The loop represents all the loops and circuits of the corresponding subgraph; 
- all the paths from any vertex of G belonging to the MSC subgraph g (supposed to be 
represented in the skeleton by vertex v) to any other vertex of G belonging to another MSC 
subgraph h (supposed to be represented in the skeleton by vertex w) are reduced to only one 
arc from v to w. 
 As g and h are MSC subgraphs of the graph G, if there is an arc from v to w, then there 
is no arc from w to v. 
 If the coefficients of the loops v , w ,... and arcs avw are properly calculated, the 
skeleton of the graph G gives a good qualitative and quantitative image of the general 
orientation of the connections between its vertices (and between the corresponding poles of 
the structure represented by the graph G). 
 For example, consider a structure made up of two MSC components: g, with four 
poles, and h, with two poles. Its skeleton is made up of two vertices v and w, with their 
attached loops, and one arc, as shown in Figure 3: 
 
 
 
 
 
 
 
          v     w  
        ⇒    
 
 
 
 

 
 
 
 
 
 

Fig. 3.  From  the  Initial  Graph  to  its  Skeleton 
 
 In order to define the skeleton S of a directed graph G, it is necessary to remove some 
vertices of G: in the example given in Figure 3, three of the four vertices, v1, v2, v3, v4, of the 
MSC subgraph g and one of the two vertices w1, w2 of the MSC subgraph h have to be 
removed. 
 Using a recurrence method, that removal leads to the following theorem. In order to 
express it, consider a directed graph G made of vertices and valuated loops and arcs. Then 
assume that graph G is reduced to another graph R by removing some of its vertices under the 
condition that all the quantitative effects between the left vertices remain strictly unchanged. 

  v2 

    v1 

v4 

v3 

 w1 

w2

Initial graph 

MSC subgraph g represented 
by vertex v in the skeleton 

MSC subgraph h represented by 
vertex w in the skeleton 

Skeleton S 

v w
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Let the removed vertices be denoted by r, and the two determinants of the Leontief matrices 
associated with the initial graph G and the reduced graph R be denoted by D and DR 
respectively. 
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A theorem of the aggregation of Input-Output structures 
 The determinant DR of the reduced structure is equal to the initial determinant D of the 
Leontief matrix divided by the product of the values r  of the loops incident with the 
removed vertices: 
 
     DR = D / r

r
∏                   (11)

    
As r  ≤ 1  (∀r), it comes: DR ≥ D. 
 
 More generally, every aggregation of the vertices (which represent the poles of the 
input-output structure) leads to a well-determined increase in the value of the determinant of 
the Leontief matrix. 
 This means that the value of the determinant of the Leontief matrix is not invariant as 
the level of aggregation changes. That value is modified by changing the scale of aggregation. 
 As a partition of the structure is an aggregation, this last property must be taken into 
account when the partitions of the structure are analyzed. 
 
Partitions of the Leontief matrix 
 

The second way to reduce the complexity of the structure is to define directly a 
partition of the poles (regions, sectors, regional sectors...) of the structure. 
 It is clear that in a structure with at least three poles, each pole can be associated with 
each other one in the same component of one or more partition(s). 
 We have just used the concept of skeleton of the graph to reduce the complexity of the 
structure: if every pole belongs to a MSC subgraph, the division of the structure into MSC 
components is a particular case of partition. 
 Going back to the general case of partitions may be helpful in analyzing how general 
interdependence is connected with partial interdependencies. 
 In any Leontief structure it is possible to define the general interdependence between 
all the poles; if the structure is divided into various substructures by a partition, it is possible 
to define the partial interdependencies both between some substructures of the partition and 
between the poles of every substructure of that partition. 
 What we intend to do is to express the general interdependence between all the 
elements as a function of the partial interdependencies between the parts p of a partition Q of 
the Leontief structure. 
 
