Christos Floros⁺ and Pierre Failler

To be presented at the International Conference "Input-Output and General Equilibrium: Data, Modeling and Policy Analysis", Brussels, September 2-4 2004.

⁺ Author for correspondence
Centre for the Economics and Management of Aquatic Resources, University of Portsmouth, Boathouse No. 6, College Road,
H.M. Naval Base, Portsmouth, PO1 3LJ, UK.
E-Mail: <u>Christos.Floros@port.ac.uk</u>, Tel: +44 (0) 2392 844244.

JUNE 2004

ABSTRACT

Preliminary Draft. Comments Welcome

The purpose of this paper is to contribute to and facilitate the use of dynamic CGE model for fisheries policy and decision-making. A dynamic open-economy model is presented, in which the linkage between economy-ecology-biology is integrated in a regional CGE approach. To understand economic, ecological and biological relationships we present different CGE approaches.

The practical suitability of the specification is illustrated in an empirical application. To the best of our knowledge, this is the first application of a dynamic CGE model applied to fishery sector as a function of economic, ecological and biological constraints.

* Part of the EU funded RTD project QLRT-2000-02277 "PECHDEV".

Keywords: Fisheries, SAM, Dynamic Computable General Equilibrium Model.

I. INTRODUCTION

General equilibrium (GE) theory suggests that real-world markets are interdependent where changes in supply or demand conditions usually have repercussions on supply and demand conditions. Since the beginning of the 1980s GE models have become popular to analyse and describe economy, because they provide quantitative results in policy analysis. General equilibrium models are increasingly being used for many problems (see Harberger, 1962; Shoven and Whalley, 1992). They may be applied to any large economic change. Computable general equilibrium (CGE) model is a policy model where the main goal is to formulate a model of simultaneous equilibrium¹.

In this paper, we focus on a dynamic CGE model. We give a brief introduction to CGE modelling, and we provide a simple basic structure that can be used for the development of a CGE model for fisheries. The main goal of this study is to develop a CGE model for the evaluation of the socio-economic contributions of the fishing activities. From fishery management point of view, it is necessary to employ a regional economic model and estimate the regional economic impacts attributable to fishery policies. For our simple example we consider real data from Salerno, Italy. Our regional model is the first CGE model applied to fisheries, where the link between economics-ecology and biology is discussed and presented.

The paper is organised as follows: Section II provides the data (SAM) from Salerno-Italy, while Section III presents the general structure of a CGE model. Section IV presents the CGE model statement, while in Section V we discuss the application of a CGE model to fisheries. Section VI presents the main empirical results for Salerno obtained using GAMS² software package (www.gams.com). Finally, Section VII concludes the paper and proposes future research.

¹ The simplest form of general equilibrium model is the input-output model developed by Leontief.

² GAMS (General Algebraic Modelling System) is an optimisation software. Other software package similar to GAMS is GEMPACK.

II. THE SOCIAL ACCOUNTING MATRIX

CGE modelling takes the following steps: (i) database construction, (ii) model estimation and calibration, (iii) base run solutions and (iv) simulations, i.e. solving the model under different scenarios (for CGE steps see Appendix 3).

Social Accounting Matrices (SAMs) provide a general framework for representing the flow of resources within an economy in a given period of time – usually a year. Input-output analysis was first implemented at a national level in the United States in 1936 by Wassily Leontief and has since come to play a central role in economic analysis and national income accounting throughout the world (see Leontief, 1986). The first official input-output tables for the United Kingdom were published in 1961 for the year 1954, and tables have since been published at regular intervals. Input output methods have been particularly influential in the analysis of regional economies (see, e.g. Armstrong & Taylor, 2000). Regions of the United Kingdom have, however, been rather poorly served in terms of coverage by reliable and accurate input-output accounts. Social Accounting Matrices add to input-output accounts, among other things, greater detail on the distribution and uses of income in the economy. In a SAM, the economy is conceived as being made up of a number of broad areas such as intermediate production, households, government, capital, trade, and the labour market. The SAM then gives a detailed record of the flow of resources within and between each of these areas.

Social Accounting Matrices add to input-output accounts, among other things, greater detail on the distribution and uses of income in the economy. The income accounts of the SAM record the flow of production resources into households, in the form of wages and salaries paid to employees, dividends paid to shareholders *etc*. At the same time, the household account of the SAM shows what households paid to producers to purchase finished goods and services. A typical SAM will identify a number of different household types by employment status, number of dependants, social class and other such characteristics. Both production and household sectors have relationships with government through taxation, subsidy, transfer payments and government consumption. The SAM is thus extended across the broad areas of the economy. Our SAM distinguishes the following accounts: activities, commodities, factors, households, savings, taxes and the rest of the world. Activity column entries indicate expenditures incurred during the production process and include purchases of

intermediate inputs and payments to the factors of production. The total supply of commodities, value at market prices, is given as domestic marketed production, imports of goods and non-factor services, indirect taxes as well as export taxes. The commodity row gives the total demand for marketed commodities and includes household and government consumption. The intersection between the commodity column and government row gives the indirect taxes paid. Furthermore, factors include labour and capital. The factor account pays factor taxes to the government and factor payments to the RoW. Household column indicates the allocation of total household income among income taxes and savings.

In addition, the savings-investment column gives the total investment expenditure in the economy, while the RoW column shows the exports of goods and services. Purchases of imports and receipts of factor payments are specified in the row.

In general, the SAM provides a snapshot of the economy at a single point in time and each cell records the value of each transaction (i.e. the product of prices and quantities).

Appendix 1 shows an example of a SAM structure used in a general CGE model.

III. OVERVIEW OF THE CGE MODEL

- CGE General Structure

In this section we present the general structure of a simple CGE model. In general equilibrium theory we formulate a model of simultaneous equilibrium in competitive markets for all commodities. The model explains all payments based on the SAM. In the standard CGE models, one first distinguishes between different producers, goods and factors. According to the theory, producers maximise profits, while consumers maximise utility. In this type of model, equilibrium is then characterised by a set of prices and levels of production (i.e. market demand equals supply for all commodities). The model is based on a system of simultaneous equations, in which factors are fully utilized (see Dervis, de Melo and Robinson, 1982; Robinson, 1990 for more details). Prices are set so that equilibrium profits of firms are zero. Factor incomes are divided among households (total household income is used to pay taxes, save and consume), while government revenue comes from direct and indirect taxes. Household incomes equal household expenditures (equilibrium condition). Household goods consumption is determined by assumptions about consumer behaviour.

Consumers are generally assumed to maximize utility, where the assumed form of the utility is a CES, a Linear expenditure system or a Translog function. Furthermore, government tax revenues equal government expenditures including subsidy payments. The Rest of the World supplies imports and demands export goods. This section gives an overview of the basic CGE model by explaining all the payments that are recorded in our SAM.

CGE models are based on the Walrasian general equilibrium structure (Walras, 1954). Accordingly, "for any price vector, the value of the excess demand is identically zero". For production, we have two types: Cobb-Douglas (CD) and Constant Elasticity of substitution (CES). If the production function has no constant returns of scale, we can calculate the different supply functions. The model satisfies Walras law in that the set of commodity market equilibrium conditions is functionally dependent.

In most CGE models, imports are determined by an import demand function. CGE models employ the "Armington assumption" that products produced in different regions are different from each other in quality (Armington, 1969). Armington has three advantages: (i) it accounts for the large amount of cross-hauling present in the data (imports and exports), (ii) it explains the empirical observation clear, and (iii) it allows for differing degrees of substitution among different products and goods. Furthermore, exports of a good depend on the ratio of the domestic price of the good and the export price of the good. There is a distinction between domestically supplied goods and exported goods according to a constant elasticity of transformation (CET) function.

To run a CGE model, we estimate a number of parameters from the model, so that the equilibrium solution satisfies all our equations under the method of "calibration". Because CGE models contain so many parameters to be estimated, the only way is to use the estimation method called calibration. Calibration for CGE models can be used in order to estimate parameters in, for example, Cobb-Douglas, CES and CET functions. In addition, we need information of prices, quantities and values in the initial equilibrium for model estimation. For instance, we can set all the prices at unity at the initial equilibrium condition (homogeneity of degree zero). Figure 1 presents the structure of a production technology when specified by a CES. Figure 2 shows the structure of a simple model of one country, 2 producing sectors and 3 goods (imports, M; domestic production, D; and exports, E). For general CGE steps see Appendix 3.