 
3. General Interdependence and Partial Interdependencies 
 
Relations between different levels of interdependence 
 
Assume that a Leontief table represents the sales by every sector p of every region r to every 
sector q of every region s;  n denotes the total number of sectors and m the total number of 
regions: p,q ∈ (1,2, ..., n) and r,s ∈ (1,2, ..., m). 
 We are interested in the general interdependence between all the regional sectors, and  
also in the interdependence between the m regions of the table. 
 If we intend to analyze the problem at an upper level, we may group together some of 
the n small sectors in order to form n  large sectors, with of course: n  < n.  
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 In the same way, the number m of small regions can be reduced to a number m  of 
large regions, with: m  < m. 
 These changes in the partition of the matrix raise two questions. 
- Firstly, how can the general interdependence between all the regional sectors be defined? 
- And secondly, how is this general interdependence linked to the partial interdependencies at 
different levels of the aggregation of the Leontief table? For example, what are the 
interdependencies between the elements of the m  large regions (the n  large sectors 
respectively) and the elements of the m small regions (the n small sectors respectively)? 
We will see that the influence graph theory may be useful to provide a method to solve that 
problem (and any combination of the previous problems): a general solution and a recursive 
theorem will be established after. 
 
General interdependence between the variables of a Leontief table 
 

Identification of the general interdependence  
 Let us return to the usual relation: (I-A) . (X) = (F), where (X) is a set of variables (e.g. 
outputs of regional sectors) and (F) the final demand vector. 
 The general interdependence between all the variables depends upon all the circuits of 
the influence graph associated to the Leontief matrix (I-A). But each one of these circuits must 
be taken into account with an appropriate multiplier. 
 One of the easiest way to find such multipliers is to express the determinant D of the 
Leontief matrix, which is closely connected with the general interdependence, as the sum of 
the values of the HPGs. 
 Consider the vertices of the influence graph (which here represent the regional sectors) 
as the smallest parts of the most disaggregated partition of the Leontief structure. They are 
connected by all the circuits (two arcs or more) belonging to the influence graph. In order to 
obtain a measure of the general interdependence between all the vertices, three elementary 
conditions are imposed: 

- the measure reaches its lower bound (zero, if possible) when there is no 
interdependence at all between even any two vertices; 

- the measure reaches its upper bound (one, if possible) when the intuitive general 
interdependence is maximal; 

- the measure is a growing monotonous function of the general interdependence: the 
more intense the circuits are, the higher the measure of general interdependence is (the 
derivative of the production of all other vertices are maximum when the production of 
one vertex changes). 

It should be noted that the determinant of the structure is lower than the product of the “mini-
determinants” of all the vertices: 1 , …, i , mn× . Let us call GI the difference: 
 

          D = ∏
×

=

mn

i
i

1
- GI       (12) 

 
The lower bound of GI is equal to zero. GI is nil if there is not even one circuit of two arcs (or 
more) in the whole graph of the structure (that means no interdependence at all). The more 
numerous and intense the circuits are, the higher the term GI is. The upper bound of GI is 
reached if i  is equal to one3 (∀i) and if the determinant D is equal to zero. In this (very 
                                                           

3 This is the case when the intra-consumptions of the regional sectors i are equal to zero. This means that the 
entire production of this regional sector is sent to the other ones (this case corresponds to the maximum 
interaction (interdependence) of this regional sector with the other ones). 
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special) case of a perfectly circular structure4, the whole structure is reduced to only one very 
intensive circuit connecting all the vertices and GI is equal to one. 

This leads us to consider the perfectly circular structure as the most interdependent 
one. It is obviously the structure in which the interdependence between vertices is the most 
global, the most general. 

If there is more than one circuit, the global circuit is less intensive, and other, shorter 
circuits limit the diffusion of general interdependence effects. 
  
That is the reason why we may consider GI as a good measure of the general 
interdependence. Another way to prove it would be to assume that the n×m vertices have 
loops but are not connected at all: no connection, no interdependence. And the determinant of 
the whole matrix would be equal to: 
 

             D = ∏
×

=

mn

i
i

1
       (13) 

 
By definition, we call general interdependence between the variables (X) of a Leontief 
system, the difference: 
 
        GI = i∏  - D       (14)
            
in which: 0 < GI < 1 and i  = 1- aii = ith diagonal term of the Leontief matrix. 
 