Figure 1. Production technology

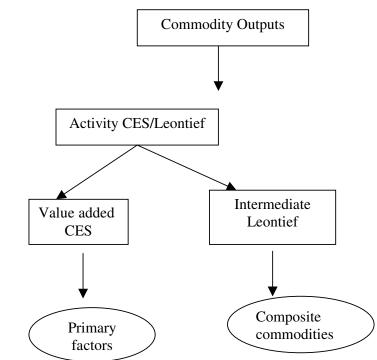
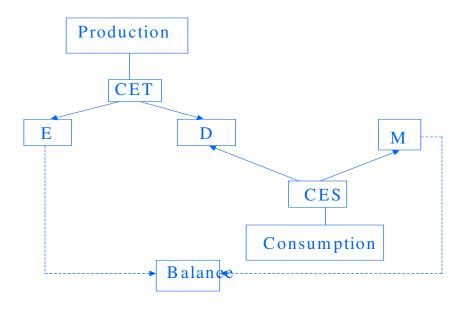



Figure 2. Structure of a simple (basic) model

- A Dynamic Model for Fisheries

Following Hartwick and Olewiler (1986), the equilibrium in fisheries may have a number of assumptions. One can use most common forms of markets in economic analysis: perfect competition (open access) and monopoly. In open access, time value in the form of the discount rate is set to infinity. This is done regarding the fact that a fisherman on the open sea has no reason to leave anything to the future. He harvests as much as he is able to catch. When we do care about the steady state, we mean that harvest = natural growth. This comes from the stock of fish, which maximises the total economic surplus. Furthermore, the stock changes the profit prospects of the fishermen. In equilibrium, the marginal value of changing the fish stock should be equal to what can be earned from the royalty on the capital market. A stable income over time obviously presumes a stable fish stock.

On the other hand, we also need information about the growth of the species. For most fish species we assume that the growth rate of the stock depends on its size or biomass. As the biomass or stock size increases, the growth rate will decline. Graphically, each point on the growth curve represents a sustainable yield of fish for a given stock of fish. We define a biological equilibrium as the value of the fish stock for which there is no growth in the fish population or biomass

Furthermore, to get an idea about a system out of balance between harvest and natural growth we have to turn to dynamic analysis. We assume that disequilibrium affects the decisions of our factors in the economy and causes adaptive behaviour. The main question in fisheries is "what will be the reaction of the fishermen upon decreasing stocks or fish?".

IV. CGE MODEL STATEMENT

In this section we present the variables and equations for a dynamic CGE model (Lofgren *et al.*, 2001). A dynamic CGE model deals with issues of next periods. The variables are divided into four parts: prices, production, institutions and system constraints (see Table 1). The equations (mathematical statement of the model) are presented in more details in Appendix 4.

VARIABLES	EQUATIONS
Import price	= tariff adjustment*exchange rate*import price
Export price	= tariff adjustment * exchange rate * export price
Absorption	=(domestic sales price*domestic sales
	quantity)+(import price*import quantity)*(sales tax
	adjustment)
Domestic Output Value	(producer price*domestic output quantity) =
	(domestic sales price*domestic sales quantity) +
	(export price*export quantity)
Activity Price	= (producer prices) * yields
Value-added Price	= (activity price) – (input cost per activity unit)
Activity Production Funct.	= f (factor inputs)
Factor Demand	(Marginal cost of factor f in activity a) = (marginal
	revenue product of factor f in activity a)
Intermediate demand	= f (activity level)
Output function	Domestic output = f (activity level)
Armington Function	Composite supply = f (import quantity, domestic use
	of domestic output)
Import-Domestic Demand	= f (domestic-import price ratio)
Ratio	
Composite supply for	= domestic use of domestic output
nonimported commodities	
CET Function	Domestic output = f (export quantity, domestic use of
	domestic output)
Export-Domestic Supply	= f (export-domestic price ratio)
Ratio	
Output Transformation for	Domestic Output = domestic sales of domestic output
NonexportedCommodities	
Factor Income	Household factor income = (income share to
	household h)* (factor income)
Household income	= (factor incomes) + (transfers from government)
	*ROW

Table 1. CGE Variables and Equations

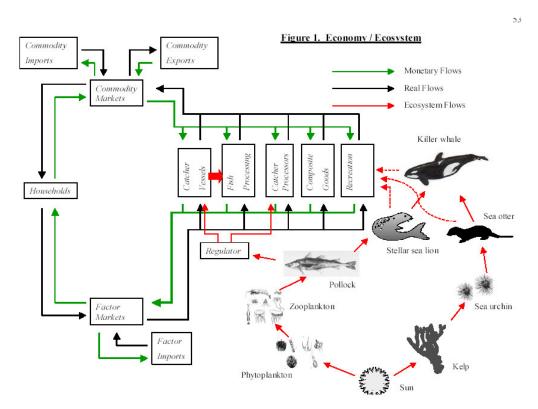
Household Consumption	= f (household income, composite price)					
Demand for commodity c						
Investment Demand for	= (base-year investment) * (adjustment factor)					
commodity c						
Government Revenue	= (direct taxes) + (transfers from ROW)+ (sales tax) +					
	(import tariffs) + (export taxes)					
Government Expenditures	(Government spending) = (household transfers) +					
	(government consumption)					
Factor Markets	(Demand for factor f) = (supply of factor f)					
Composite Commodity	(Composite supply) = (composite demand, sum of					
Markets	intermediate, household, government, investment					
	demand)					
Savings-Investment Balance	(Household savings) +(government savings)+(foreign					
	savings)=(investment spending)+(WALRAS dummy					
	variable)					

V. DYNAMIC CGE MODEL FOR FISHERIES

Applied literature focusing on general equilibrium effect on fisheries is small. However, many previous studies of regional economic impacts of fishery used Input-Output (I-O) models. We have three main categories in the literature: commercial fishing, sport fishing and those that deals with both. Studies in the first category include King and Shellhammer (1981) and Butcher et al. (1981). Furthermore, Martin (1987) and Hammel *et al.* (2002) explain sport fishing, while Hushak *et al.* (1986) and Carter and Radtke (1986) show the impact of fishery dealing with the third category.

Computable General Equilibrium (CGE) Models for Fisheries is not a widely area of research. With an applied CGE model we can take into account the fish population dynamics. To our knowledge, only one CGE model of this type exists, the recent study of Houston *et al.* (1997). They develop a regional CGE model to evaluate the impacts associated with reduced marine harvests for a coastal Oregon region. They use five fishing sectors or vessel types, groundfish trawlers, crabbers, shrimp and scallop draggers, whiting midwater trawlers and small boats. The Oregon model has five processing sectors, 24 aggregated industry and commodity sectors, household income categories, two government expenditures, three factor income accounts and an investment expenditure account. Appendix 2 shows an example of a SAM structure for fisheries used in and proposed by Houshak *et al.* (1997).

Houston *et al.* (1997) present three scenarios for Oregon CGE model. According to the first scenario, there is a 20% reduction in groundfish catch because the fishery has become less productive and/or more restrictive. Under this scenario, boats catch less per unit fishing effort. Under the second scenario, there is a \$6 million buyback of 16 trawl boats. It is assumed that this money comes from the federal government, or some other source outside the local economy. Finally, the third scenario assumes a removal of 16 trawl boats. Under the three policy scenarios, Houston *et al.* (1997) estimate changes in numbers of jobs (i.e. employment impacts of reduced groundfish harvests). The results show a bigger change (effect) on scenario 1.


Our model is different than that of Houston *et al.* (1997) because we are looking at the linkage between biology, ecology and economics.

Linking Economy and Ecology

For the link between economy and ecology, Finnoff and Tschirhart (2004) link dynamic economic and ecological CGE models (Figure 1). They focus on the approach for multiple species in complex food webs. The ecosystem model is combined with a CGE model of an economy. The model is applied to Alaska and eight species marine ecosystem. The analysis focuses on the fact that ecosystem affects economy and economy affects ecosystem, and both systems are general in equilibrium. Their model shows how ecosystem externalities can be measured. Jin *et al.* (2003) develop and present a methodological approach that links economy-ecology by merging an input-output model of a coastal economy with a model of a marine food web. They also present a numerical example based on the linear system sub-models of the economy and ecosystem, for the New England region. They simulate the economic impacts of changes in primary production in the ecosystem on final demands for fishery products. The results illustrate the effects of incorporating the impacts of habitat destruction and ecosystem structure on resource multipliers.

Furthermore, for solving ecological-economic models Duraiappah (2001) explains the complexities which arise when ecological and economic systems are integrated using GAMS. The paper presents the steps and solution of nonlinear IEE models that can be used for policy analysis and prescription.

Next we present the CGE model for Salerno (Salerno-CGE model).

(Source: Finnoff & Tschirhart, 2004)

VI. THE SALERNO-CGE MODEL & RESULTS

The Computable general equilibrium model for Salerno is a dynamic model of the Salerno economy calibrated to 2001 (for obvious reasons we can't present the full Salerno-SAM here). The structure of the Salerno CGE model is as follows: the Salerno-CGE model is disaggregated into two Households (fisheries and non-fisheries), two Factors (labor and capital), two Firms, 29 Activities, 37 Commodities, Government, 6 Taxes, Savings and the Rest-of-the-World (RoW).

Our regional model has two components: a CGE model, which represents the behaviour of economic agents (i.e. economic part), and a biology model, which is a representation of biological process affecting fisheries productivity (under the biological production functions for Salerno).

The economic part of CGE model for Salerno employs standard assumptions. The model assumes that producers maximize profits subject to production functions, while households maximize utility subject to budget constraints. Production and consumption behaviour are modelled using the constant elasticity of substitution (CES) family of functions, which includes Leontief³, Cobb-Douglas and constant elasticity of transformation (CET) functions. Hence, substitution between regional supply and exports is given by CET, while firms smoothly substitute over primary factors through CES functions. Furthermore, factors are mobile across activities, available in fixed supplies, and demanded by producers at market-clearing prices. The model satisfies Walras' law in that the set of commodity market equilibrium conditions is functionally dependent, while the model is homogeneous of degree of zero in prices. Other main assumptions are the following two: first, the Salerno is treated as an open economy, implying that Salerno faces exogenous prices for imports and exports. Second, products are differentiated according to region and Armington assumption, so that imports and exports are different from domestically produced goods.

Regarding the Savings, its row receives payments from the household, while its column shows spending on commodities for investment. We assume that (i) household income is allocated in fixed shares to savings and consumption, (ii) the value of total investment spending is determined by the value of savings and (iii) investment spending is allocated by the commodities. Here, the set of equilibrium conditions includes the commodity market equilibrium conditions as well as the savings-investment balance (including the Walras variable). Note that if the CGE model works, then Walras should be zero. Furthermore, the government of the model earns its revenues from income and sales taxes and spends it on consumption and transfers to households. Government savings is the difference between its revenues and spending. The income tax is a fixed share of the gross income of each household.sales taxes are fixed shares of producer commodity prices. The government

consumes commodity quantities, and pays market prices and taxes. The final account of our model is the rest of the world (RoW).

- Explanation for the biological production functions for the Salerno case.

Economic analysis of fishery management policies require the evaluation of economic impacts of changes in *biological* and *economic* conditions of fishery. The biological production functions are included in the Salerno-CGE Model through the equation:

(1)
$$B_{t+1} = B_t + g(B_t) - Y_t \left(1 + \gamma \times \left(\frac{Y_t}{B_t}\right)^{\beta - 1}\right)$$

with
$$\gamma = \frac{1-\alpha}{\alpha} \times \frac{B^{curr}}{Y_{in}^{curr}}$$

where B is the biomass of the stock, t is the time step in the model (year), g is the growth function of the stock (equation 2), Y is the yield estimated in the economic sub-module of the CGE Model, γ is a constant parameter and β is the reactivity parameter. Y_{in, curr} represents the Salerno catch (=Y_{curr}/ α). *Growth function*

For the Salerno case, the biologic functions of growth g(B) can either be in the form of a Pella and Tomlinson (generalized production model) with 3 parameters r, K, m, either in the form of a Fox model (exponential model) with only 2 parameters. In this case, the parameter value of m is one but the equation is different. All the stocks with a m value of one in table I follow a Fox model whereas the others follow a Pella and Tomlinson model.

The growth in the Fox model:

(2)
$$g(B) = r \times B \times \ln\left(\frac{K}{B}\right)$$

³ For all sectors, we assume Leontief technology, that is, that a fixed input quantity is needed per unit

The growth in the Pella and Tomlinson model:

(3)
$$g(B) = r B \left(1 - \left(\frac{B}{K}\right)^{m-1} \right)$$

Values of reactivity β

Two values of β can be first tested in the Salerno case:

- β=1 corresponds to the fact that a variation in the fishing effort of the Salerno fleet (increase for instance) will be followed by the same reaction of the other fleets targeting the same stock (increase). This assumes that the biological production function of Salerno matches exactly the production function of the whole stock but only represents the relative part a of the fishing mortality (and yield).
- β=0 corresponds to the situation in which the fishing effort of other fleets applied on a given stock remain constant, whatever the variations of effort of Salerno (assumption often made in bio-economic models).

To solve equation (1) we assume that $B_{t+1} - B_t < \varepsilon$ (=0.0001). So, we get that

$$g(B_{t}) = (B_{t+1} - B_{t}) + Y_{t}((1 + \gamma \times \left(\frac{Y_{t}}{B_{t}}\right)^{\beta - 1})$$

Scientific name	Sub-areas	r	K (Tons)	m
Aristaemorpha foliacea	G5 operational unit	-0.38	25	0.295
Aristeus antennatus	G5 operational unit	-0.30	10	0.137
Engraulis encrasicolus	Sardinia	0.84	75794	1
Merluccius merluccius	G5 operational unit	-0.70	500	0.555
Mullus barbatus	G5 operational unit	-0.38	150	0.201
Mullus surmuletus	Sardinia	0.2	2433	1
Nephrops norvegicus	Sardinia	0.18	15163	1
Octopus vulgaris	Sardinia	0.25	38441	1
Others	Sardinia	0.4	338063	1
Parapaeneus longirostris	G5 operational unit	-0.34	50	0.329
Sardina pilchardus	Sardinia	0.22	296426	1
Sepia officinalis	Sardinia	0.25	1207	1
Squilla mantis	Sardinia	1.41	1902	1
	East Atl. &			
Thunnus thynnus	Mediterranean	0.36	297271	1

Table I. Population parameters estimated for the stocks selected for the Salerno case.

Table II. Exploitation parameters estimated for the stocks selected for the Salerno case (Y curr represents the total catch).

Scientific name	Sub-areas	F curr	Ycurr	B curr
Thunnus thynnus	G5 operational unit area	0.72	28959	40282
Sepia officinalis	G5 operational unit area	0.47	322	690
Octopus vulgaris	Sardinia	0.39	3158	8130
Aristaemorpha foliacea	G5 operational unit area	0.48	3.5	15
Aristeus antennatus	G5 operational unit area	0.66	1.9	6
Parapaeneus longirostris	Sardinia	1.02	9.2	20
Mullus barbatus	Sardinia	1.46	29.2	48
Squilla mantis	Sardinia	3.90	465	119
Engraulis encrasicolus	Sardinia	3.02	6414	2127
Merluccius merluccius	G5 operational unit area	0.93	57	131
Nephrops norvegicus	Sardinia	0.55	387	704
Sardina pilchardus	Sardinia	0.78	6575	8379
Mullus surmuletus	Sardinia	0.2	179	895
Others	East Atl. & Mediterranean	0.4	49747	124366

Table III. Relative proportion of Salerno catch in the total catch for each stock (α)

Scientific name	Sub-areas	Salerno relative part
Aristaemorpha foliacea	G5 operational unit	100%
Aristeus antennatus	G5 operational unit	100%
Engraulis encrasicolus	Sardinia	3%
Merluccius merluccius	G5 operational unit	100%
Mullus barbatus	G5 operational unit	100%
Mullus surmuletus	Sardinia	3%
Nephrops norvegicus	Sardinia	100%
Octopus vulgaris	Sardinia	6%
Others	Sardinia	5%
Parapaeneus longirostris	G5 operational unit	100%
Sardina pilchardus	Sardinia	2%
Sepia officinalis	Sardinia	24%
Squilla mantis	Sardinia	34%
Thunnus thynnus	East Atl. & Mediterranean	9%

- RESULTS FOR SALERNO CASE

We run our CGE model for Salerno using the optimisation software package GAMS (www.gams.com). A CGE model in GAMS has seven parts:

- 1. Sets definition
- 2. data input (SAM)
- 3. initial values from the Sam

- 4. calibration for estimation
- 5. variables and equations definitions
- 6. initial values and numeraire
- 7. Solution

The steps for the equilibrium solution between economic and biological modules are presented in Appendix 5.

Table IV and Table V show the main results from Pella-Tomlinson model and Fox model respectively. Our results based on the equations (1), (2) and (3) for the Salerno case. First, we estimate the parameters of surplus production models in the form of Pella-Tomlinson and Fox models. After, the biological production function through the yield from the CGE economic model is estimated in order to take into account for the reactivity of fleets regarding a variation in the Italian fishing effort targeting a given group. Two different scenarios of reactivity are considered, namely: beta = 1 and beta = 0.