THEOREM. A good indicator of the general interdependence in a Leontief system is given by 
the difference between the product of the diagonal terms of the Leontief matrix and the value 
of its determinant. 
 

Consistency between the indicator of the general interdependence and the theorem of 
the circuit 
 Let us give an example of the way a circuit Cj affects the value of the determinant D 
and, at the same time, give an alternate proof of one of our key theorems: “the more intensive 
the circuits, the lower the value of the determinant D”. 
 
With the notations of Appendix, we can say that the more intensive a circuit Cj, the greater 
the value of Πj JD . The term Πj JD  is the sum of the values of all the HPGs including the 
circuit Cj. As GI is the sum of the “connected” HPGs (which here means all the HPGs except 
the set of loops i ), an increase in the value of Πj leads to an increase in the value of GI and, 
thus, to a decrease in the value of the determinant D. One consequence is that the definition of 
the general interdependence is consistent with the theorem of the circuit. 
 

                                                           
4 In the perfectly circular structure, the final demand is nil and ai-1,1 = 1 (∀i, i = 2, 3,…, n×m) and an×m,1 = 1. 
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Relations between partial interdependencies and general interdependence 
 

Relations for one level of disaggregation 
Let us assume that the set of n×m=N variables (e.g. outputs of the regional sectors represented 
by the vertices of the influence graph) is divided into parts p by a partition Q. 
From relation (12), we can write: 
 

            i
i

N

=
∏

1

 = D + GI       (15) 

 
According to section 1, the determinant Dp of each part p can be considered as the sum of the 
values of disconnected Hamiltonian graphs and connected Hamiltonian partial graphs of the 
substructure p: 
 
    Dp = ∑

d
Vd  + ∑

c
Vc  = j

j p∈
∏  -  Ip      (16)

  
 
Hence: 
 
     ∀p∈Q: ∏

∈pj
i  = Ip + Dp       (17) 

 
Applying this latest relation to all the parts p of Q, we get: 
 

     i
i

N

=
∏

1

 = ∏
∈Qp

(Ip + Dp)       (18) 

 
This means that, with only one level of disaggregation, the general interdependence between 
all the elements of the structure is a function of all the partial interdependencies between the 
elements of each part p of the partition Q. The relation is not additive (as might have been 
expected) but multiplicative: 
 

    GI = i∏  - D = ∏
∈Qp

(Ip + Dp) – D     (19) 

 
It can be written more simply as follows: 
 
     GI + D =  ∏

∈Qp
(Ip + Dp)       (20) 

 
Recurrence relation 

Let us group together the variables Xi (or vertices i) and let the unit or subset made up of a 
certain number of grouped variables (1, 2, …, i, …, iu) be denoted by u: we assume that unit u 
includes all the arcs linking 1, 2, …, i, …, iu. We get: 
 
           Du =  ∏

∈ui
i - Iu       (21) 
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The different units u can be grouped again in order to make up substructures s: 
 
       Ds =  ∏

∈su
uD - Is = ∏∏

∈ ∈su ui
i( - Iu) - Is   

   (22) 
 
Then the substructures s can be grouped together in order to make up parts p : 
 
             Dp =  ∏

∈ps
sD - Ip = ∏∏∏

∈ u ips
i([ - Iu) - Is] - Ip      (23)

    
 
The determinant D of the matrix made up of the parts p can be written: 
  
   D =  ∏

∈Qp
pD - IQ = ∏∏∏∏

u isp
i([[ - Iu) - Is] - Ip] - IQ     (24) 

 
A measure of the interdependence between parts p, made up of substructures s, which are 
themselves made up of units u formed by vertices or variables I, may be written as follows: 
 
    IQ  = ∏∏∏∏

u isp
i([[ - Iu) - Is] - Ip] - D     (25) 

 
According to the last relation, we get the following theorem. 
THEOREM. Added to the determinant D, the general interdependence GI between all the 
variables of a Leontief system is equal to the product, for all the parts p (of a unique partition 
Q of the variables), of the sums of the interdependence and determinant of each part p of the 
partition Q. 
It is possible to choose a level of disaggregation. For example, the regional sectors could be 
denoted by i, the regions by u, the states by s, the countries by p and a set of countries (such 
as NAFTA, MERCOSUR or the European Union) by Q. 
The recursive relation established between the different levels of aggregation may look 
complex because it is multiplicative. However, it is quite simple and easy to use. It allows us 
to measure the weights of the different interconnections, to specify their most important levels 
and to link them altogether in order to understand how and at what levels general 
interdependence works. 
 
 
4. Regional Connections in the French Economy 
 
Computation of the determinants 
 

Using the sectoral regional and national value added data for the period 1975-1992 
and the two input-output tables5 for 1982 and 1992 provided by the French national statistical 
institute INSEE, we calculate the determinant of trade coefficients (knowing that it is 
                                                           

5 The proportion of the value added in output being assumed to be similar between all the sectors i at national 
level, under the assumptions of spatial homogeneity and isotropy (no protected market and no inefficient firm. It 
corresponds to a construction of multi-regional input-output tables based on the well known biproportional 
method (de Mesnard, 1990; Boomsma and Oosterhaven, 1992...). 



 14

identical to the determinant of technical coefficients). The total output is equal to X ir  
obtained from the following formula: 

 
             Xir = iiir XYY ×/         (26)
    
where all the terms are known. 
 
The trade coefficients are: 
 
              tir,js = irjsir XX /,        (27)
    
Thus the determinant is D = TI− , since the intra-consumptions are conventionally cancelled, 
that is to say the diagonal terms of )( TI−  are equal to one. In order to compute regional 
determinants we must first increment to each line the index j from 1 to n. 
 
Once the determinant D and the determinants D1, D2, ... Dm are obtained, we will have: 

  D=∏ Dk – I with 0 ≤ D ≤ 1 ; 0 ≤ Dk ≤ 1  and  0 ≤ L ≤ 1.    (28) 

where I is the term of complex linkage bound to regional circuits (general interdependence). 
 

Results 
 

Using the value added of interregional exchanges as a basis (Sonis et al., 1996; Lahr 
and Dietzenbacher, 2001), computation of the determinants leads to slightly different results. 
The results give a first approximation of the main changes in the French regions and the 
nation as a whole during the 1980s. 

 
Table  1 

Regional  and  inter-regional  interdependencies 
obtained  from  value  added  for  a  high  degree  of  aggregation  (6  regions  and  6  

sectors) 
 
Determinants Global 

D 
GI Autark

y 
IDF PB NE W SW SE 

1982 0.1246 0.0689 0.8066 0.6714 0.7536 0.7946 0.7978 0.797
6 

0.7561

1992 0.1862 0.0609 0.7529 0.7196 0.7841 0.8268 0.8076 0.847
9 

0.7734

Difference 
(%) 

+49.5 -11.9 -4.67 +7.19 +4.05 +4.05 +1.22 +6.32 +2.28 

Where the six regions are respectively : IDF = Ile-de-France, PB = Paris Basin, NE = North-
East, W = West, SW = South-West and SE = South-East. 
 

Starting from the principle that a strong determinant reflects a low density of internal 
relationships (between sectors), it can be noted that the value of the global determinant is 
relatively high (indicating a weak degree of interdependence between regions) and, 
particularly, that it has increased by almost 50% over the past decade (for a high degree of 
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spatial and sectoral aggregation). However this tendency is less clear for a low degree of 
aggregation (the increase is about 15%) where the values of the determinant are considerably 
lower (above 30%) and less subject to change (Table 2). 