Yield	382	64	882	147
Scientific Name	e Aristeus antennatus	Merluccius	Mullus barbatus	Parapaeneus longirostris
SAM name	Blue & Red shrimp	Europ. Hake	Stripped Mullet	Deepwater Rose shrimp
CGE name	gsb-c e	eh-c s	sm-c d	drs-c
R	-0.3	-0.7	-0.38	-0.34
К	10	500	150	50
М	0.137	0.555	0.201	0.329
В	6	131	48	20
g	<mark>0.9972287</mark>	<mark>74.72757</mark>	<mark>27.09253</mark>	<mark>5.77554</mark>
Alpha	1	1	1	1
Ycurr	1.9	57	29.2	9.2
Yin,curr	1.9	57	29.2	9.2
Gama	0	0	0	0
B(t+1)	-375.00277	141.7276	-806.907	-121.224
M*F	0.09042	0.51615	0.29346	0.33558

TABLE IV. Pella-Tomlinson model for Salerno case

TABLE V. Fox model for Salerno case

Yield	637	39	456	745	11923	68	745	172	19287
Scient. name	Engraulis	Mullus sur	Nephrops	Octopus	Others	Sardina	Sepia offic	Squilla mant	Thunnus
SAM name	Eur. Anchovy	Red mullet	Norw. Lobster	Com. Octopus	Others	Eur. Pilchard	Com. Cuttlefi	Spottail Man	Norw. Bluefin tuna
CGE name	an-c	rm-c	nl-c	co-c	OS-C	ep-c	сс-с	sms-c	bt-c
r	0.84	0.2	0.18	0.25	0.4	0.22	0.25	1.41	0.36
K	75794	2433	15163	38441	338063	296426	1207	1902	297271
m	1	1	1	1	1	1	1	1	1
В	2127	895	704	8130	124366	8379	690	119	40282
g	6384.35543	179.0101	389.0095131	3157.618169	49746.57	6573.6203	96.4622801	465.036319	28984.76
alpha	0.03	0.03	1	0.06	0.05	0.02	0.24	0.34	0.09
Ycurr	6414	179	387	3158	49747	6575	322	465	28959
Yin,curr	213800	5966.667	387	52633.33333	994940	328750	1341.66667	1367.64706	321766.7
gama	0.32166978	4.85	0	2.419949335	2.374971	1.2488852	1.62857143	0.16890323	1.265811
Bt+1/beta=0	7190.164	-3305.74	637.0095	-9131.57	-133176	4420.211	-1082.25	391.9368	-1009.64
Bt+1/beta=1	7669.452	845.8601	637.0095	8739.756	133872.8	14799.7	-1171.82	382.985	25566.06
g(bt)/beta=0	704.9	984.8	456.0	5386.3	82714.1	176.2	3344.9	179.4	53246.5
g(Bt)/beta=1	841.9	228.2	456.0	2547.9	40239.8	152.9	1958.3	201.1	43700.7

VII. SUMMARY

A fishery consists of a number of different fishing activities and characteristics, including the types of fish to be harvested and the types of vessels and gear use. There may be many species of fish being harvested by a variety of different vessels.

Fisheries market is the subject of increasing interest to many people around the world. To project the impact of changes in demand and supply, and of other structural or policy changes, on the fisheries market a regional model is required. In this paper we provide a review of a Computable General Equilibrium Model (CGE) with application to the fishing industry of Salerno in Italy. Our CGE model is one of the first regional CGE models for fisheries, which distinguishes between different species and identifies fisheries by region.

To examine possible differential impacts on individual fishing sectors, we disaggregate sectors into separate harvesting sectors and processing sectors. In addition to that, other sectors and categories are presented through the Social Accounting Matrix (SAM) of Salerno.

Furthermore, our general equilibrium model takes into account two main parts: the economic one (i.e. economic production functions) and the biological production functions in order to estimate the CGE and take into account for the reactivity of fleets regarding a variation in the Italian fishing effort targeting a given group. To do so, we consider two different biological scenarios based on the Pella-Tomlinson and Fox models.

Our results show the link between economics and biology in terms of equilibrium conditions. Two different scenarios of reactivity are considered in order to illustrate the potential range of responses of the stock to fishing exploitation. These scenarios are the following: (i) foreign fleets exactly follow the variation in effort allocation of the Italian fleet, and (ii) foreign fleets do not modify their fishing effort. In addition, we report the link between economy and ecology.

In this report, we do not discuss any economic simulation scenarios. Our main objective is to provide the link between economy-ecology and biology, and show how we can present it in the static form of a CGE model under the optimisation software package GAMS. The next step is to make simulations of a dynamic CGE model for fisheries under economy-ecology-biology links. Since, the dynamics of fishery is very important for economic analysis, it is necessary to answer the questions "how is dynamic equilibrium reached?" and "will dynamic equilibrium reached?".

[1] ARMINGTON (1969), Theory of Demand for Products Distinguished by Place of Production, *IMF Staff Papers*, 16(1): 159-178.

[2] BERLIAN M., DAKHLIA S. (2002), Sensitivy Analysis for Applied General Equilibrium Models in the Presence of Multiple Walrasian Equilibria, *Economic Theory*, 19, pp. 459-476.

[3] BERNARD P. (2003), *Commerce international et ressources renouvelables: le cas des produits halieutiques*, Thèse de doctorat, Université de Nantes, à venir

[4] BERNARD P. (1998), Another way of looking at fisheries management: the computable general equilibrium models, *Presented at Xth Annual Conference of the EAFE, The Hague.*

[5] BUTCHER et al. (1981), Economic impacts of the Alaska shellfish fishery: An input-output analysis, *Report, Northwest and Alaska Fisheries Center.*

[6] CARTER, RADTKE (1986), Coastal community impacts of the recreational/commercial allocation of salmon in the Ocean fisheries, *Ocean department of fish and wildlife staff report.*

[7] DERVIS, DE MELO, ROBINSON (1982), *General Equilibrium Models for Development Policy*, New York: Cambridge University Press.

[8] GINSBURGH V., KEYZER M. (1997), The Structure of Applied General Equilibrium models, *The M.I.T. Press*, Cambridge, 555 p.

[9] HAMMEL et al. (2002), Linking sportfishing trip attributes, participation decisions, and regional economic impacts in lower and Central Cook Inlet, Alaska, *Annals of Regional Science* 36: pp. 247-264.

[10] HARTWICK, J., OLEWILER, N. (1986), *The Economics of Natural Resource Use*, Harper & Row, Publishers, Inc.

[11] HOUSTON, L., JOHNSON, R., RADTKE, H., WALTERS, E. and GATES, J. (1997), *The Economic Impacts of Reduced Marine Harvests on Regional Economics*.

[12] HUSHAK et al. (1987), Use of input-output analysis in fisheries assessment, *Transactions of the American Fisheries Society* 116:441-449.

[13] HUSHAK *et al.* (1986), Regional impacts of fishery allocation to sport and commercial interests: A case study of Ohio's portion of Lake Erie, *North American Journal of Fisheries Management* 6: 472-480.

[14] KING, SHELLHAMMER (1981), The California interindustry fisheries model: An input-output analysis of California fisheries and seafood industries. *San Diego State University, Center for Marine Studies*, San Diego, CA.

[15] LOFGREN et al. (2001), A standard Computable General Equilibrium (CGE) Model in GAMS, *TMD Discussion Paper No. 75*.

[16] MARTIN (1987), Economic impact analysis of a sport fishery on Lake Ontario: An appraisal of method, *Transactions of the American Fisheries Society* 116:461-486.

[17] REINERT K.A., ROLAND - HOLST D.W. (1997), Social Accounting Matrix, in François J.F. and Reinert K.A. eds., *Applied Methods for Trade Policy Analysis: a handbook*, New York, Cambridge University Press, pp. 94-121.

[18] ROBINSON S., ROLAND - HOLST D.W. (1988), Macroeconomic Structure and Computable General Equilibrium Models, *Journal of Policy Modeling*, 10, pp. 353-375.

[19] RUTHERFORD T. (1987), *Applied General Equilibrium Modeling*, PhD thesis, Department of Operations Research, Stanford University.

[20] SHOVEN B.J., WHALLEY J. (1992), Applying General Equilibrium, *Cambridge University Press*, Cambridge, 299 p.

[21] WALRAS L. (1954), *Theory of Pure Economics*, Translated by W. Jaffe, Allen and Unwin, London.