At the same time, the decrease in general interdependence, as the indicator of autarky, 
between regions is highlighted by the value of the interdependence term, whose trend is 
downwards (this time the phenomenon is more marked at a low degree of disaggregation). It 
should be noted that the main difference between the two levels of analysis is the evolution of 
the product of the loops (or the degree of autarky) between the two dates: a pronounced 
decrease in the first case (above 5%) and perfect stability in the second one. 

 
Table  2 

Regional  and  inter-regional  interdependencies 
obtained  from  value  added  at  a  low  degree  of  aggregation  (21  regions  and  12 

sectors) 
 

Years 1992 1982 
Global D 0.0955 0.0828 

GI 0.0411 0.0535 
Autarky 0.8633 0.8637 

Ile-de-France 0.5997 0.5871 
Champagne-Ardenne 0.9445 0.9488 

Picardy 0.9394 0.9391 
Upper Normandy 0.9285 0.9386 

Centre 0.9201 0.9202 
Burgundy 0.9484 0.9489 
Brittany 0.9224 0.9205 

Lower Normandy 0.9535 0.9559 
Pays-de-Loire 0.9067 0.8985 

Poitou-Charentes 0.9532 0.952 
Aquitaine 0.9106 0.9148 
Limousin 0.9811 0.9788 
Auvergne 0.9601 0.9604 

Midi-Pyrenees 0.9348 0.9310 
North-Pas-de-Calais 0.8938 0.8907 

Lorraine 0.9357 0.9290 
Alsace 0.9392 0.9398 

Franche-Comte 0.9623 0.9668 
Rhone-Alps 0.8187 0.8169 

Languedoc-Roussillon 0.9484 0.9545 
Provence-Alps-French Riviera-

Corsica 
0.8860 0.9002 

 
 

As for the regional determinants, the general trend in both tables 1 and 2 is confirmed: 
the highest degree of interconnectedness is found for Ile-de-France (the second one, the 
Rhone-Alps region, is a long way behind). At this level, the increase is particularly great for 
the South-West and the IDF during the period. This observation should be qualified for a low 
level of aggregation where the shifts are small. Examination of the partial interdependencies 
is more revealing. Annex 2 gives the results of local interdependencies taken two by two and 
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three by three (for 6 large regions and 6 large sectors, and for 21 small regions and 12 
medium sectors), especially for two incentive cases involving the IDF and the Paris Basin (the 
area around the capital), and the IDF and the South-East. Overall, the partial 
interdependencies are reduced whereas the determinants go up by 10% (two by two) and 
slightly more than 10% (three by three). 

In the first case (IDF-PB), the local interdependencies are weaker. This reflects a 
tendency towards the segmentation of the territory of France. At a low level of aggregation, 
the evolution is confirmed: the regions are getting more and more independent, especially the 
North-East which is “disconnected” (Appendix, table 3). Yet, the core region (IDF) is more 
connected to the other regions even if this old established fact (French polarization) is less 
clear for the end of the period. Within the Paris Basin, the main partners are Upper Normandy 
and Centre. 

In the second case (IDF-SE), the main findings are an increase in the determinants 
(DIDF, SE, DIDF,W,SE, DIDF,SW,SE and DIDF,NE,SE,) and a decrease in the partial interdependencies 
(IIDF,SE, IIDF,W,SE, IIDF,SW,SE and IIDF,NE,SE ; IIDF,PRO and IIDF,LR). This suggests a structural change 
in the exchange networks of both those large regions: their coefficients of mutual exchanges 
are becoming weaker but their external exchanges are increasing (tendency to autarky with 
regard to the other French regions). However it should be noted that IDF maintains 
preferential relationships with Provence (part of the South-East), as a strong partial 
interdependence of 0.48% testified (Appendix, Table 4). 
 