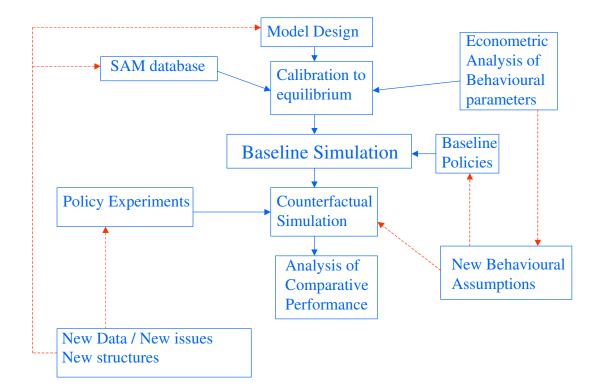
APPENDIX 1: REGIONAL SOCIAL ACCOUNTING MATRIX (SAM)

	Industry	Commodity	Labor	Capital	Household	Government	S-I	ROW
Industry		Gross Output (Make Matrix)						
Comm.	Intermediate Input Use (Use Matrix)				Household Purchase	Government Purchase	Investment	Exports
Labor	Labor Factor Income							
Capital	Capital Factor Income							
Household			Resident Labor Income	Resident Capital Income		Transfer to Household		
Government	Indirect Business Tax			Corporate tax & Property tax	Personal Income Tax	Transfer to Government		
S-I				Depreciation & Retained Earnings	Household Savings	Government Savings		
ROW		Imports	Labor Income Leakage	Capital Income Leakage			- (External Savings)	

Structure of a Regional Social Accounting Matrix

Note: 1. S-I denotes savings-investment

2. ROW denotes rest of the world


APPENDIX 2: SOCIAL ACCOUNTING MATRIX (SAM) FOR FISHERIES

(Houshak et al., 1997)

Social Accounting	Matrix with	Disaggregated	Fishery Sectors	
Social I Recounting	, IT BOOLINE THEAT	Distigned		

	HARVEST ING SECTORS	PROCESS ING SECTORS	NONFISH ERY SECTORS	HARVEST ING COMMOD	PROCESS ING COMMOD	NONFISH ERY COMMOD	LABOR	CAPITAL	HOUSEH OLD	GOVT	SAVINGS- INVESIM ENT	REST OF WORLD
Harvesting sectors				Make matrix Ml	Make matrix M2	Make matrix M3						
Processing sectors				Make matrix M4	Make Matrix M5	Make matrix M6						
Nonfishery sectors				Make matrix M7	Make matrix M8	Make Matrix M9						
Harvesting commoditi es	Use matrix Ul	Use matrix U2	Use matrix U3						Household Purchase Hl	Gov't Purchase Gl	Investment IN1	Exports El
Processing commoditi es	Use matrix U4	Use matrix U5	Use matrix U6						Household Purchase H2	Gov't Purchase G2	Investment IN2	Exports E2
Nonfishery commoditi es	Use matrix U7	Use matrix U8	Use matrix U9						Household Purchase H3	Gov't Purchase G3	Investment IN3	Exports E3
Labor	Labor income L1	Labor income L2	Labor income L3									
Capital	Capital income Kl	Capital income K2	Capital income K3									
Household							Resident Labor Income	Resident Capital Income		Transfer to Household		
Gov't	Indirect business tax Tl	Indirect business tax T2	Indirect business tax T3					Corporate tax & Property tax	Personal Income Tax	Transfer to Gov't		
Savings- investment								Depreciatio n & Retained	Household Savings	Gov't Savings		
Rest of world				Imports IM1	Imports IM2	Imports IMB	Labor Income Leakage	Capital Income Leakage			- (External Savings)	

APPENDIX 3: CGE MODELLING IN PRACTICE

APPENDIX 4: SETS, PARAMETERS and VARIABLES (Salerno-CGE Model)

SETS

- $a \in A$ activities
- $c \in C$ commodities
- $c \in CM(C)$ imported commodities
- $c \in CNM(C)$ nonimported commodities
- $c \in CE(C)$ exported commodities
- $c \in CNE(C)$ nonexported commodities
- $f \in F$ factors
- $h \in H(I)$ households
- $i \in I$ institutions (households, government, and rest of world)

PARAMETERS

ada production function efficiency parameter *aqc* shift parameter for composite supply (Armington) function atc shift parameter for output transformation (CET) function *icaca* quantity of c as intermediate input per unit of activity a mpsh share of disposable household income to savings *pwec* export price (foreign currency) *pwmc* import price (foreign currency) *qgc* government commodity demand qinvc base-year investment demand shryhf share of the income from factor f in household h tec export tax rate *tmc* import tariff rate tac sales tax rate trii' transfer from institution i' to institution i tyh rate of household income tax α_{fa} value-added share for factor f in activity a β_{ch} share of commodity c in the consumption of household h δ_{cq} share parameter for composite supply (Armington) function δ_{ct} share parameter for output transformation (CET) function θ_{ac} yield of commodity c per unit of activity a ρ_{cq} exponent (-1 < ρ_{cq} < ∞) for composite supply (Armington) function ρ_{ct} exponent (1 < ρ_{ct} < ∞) for output transformation (CET) function σ_{cq} elasticity of substitution for composite supply (Armington) function σ_{ct} elasticity of transformation for output transformation (CET) function

VARIABLES

EG government expenditure EXR foreign exchange rate (domestic currency per unit of foreign currency) FSAV foreign savings IADJ investment adjustment factor PA_a activity price PD_c domestic price of domestic output PE_c export price (domestic currency) *PM* import price (domestic currency) *PQc* composite commodity price *PVAc* value-added price *PXc* producer price *QAa* activity level *ODc* quantity of domestic output sold domestically QE_c quantity of exports QF_{fa} quantity demanded of factor f by activity a QFS_f supply of factor fQHch quantity of consumption of commodity c by household h $QINT_c$ quantity of intermediate use of commodity c by activity a QINVc quantity of investment demand QM_c quantity of imports QQc quantity supplied to domestic commodity demanders (composite supply) *QX*^{*c*} quantity of domestic output WALRAS dummy variable (zero at equilibrium) WF_f average wage (rental rate) of factor fWFDIST_{fa} wage distortion factor for factor f in activity a YF_{hf} transfer of income to household h from factor f*YG* government revenue *YH_h* household income

APPENDIX 5: Explanation for the Equilibrium Condition

The biological production function is given by:

$$B_{t+1} = B_t + g(B_t) - Y_t \left(1 + \gamma \left(\frac{Y_t}{B_t} \right)^{\beta - 1} \right)$$
(1)

with
$$\gamma = \frac{1-a}{a} \frac{B^{curr}}{Y_{in}^{curr}}$$
 (2)

We consider two growth models for Salerno:

Fox model
$$g(B) = rB\ln\left(\frac{K}{B}\right)$$
 (3)

Pella-Tomlinson model
$$g(B) = rB\left(1 - \left(\frac{B}{K}\right)^{m-1}\right)$$
(4)

where B is the biomass of the stock, t is the time step in the model, g is the growth function of the stock, Y is the yield estimated from CGE model, γ is a constant and β is reactivity parameter.

> Example: Equilibrium Condition

Consider the case when $a = 1 \Rightarrow \gamma = 0$. Then from equation (1) and (3) we get

$$B_{t+1} = B_t + g(B_t) - Y_t$$
 and
 $g(B_t) = rB_t \ln\left(\frac{K}{B_t}\right)$ (Both in general form)

> <u>Solution:</u>

$$B_1 = B_0 + g(B_0) - Y_0$$

For $t = 0$, $g(B_0) = rB_0 \ln\left(\frac{K}{B_0}\right)$ where $B_0 = K/10, Y_0$: initial yield from CGE model

$$B_2 = B_1 + g(B_1) - Y_1$$

For $t = 1$, $g(B_1) = rB_1 \ln\left(\frac{K}{B_1}\right)$ where Y_1 is based on B_1 .

· · · ·

. . . .

$$B_{t-1} = B_{t-2} + g(B_{t-2}) - Y_{t-2}$$

For $t = t-2$, $g(B_{t-2}) = rB_{t-2} \ln\left(\frac{K}{B_{t-2}}\right)$ where Y_{t-2} is based on B_{t-2} .

$$B_{t} = B_{t-1} + g(B_{t-1}) - Y_{t-1}$$

For $t = t-1$, $g(B_{t-1}) = rB_{t-1} \ln\left(\frac{K}{B_{t-1}}\right)$ where Y_{t-1} is based on B_{t-1} .

$$B_{t+1} = B_t + g(B_t) - Y_t$$
Final step, $g(B_t) = rB_t \ln\left(\frac{K}{B_t}\right)$ where Y_t is based on B_t .

> Equilibrium condition: $B_t = B_{t+1}, (\Rightarrow g(B_t) = Y_t)$

 $\Rightarrow B_{t-1} + g(B_{t-1}) - Y_{t-1} = B_t + g(B_t) - Y_t \Rightarrow B_{t-1} - B_t = g(B_t) - g(B_{t-1}) - (Y_t - Y_{t-1}) \Rightarrow$ $\Rightarrow B_{t-1} + g(B_{t-1}) - Y_{t-1} - B_t = g(B_t) - Y_t$

Then, the equilibrium condition (state) holds when:

$$(B_{t-1} - B_t) + g(B_{t-1}) - Y_{t-1} = 0.$$

Or
$$B_t = B_{t-1} + g(B_{t-1}) - Y_{t-1}$$
 (That is true, when $t = t-1$)

Notes:

- 1. We start with an initial value for biomass B_0 (=K/10). At each iteration t+1, B_{t+1} is estimated from B_t , $g(B_t)$ and Y_t . Each time B_t is given by previous iteration, $g(B_t)$ by biological function and Y_t by economic model.
- 2. Each time, biomass *B* is a new value, which then gives a new g(B) and *Y*. So, at each step *i*, *Yi* is based on *Bi* and used to estimate B_{i+1} (i.e. the equilibrium biomass corresponding to *Yi*).
- 3. Finally, the model should be converged, and equilibrium condition holds under g(Bt)=Yt, where B and Y are in steady state.