 
5. Concluding Comments 
 
Several theorems, including some new ones, have been proved and may be particularly useful 
in realizing various structural decompositions. They draw on the properties of matrices, 
determinants and graphs and underline the possibilities for evaluating: 
- the internal interdependence between the variables of any submatrice (sector, region, 
regional sector…); 
- the interdependence between some submatrices themselves; 
- and the general interdependence between all the variables in the system. 

Applied to the inter-industrial and interregional French relationships, the mathematical 
model provides interesting results about regional evolutions during the period 1982-1992. It 
shows especially the key position of the Ile-de-France region and the tendency towards a 
decreasing of general interdependence between the French regions. This suggests a trend 
towards greater autonomy and hence a less cohesive system. 

As many simultaneous linear equations systems have the same nature as a Leontief 
system, such a system need not necessarily be an inter-industrial exchanges system. It could 
be a relational system bring together areas, regions, nations, industries, firms, organizations, 
social groups or even individuals. Consequently, the nature of the flows inside the system 
could be very different and might include goods, services, financial data, information, 
sociological or psychological “influences” and so on. 
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Appendix 
 

The theorem of the circuit 
 
Each circuit of the graph of influence leads to a decrease in the value of the determinant D. 
 
Proof: Let us call Cj one of the circuits of the graph of influence and J  the set of vertices 
belonging to Cj. J  is the set of all the (other) vertices which do not belong to Cj. When the 
determinant D is written as the sum of the values Vh of the Hamiltonian partial graphs 
(HPGs): 
 
              D  =  

h
∑ Vh         (29) 

 
 it is possible to divide this set of HPGs into two subsets: those which do not include 
the circuit Cj and those which include it. We need to consider the second ones only in order to 
ascertain the contribution of the circuit Cj to the expression of the determinant D. This 
contribution is made by all the HPGs including circuit Cj. It is given by the sum of the values 
of those HPGs. As he product of the coefficients of the arcs of circuit Cj is denoted by Πj, the 
contribution of circuit Cj to the value of determinant D is equal to:  
 
       (-1)Πjmj        (30) 
 
where mj is the multiplier of the circuit. This multiplier is the sum of the values of all the 
HPGs of the subgraph the vertices of which belong to J . Using the theorem of the loops and 
circuits, we see immediately that this sum is equal to the determinant JD  of this subgraph. 
 Therefore, the part of the value of the determinant D explained by the circuit Cj taken 
separately is: 
 
                                                (-1) Πj JD                                                          (31) 

 
As the product Πj is positive and the determinant of any subgraph of the graph of influence is 
positive, we get the theorem.  
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Methodological Clarifications 
 
Sectoral nomenclature 
 
The sectoral decomposition (productive system) identifies 6 large sectors and 12 medium 
sectors: 
1- Farming, forestry and fisheries; 
2 - Energy: oil products, natural gas, electricity, gas, water; 
3 - Manufacturing: meat and dairy products, other food products, ores and ferrous metals, ores 
and non ferrous metals, building materials, miscellaneous minerals, glass, basic chemicals, 
smelting works, metal works, paper, cardboard, rubber, transformation of plastics; mechanical 
engineering, professional electric and electronic equipments, motor vehicles, shipping, 
aircraft and arms; pharmaceuticals, textile and clothing industries, leather and shoe industries, 
timber and wood industries, printing and publishing, miscellaneous industries. Thus 
manufacturing is further divided into four subsectors; 
4 - Engineering: building, civil and agricultural; 
5 - Market services: trade; automobile trade and repair services, hotels, catering; transport, 
telecommunications and mail ; business services, marketable services to private individuals ; 
housing rentals and leasing, insurance, financial services. Thus market services are further 
divided into four subsectors; 
6 - Non-market services. 
 
 
Regional nomenclature 
 
The spatial decomposition (France) identifies six large regions and 21 small regions: 
1 - Ile-de-France [IDF] ; 
2 - the Paris Basin [PB]: Champagne-Ardenne, Picardy, Upper Normandy, Centre and 
Burgundy ; 
3 - the West [W]: Brittany, Lower Normandy, Pays-de-Loire and Poitou-Charentes ; 
4 - the South-West [SW]: Aquitaine, Limousin, Auvergne and Midi-Pyrenees ; 
5 - the North-East [NE]: North-Pas-de-Calais, Lorraine, Alsace and Franche-Comte ; 
6 - and the South-East [SE]: Rhone-Alps, Provence-Alps-French Riviera-Corsica and 
Languedoc-Roussillon. 
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Results  
 

Tables  3 
Partial  Interdependencies (PI)  at  a  High  Degree  of  Aggregation  (6  Regions  and  6  

Sectors) 
 

Two by two D PI D PI 
Year 1992 1982 

IDF - PB 0.553 0.011 0.491 0.015 
IDF - W 0.585 0.01 0.519 0.014 

IDF - SW 0.572 0.009 0.524 0.011 
IDF - NE 0.603 0.008 0.520 0.015 
IDF - SE 0.544 0.013 0.491 0.017 
PB - W 0.639 0.009 0.587 0.012 

PB - SW 0.622 0.011 0.588 0.014 
PB - NE 0.657 0.008 0.589 0.012 
PB - SE 0.596 0.011 0.556 0.013 
W - SW 0.66 0.008 0.624 0.010 
W - NE 0.695 0.006 0.624 0.009 
W - SE 0.631 0.009 0.589 0.011 

SW - NE 0.677 0.008 0.627 0.010 
SW - SE 0.615 0.010 0.592 0.011 
NE - SE 0.648 0.007 0.592 0.011 

     
Three by 

three D PI D PI 
Year 1992 1982 

IDF - PB - W 0.442 0.025 0.370 0.032 
IDF - PB - 

SW 0.431 0.024 0.373 0.03 
IDF - PB - NE 0.457 0.022 0.371 0.032 
IDF - PB - SE 0.409 0.027 0.348 0.034 
IDF - W - SW 0.458 0.022 0.398 0.028 
IDF - W - NE 0.484 0.020 0.394 0.031 
IDF - W - SE 0.434 0.026 0.370 0.033 
IDF - SW - 

NE 0.473 0.02 0.399 0.029 
IDF - SW - 

SE 0.425 0.025 0.374 0.031 
IDF - NE - SE 0.449 0.023 0.370 0.034 
PB - W - SW 0.500 0.024 0.448 0.029 
PB - W – NE 0.530 0.020 0.451 0.027 
PB - W – SE 0.478 0.023 0.423 0.030 

PB - SW - NE 0.514 0.023 0.451 0.029 
PB - SW – SE 0.464 0.026 0.424 0.031 
PB - NE - SE 0.492 0.022 0.425 0.029 
W - SW - NE 0.547 0.019 0.481 0.024 
W - SW - SE 0.494 0.022 0.453 0.026 
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SW - NE - SE 0.523 0.019 0.453 0.026 
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Table 4 
Partial  Interdependencies (PI)  between  IDF  and  Some  Specific  Regions  (12  Sectors) 

 
Two by two D PI D PI 

Year 1992 1982 
IDF - CA 0.5645 0.0019 0.5625 0.0023 
IDF - PIC 0.5611 0.0023 0.5591 0.0026 
IDF - HN 0.5537 0.0032 0.5461 0.0052 

IDF - CEN 0.5486 0.0032 0.5482 0.0038 
IDF - BUR 0.5668 0.002 0.5643 0.0024 
IDF- RA 0.5495 0.0028 0.5428 0.0037 

IDF - PARC 0.5667 0.0021 0.5661 0.0026 
IDF - LR 0.5266 0.0048 0.5266 0.0064 

The five regions of the Paris Basin are: Champagne-Ardenne [CA], Picardy [PIC], 
Upper Normandy [HN], center [CEN] and Burgundy [BUR], and the three regions 
of the South-East are: Rhone-Alps [RA], Provence-Alps-French Riviera-Corsica 
[PARC] and Languedoc-Roussillon [LR]. 
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