> SOME EXAMPLES: DYNAMIC LINK

FOX	á	an-c	Europea	an Ancovy	beta=0								
	E	B(t)											beta=0
t		3	r	K	ln(K/B)	Y	g(B)	alpha	Ycurr	Yin,curr	gama	Bcurr	B(t+1)
	0	7579.4	0.8	4 75794	2.30258	85 637	14659.8	6 0.0	3 6414	1 213800	0.32167	2127	19164.2
	1	19164.2	0.8	4 75794	1.37497	75 637	22134.2	5 0.0	3 6414	1 213800	0.32167	2127	40661.45
	2	40661.45	0.8	4 75794	0.62273	39 637	21270.0	3 0.0	3 6414	1 213800	0.32167	2127	61294.47
	3	61294.47	0.8	4 75794	0.21232	29 637	10932.2	8 0.0	3 6414	1 213800	0.32167	2127	71589.75
	4	71589.75	0.8	4 75794	0.05706	67 637	3431.75	6 0.0	3 6414	1 213800	0.32167	2127	74384.51
	5	74384.51	0.8	4 75794	0.01877	71 637	1172.89	3 0.0	3 6414	1 213800	0.32167	2127	74920.4
	6	74920.4	0.8	4 75794	0.01159	93 637	729.575	2 0.0	3 6414	1 213800	0.32167	2127	75012.98
	7	75012.98	0.8	4 75794	0.0103	58 637	652.665	5 0.0	3 6414	1 213800	0.32167	2127	75028.64
	8	75028.64	0.8	4 75794	0.01014	49 637	639.641	4 0.0	3 6414	1 213800	0.32167	2127	75031.29
	9	75031.29	0.8	4 75794	0.0101	14 637	637.445	1 0.0	3 6414	1 213800	0.32167	2127	75031.73
	10	75031.73	0.8	4 75794	0.01010	08 637	637.07	5 0.0	3 6414	1 213800	0.32167	2127	75031.81
	11	75031.81	0.8	4 75794	0.01010	07 637	637.012	6 0.0	3 6414	1 213800	0.32167	2127	75031.82
	12	75031.82	0.8	4 75794	0.01010	07 637	637.002	1 0.0	3 6414	1 213800	0.32167	2127	75031.82
	13	75031.82	0.8	4 75794	0.01010	07 637	637.000	4 0.0	3 6414	1 213800	0.32167	2127	75031.82
	14	75031.82	0.8	4 75794	0.01010	07 637	637.000	1 0.0	3 6414	1 213800	0.32167	2127	75031.82
	15	75031.82	0.8	4 75794	0.01010	07 637	63	7 0.0	3 6414	1 213800	0.32167	2127	75031.82
	16	75031.82	0.8	4 75794	0.01010	07 637	63	7 0.0	3 6414	1 213800	0.32167	2127	75031.82

FOX		an-c B(t)	European A	ncovy	beta=1									
t		B	r k	<	ln(K/B)	Y		g(B)	alpha	Ycurr	Yin,curr	gama	Bcurr	B(t+1)
·	0	7579.4	0.84	75794	. ,		637	14659.86	0.03			0.32167	2127	. ,
	1	21397.36	0.84	75794			637	22732.37	0.03				2127	
	2	21397.36	0.84	75794			537	22732.37	0.00	-			2127	
	3	43287.82	0.84	75794			637	20367.97	0.03	6414		0.32167	2127	
	4	43287.82	0.84	75794			637	20367.97	0.03				2127	
	5	62813.88	0.84	75794			637	9911.286	0.03	-			2127	
	6	62813.88	0.84	75794			637	9911.286	0.03	-		0.32167	2127	
	7	71883.26	0.84	75794			637	3198.773	0.03	6414			2127	
	8	71883.26	0.84	75794			637	3198.773	0.03	-		0.32167	2127	
	9	74240.13	0.84	75794	0.020714	1 (637	1291.776	0.03				2127	74690.01
	10	74240.13	0.84	75794			637	1291.776	0.03	6414		0.32167	2127	
	11	74690.01	0.84	75794	0.014673		637	920.5683	0.03	6414	213800	0.32167	2127	74768.67
	12	74690.01	0.84	75794	0.014673	3 (637	920.5683	0.03	6414	213800	0.32167	2127	74768.67
	13	74768.67	0.84	75794	0.01362	2 (637	855.4248	0.03	6414	213800	0.32167	2127	74782.19
	14	74768.67	0.84	75794	0.01362	2 (637	855.4248	0.03	6414	213800	0.32167	2127	74782.19
	15	74782.19	0.84	75794	0.013439) (637	844.2207	0.03	6414	213800	0.32167	2127	74784.51
	16	74782.19	0.84	75794	0.013439) (637	844.2207	0.03	6414	213800	0.32167	2127	74784.51
	17	74784.51	0.84	75794	0.013408	3 (637	842.3005	0.03	6414	213800	0.32167	2127	74784.91
	18	74784.51	0.84	75794	0.013408	3 (637	842.3005	0.03	6414	213800	0.32167	2127	74784.91
	19	74784.91	0.84	75794	0.013403	3 (637	841.9716	0.03	6414	213800	0.32167	2127	74784.97
	20	74784.91	0.84	75794	0.013403	3 (637	841.9716	0.03	6414	213800	0.32167	2127	74784.97
	21	74784.97	0.84	75794	0.013402	2 (637	841.9153	0.03	6414	213800	0.32167	2127	74784.99
	22	74784.97	0.84	75794	0.013402	2 (637	841.9153	0.03	6414	213800	0.32167	2127	74784.99
	23	74784.99	0.84	75794	0.013402	2 (637	841.9056	0.03	6414	213800	0.32167	2127	74784.99
	24	74784.99	0.84	75794	0.013402	2 (637	841.9056	0.03	6414	213800	0.32167	2127	74784.99

FOX	nl-c		Nephrops nor	vegicus	(Norway lobster)		alpha=1			
t	B(t) B		r K		In(K/B) Y	g(B) B(t+1)				
•	0	1516.3	0.18	15163		250	628.4538	1894.754 B1		
	1	1894.754	0.18	15163		250	709.3171	2354.071 B2		
	2	2354.071	0.18	15163		250	789.2922	2893.363 B3		
	3	2893.363	0.18	15163		250	862.6822 924.1463	3506.045 B4		
	4 5	3506.045 4180.191	0.18 0.18	15163 15163		250 250	924.1463	4180.191 B5 4899.704 B6		
	6	4899.704	0.18	15163		250	996.3206	5646.025 B7		
	7	5646.025	0.18	15163		250	1003.994	6400.019 B8		
	8	6400.019	0.18	15163		250	993.669	7143.688 B9		
	9	7143.688	0.18	15163		250	967.7785	7861.466 B10		
	10 11	7861.466 8541.001	0.18 0.18	15163 15163		250 250	929.5344 882.4255	8541.001 B11 9173.426 B12		
	12	9173.426	0.18	15163		250	829.8147	9753.241 B13		
	13	9753.241	0.18	15163		250	774.6663	10277.91 B14		
	14	10277.91	0.18	15163		250	719.403	10747.31 B15		
	15	10747.31	0.18	15163		250	665.8656	11163.18 B16		
	16 17	11163.18 11528.52	0.18 0.18	15163 15163		250 250	615.3455 568.6576	11528.52 B17 11847.18 B18		
	18	11847.18	0.18	15163		250	526.2318	12123.41 B19		
	19	12123.41	0.18	15163		250	488.2047	12361.62 B20		
	20	12361.62	0.18	15163		250	454.5017	12566.12 B21		
	21	12566.12	0.18	15163		250	424.9076	12741.02 B22		
	22 23	12741.02 12890.15	0.18 0.18	15163 15163		250 250	399.1204 376.7935	12890.15 B23 13016.94 B24		
	24	13016.94	0.18	15163		250	357.5651	13124.5 B25		
	25	13124.5	0.18	15163		250	341.0784	13215.58 B26		
	26	13215.58	0.18	15163		250	326.9944	13292.58 B27		
	27	13292.58	0.18	15163		250	315.0002	13357.58 B28		
	28 29	13357.58 13412.39	0.18 0.18	15163 15163		250 250	304.812 296.1764	13412.39 B29 13458.57 B30		
	30	13458.57	0.18	15163		250	288.87	13497.44 B31		
	31	13497.44	0.18	15163	0.116359	250	282.6976	13530.13 B32		
	32	13530.13	0.18	15163		250	277.4898	13557.62 B33		
	33	13557.62	0.18	15163		250	273.1004	13580.72 B34		
	34 35	13580.72 13600.13	0.18 0.18	15163 15163		250 250	269.4041 266.2938	13600.13 B35 13616.42 B36		
	36	13616.42	0.18	15163		250	263.6782	13630.1 B37		
	37	13630.1	0.18	15163	0.106578	250	261.4797	13641.58 B38		
	38	13641.58	0.18	15163		250	259.6327	13651.21 B39		
	39 40	13651.21 13659.29	0.18	15163 15163		250 250	258.0816 256.7792	13659.29 B40 13666.07 B41		
	40	13666.07	0.18 0.18	15163		250	255.6861	13671.76 B42		
	42	13671.76	0.18	15163		250	254.7688	13676.53 B43		
	43	13676.53	0.18	15163		250	253.9991	13680.53 B44		
	44	13680.53	0.18	15163		250	253.3534	13683.88 B45		
	45 46	13683.88 13686.69	0.18 0.18	15163 15163		250 250	252.8119 252.3576	13686.69 B46 13689.05 B47		
	47	13689.05	0.18	15163		250	251.9767	13691.03 B48		
	48	13691.03	0.18	15163		250	251.6572	13692.68 B49		
	49	13692.68	0.18	15163		250	251.3894	13694.07 B50		
	50 51	13694.07 13695.24	0.18 0.18	15163 15163		250 250	251.1648 250.9765	13695.24 B51 13696.21 B52		
	52	13696.21	0.18	15163		250	250.8186	13697.03 B53		
	53	13697.03		15163		250	250.6862	13697.72 B54		
	54	13697.72	0.18	15163		250	250.5753	13698.29 B55		
	55	13698.29	0.18	15163		250	250.4822 250.4043	13698.78 B56		
	56 57	13698.78 13699.18	0.18 0.18	15163 15163		250 250	250.4043	13699.18 B57 13699.52 B58		
	58	13699.52	0.18	15163		250	250.2841	13699.8 B59		
	59	13699.8	0.18	15163	0.101477	250	250.2381	13700.04 B60		
	60	13700.04	0.18	15163		250	250.1996	13700.24 B61		
	61 62	13700.24	0.18 0.18	15163 15163		250	250.1673	13700.41 B62		
	62 63	13700.41 13700.55	0.18	15163		250 250	250.1403 250.1176	13700.55 B63 13700.67 B64		
	64	13700.67	0.18	15163		250	250.0986	13700.76 B65		
	65	13700.76	0.18	15163	0.101407	250	250.0826	13700.85 B66		
	66	13700.85	0.18	15163		250	250.0693	13700.92 B67		
	67 68	13700.92 13700.97	0.18 0.18	15163 15163		250 250	250.0581	13700.97 B68 13701.02 B69		
	68 69	13700.97	0.18	15163		250 250	250.0487 250.0408	13701.02 B69		
	70	13701.06	0.18	15163		250	250.0342	13701.1 B71		
	71	13701.1	0.18	15163	0.101382	250	250.0287	13701.13 B72		

72	13701.13	0.18	15163	0.10138	250	250.024	13701.15 B73
73	13701.15	0.18	15163	0.101378	250	250.0201	13701.17 B74
74	13701.17	0.18	15163	0.101377	250	250.0169	13701.19 B75
75	13701.19	0.18	15163	0.101376	250	250.0142	13701.2 B76
76	13701.2	0.18	15163	0.101375	250	250.0119	13701.21 B77
77	13701.21	0.18	15163	0.101374	250	250.0099	13701.22 B78
78	13701.22	0.18	15163	0.101373	250	250.0083	13701.23 B79
79	13701.23	0.18	15163	0.101372	250	250.007	13701.24 B80
80	13701.24	0.18	15163	0.101372	250	250.0059	13701.25 B81
81	13701.25	0.18	15163	0.101372	250	250.0049	13701.25 B82
82	13701.25	0.18	15163	0.101371	250	250.0041	13701.25 B83
83	13701.25	0.18	15163	0.101371	250	250.0034	13701.26 B84
84	13701.26	0.18	15163	0.101371	250	250.0029	13701.26 B85
85	13701.26	0.18	15163	0.10137	250	250.0024	13701.26 B86
86	13701.26	0.18	15163	0.10137	250	250.002	13701.27 B87
87	13701.27	0.18	15163	0.10137	250	250.0017	13701.27 B88
88	13701.27	0.18	15163	0.10137	250	250.0014	13701.27 B89
89	13701.27	0.18	15163	0.10137	250	250.0012	13701.27 B90
90	13701.27	0.18	15163	0.10137	250	250.001	13701.27 B91
91	13701.27	0.18	15163	0.10137	250	250.0008	13701.27 B92
92	13701.27	0.18	15163	0.10137	250	250.0007	13701.27 B93
93	13701.27	0.18	15163	0.10137	250	250.0006	13701.27 B94
94	13701.27	0.18	15163	0.10137	250	250.0005	13701.27 B95
95	13701.27	0.18	15163	0.101369	250	250.0004	13701.27 B96
96	13701.27	0.18	15163	0.101369	250	250.0003	13701.27 B97
97	13701.27	0.18	15163	0.101369	250	250.0003	13701.27 B98
98	13701.27	0.18	15163	0.101369	250	250.0002	13701.27 B99
99	13701.27	0.18	15163	0.101369	250	250.0002	13701.27 B100
100	13701.27	0.18	15163	0.101369	250	250.0002	13701.27 B101
101	13701.27	0.18	15163	0.101369	250	250.0001	13701.27 B102
102	13701.27	0.18	15163	0.101369	250	250.0001	13701.27 B103
103	13701.27	0.18	15163	0.101369	250	250.0001	13701.28 B104
104	13701.28	0.18	15163	0.101369	250	250.0001	13701.28 B105
105	13701.28	0.18	15163	0.101369	250	250.0001	13701.28 B106
106	13701.28	0.18	15163	0.101369	250	250.0001	13701.28 B107
107	13701.28	0.18	15163	0.101369	250	250	13701.28 B108
108	13701.28	0.18	15163	0.101369	250	250	13701.28 B109

FOX		ep-c	European F	Pilchard	beta=0								
t		B(t) B	r	к	ln(K/B)	Y	g(B)	alpha	Ycurr	Yin,curr	gama		beta=0
ι	0	29642.6	0.22		2.302585	68	- · ·	aipina 0.02		328750	1.248885	8379	B(t+1) 7570.41 B1
	1	7570.41	0.22	296426	3.66755	68	6108.269	0.02		328750	1.248885	8379	13610.68 B2
	2	13610.68	0.22		3.080943	68	9225.42	0.02		328750	1.248885	8379	22768.1 B3
	3 4	22768.1 35555.34	0.22 0.22		2.566437 2.120707	68 68	12855.24 16588.54	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	35555.34 B4 52075.88 B5
	5	52075.88	0.22		1.739096	68	19924.29	0.02		328750	1.248885	8379	71932.17 B6
	6	71932.17	0.22		1.416074	68		0.02			1.248885	8379	94273.65 B7
	7	94273.65	0.22		1.145596	68	23759.89	0.02		328750	1.248885	8379	117965.5 B8
	8 9	117965.5 141810.2	0.22 0.22		0.921405 0.737308	68 68	23912.69 23002.72	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	141810.2 B9 164744.9 B10
	10	164744.9	0.22		0.587399	68	21289.63	0.02		328750	1.248885	8379	185966.6 B11
	11	185966.6	0.22	296426	0.466231	68	19074.73	0.02		328750	1.248885	8379	204973.3 B12
	12	204973.3	0.22		0.368918	68	16636.03	0.02		328750	1.248885	8379	221541.3 B13
	13 14	221541.3 235665.6	0.22 0.22		0.291188 0.229384	68 68	14192.26 11892.73	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	235665.6 B14 247490.3 B15
	15	247490.3	0.22		0.180426	68	9823.819	0.02		328750	1.248885	8379	257246.1 B16
	16	257246.1	0.22	296426	0.141764	68	8023.027	0.02		328750	1.248885	8379	265201.2 B17
	17	265201.2	0.22		0.111309	68	6494.238	0.02		328750	1.248885	8379	271627.4 B18
	18 19	271627.4 276780.2	0.22 0.22		0.087366 0.068574	68 68	5220.839 4175.57	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	276780.2 B19 280887.8 B20
	20	280887.8	0.22		0.053842	68	3327.2	0.02		328750	1.248885	8379	284147 B21
	21	284147	0.22		0.042306	68	2644.638	0.02		328750	1.248885	8379	286723.7 B22
	22	286723.7	0.22	296426		68	2099.197	0.02		328750	1.248885	8379	288754.8 B23
	23 24	288754.8 290352.5	0.22 0.22	296426	0.02622	68 68	1665.625 1322.393	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	290352.5 B24 291606.9 B25
	24 25	290352.5	0.22		0.020702	68	1051.544	0.02		328750	1.248885	8379	291000.9 B25 292590.4 B26
	26	292590.4	0.22		0.013024	68	838.3467	0.02		328750	1.248885	8379	293360.8 B27
	27	293360.8	0.22		0.010395	68	670.8547	0.02		328750	1.248885	8379	293963.6 B28
	28 29	293963.6 294435.1	0.22 0.22		0.008342 0.006739	68 68	539.4691 436.528	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	294435.1 B29 294803.6 B30
	29 30	294433.1	0.22		0.005488	68	430.520 355.9475	0.02		328750	1.248885	8379	294803.6 B30 295091.6 B31
	31	295091.6	0.22	296426		68	292.9158	0.02		328750	1.248885	8379	295316.5 B32
	32	295316.5	0.22	296426		68	243.6387	0.02		328750	1.248885	8379	295492.1 B33
	33	295492.1	0.22		0.003155	68	205.1316	0.02		328750	1.248885	8379	295629.2 B34
	34 35	295629.2 295736.3	0.22 0.22	296426	0.002691 0.002329	68 68	175.0509 151.5588	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	295736.3 B35 295819.9 B36
	36	295819.9	0.22		0.002047	68	133.2161	0.02		328750	1.248885	8379	295885.1 B37
	37	295885.1	0.22		0.001827	68	118.8963	0.02		328750	1.248885	8379	295936 B38
	38 39	295936 295975.7	0.22 0.22	296426 296426	0.001655	68	107.7186	0.02 0.02		328750	1.248885	8379 8379	295975.7 B39 296006.7 B40
	39 40	295975.7	0.22	296426	0.00152 0.001416	68 68	98.9944 92.18564	0.02		328750 328750	1.248885 1.248885	8379	296006.7 B40 296030.9 B41
	41	296030.9	0.22	296426		68	86.87212	0.02		328750	1.248885	8379	296049.7 B42
	42	296049.7	0.22	296426	0.00127	68	82.72566	0.02			1.248885	8379	296064.5 B43
	43 44	296064.5 296076	0.22 0.22	296426 296426	0.00122 0.001182	68 68	79.49005 76.96527	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	296076 B44 296084.9 B45
	44	296084.9	0.22	296426		68	74.99521	0.02		328750	1.248885	8379	296091.9 B46
	46	296091.9	0.22	296426		68	73.45802	0.02		328750	1.248885	8379	296097.4 B47
	47	296097.4	0.22	296426		68	72.2586	0.02		328750	1.248885	8379	296101.6 B48
	48 49	296101.6 296105	0.22 0.22	296426 296426	0.001095 0.001084	68 68	71.32274 70.59253	0.02 0.02		328750 328750	1.248885 1.248885	8379 8379	296105 B49 296107.5 B50
		296107.5	0.22		0.001004		70.02279	0.02			1.248885		296109.6 B51
	51	296109.6	0.22	296426	0.001068		69.57825	0.02		328750	1.248885	8379	296111.1 B52
		296111.1	0.22		0.001063	68		0.02			1.248885		296112.4 B53
	53 54	296112.4 296113.3	0.22 0.22		0.001059 0.001055	68 68	68.96079 68.74964	0.02 0.02			1.248885 1.248885		296113.3 B54 296114.1 B55
		296114.1	0.22		0.001053	68		0.02			1.248885		296114.7 B56
	56	296114.7	0.22		0.001051	68	68.45635	0.02	6575	328750	1.248885	8379	296115.1 B57
	57	296115.1	0.22		0.001049	68		0.02			1.248885		296115.5 B58
	58 59	296115.5 296115.8	0.22 0.22		0.001048 0.001047	68 68		0.02 0.02			1.248885 1.248885	8379	296115.8 B59 296116 B60
	60	296116	0.22		0.001046	68		0.02			1.248885		296116.1 B61
	61	296116.1	0.22	296426	0.001046		68.13195	0.02	6575	328750	1.248885	8379	296116.3 B62
	62		0.22		0.001045	68		0.02			1.248885		296116.4 B63
	63 64	296116.4 296116.5	0.22 0.22		0.001045 0.001045	68 68		0.02 0.02			1.248885 1.248885		296116.5 B64 296116.5 B65
		296116.5	0.22		0.001045	68	68.0489	0.02			1.248885		296116.6 B66
	66	296116.6	0.22	296426	0.001044		68.03815	0.02	6575	328750	1.248885	8379	296116.6 B67
	67 69	296116.6	0.22		0.001044	68		0.02			1.248885		296116.6 B68
	68 69	296116.6 296116.7	0.22 0.22		0.001044 0.001044	68 68	68.02323 68.01812	0.02 0.02			1.248885 1.248885		296116.7 B69 296116.7 B70
		296116.7	0.22		0.001044		68.01414	0.02			1.248885		296116.7 B70
	71	296116.7	0.22	296426	0.001044	68	68.01103	0.02	6575	328750	1.248885	8379	296116.7 B72

72	296116.7	0.22	296426	0.001044	68	68.00861	0.02	6575	328750	1.248885	8379	296116.7 B73
73	296116.7	0.22	296426	0.001044	68	68.00672	0.02	6575	328750	1.248885	8379	296116.7 B74
74	296116.7	0.22	296426	0.001044	68	68.00524	0.02	6575	328750	1.248885	8379	296116.7 B75
75	296116.7	0.22	296426	0.001044	68	68.00409	0.02	6575	328750	1.248885	8379	296116.7 B76
76	296116.7	0.22	296426	0.001044	68	68.00319	0.02	6575	328750	1.248885	8379	296116.7 B77
77	296116.7	0.22	296426	0.001044	68	68.00249	0.02	6575	328750	1.248885	8379	296116.7 B78
78	296116.7	0.22	296426	0.001044	68	68.00194	0.02	6575	328750	1.248885	8379	296116.7 B79
79	296116.7	0.22	296426	0.001044	68	68.00152	0.02	6575	328750	1.248885	8379	296116.7 B80
80	296116.7	0.22	296426	0.001044	68	68.00118	0.02	6575	328750	1.248885	8379	296116.7 B81
81	296116.7	0.22	296426	0.001044	68	68.00092	0.02	6575	328750	1.248885	8379	296116.7 B82
82	296116.7	0.22	296426	0.001044	68	68.00072	0.02	6575	328750	1.248885	8379	296116.7 B83
83	296116.7	0.22	296426	0.001044	68	68.00056	0.02	6575	328750	1.248885	8379	296116.7 B84
84	296116.7	0.22	296426	0.001044	68	68.00044	0.02	6575	328750	1.248885	8379	296116.7 B85
85	296116.7	0.22	296426	0.001044	68	68.00034	0.02	6575	328750	1.248885	8379	296116.7 B86
86	296116.7	0.22	296426	0.001044	68	68.00027	0.02	6575	328750	1.248885	8379	296116.7 B87
87	296116.7	0.22	296426	0.001044	68	68.00021	0.02	6575	328750	1.248885	8379	296116.7 B88
88	296116.7	0.22	296426	0.001044	68	68.00016	0.02	6575	328750	1.248885	8379	296116.7 B89
89	296116.7	0.22	296426	0.001044	68	68.00013	0.02	6575	328750	1.248885	8379	296116.7 B90
90	296116.7	0.22	296426	0.001044	68	68.0001	0.02	6575	328750	1.248885	8379	296116.7 B91
91	296116.7	0.22	296426	0.001044	68	68.00008	0.02	6575	328750	1.248885	8379	296116.7 B92
92	296116.7	0.22	296426	0.001044	68	68.00006	0.02	6575	328750	1.248885	8379	296116.7 B93
93	296116.7	0.22	296426	0.001044	68	68.00005	0.02	6575	328750	1.248885	8379	296116.7 B94
94	296116.7	0.22	296426	0.001044	68	68.00004	0.02	6575	328750	1.248885	8379	296116.7 B95
95	296116.7	0.22	296426	0.001044	68	68.00003	0.02	6575	328750	1.248885	8379	296116.7 B96
96	296116.7	0.22	296426	0.001044	68	68.00002	0.02	6575	328750	1.248885	8379	296116.7 B97
97	296116.7	0.22	296426	0.001044	68	68.00002	0.02	6575	328750	1.248885		296116.7 B98
98	296116.7	0.22	296426	0.001044	68	68.00001	0.02	6575	328750	1.248885	8379	296116.7 B99
	296116.7	0.22		0.001044		68.00001	0.02	6575		1.248885		296116.7 B100
100	296116.7	0.22	296426	0.001044	68	68.00001	0.02	6575	328750	1.248885	8379	296116.7 B101
101	296116.7	0.22	296426	0.001044	68	68.00001	0.02	6575	328750	1.248885	8379	296116.7 B102
102	296116.7	0.22	296426	0.001044	68	68.00001	0.02	6575	328750	1.248885	8379	296116.7 B103
	296116.7	0.22		0.001044	68	68	0.02	6575		1.248885		296116.7 B104
104	296116.7	0.22	296426	0.001044	68	68	0.02	6575	328750	1.248885	8379	296116.7 B105