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Abstract 

Material flows play an important role within manufacturing systems in setting the 
structural interdependences among a set of production processes. Input-Output Analysis 
(IOA) provides the appropriate computational structure to take these interdependences 
into account, especially the feedback loops which are particularly interesting for 
modeling issues concerning closed loop recycling. Such an application of IOA at the 
enterprise or supply chain level is usually a static one, in the extent production is 
assumed to be instantaneous, transactions are simultaneous and there is no inventory 
management.  

The aim of this paper is to introduce elements of simple dynamics within an 
environmentally-extended Input-Output technological model which can be used both at 
the enterprise level and at the supply chain level, in order to accomplish tasks which 
may range from plain product costing and resource planning to environmental 
management accounting. An approach will be adopted, which is usually addressed as 
Activity Level Analysis, in order to discuss how feedback loops themselves can be seen 
as a driver for dynamics within an Input-Output based computational structures, if one 
does not neglect that the operation of a production process takes time. 

Keywords: Enterprise Input-Output Analysis, feedback loops, Environmental 
management, dynamics 
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1. Introduction 

One of the most important features of an Input-Output-based computational structure is 

that it allows modelling the reciprocal relationships among the economic sectors of a 

National Economy as well as among the echelons of a supply chain of production 

processes. Dealing with interdependences involves managing such a specific aspect of 

Input-Output Analysis (IOA) as the feedback loops, that is the appearance of a 

commodity as an input among its ancestors. Such feature makes it compelling to solve a 

system of liner equation, either by using the matrix inversion, whether possible, or the 

sequential methods. This note will discuss: 

• What are the repercussions of representing, in a quantitative way, the behaviour 

of a network of manufacturing process which are linked by material (and cost) 

flows, when using an Input-Output-based computational structure; and, in 

particular 

• How feedback loops can be seen as a driver for dynamics within such 

computational structures, if it is not neglected that the operation of a production 

process takes time. 

The discussion is grounded on the following main assumptions: 

• IOA is applied at the enterprise level to manage both cost accounting and 

production planning problems, thus showing peculiarities that make it different 

from the original macroeconomic leontevian mode, as pointed out by Gambling 

& Nour (1969).  

• The former is intended as a technological model in the sense of Gambling 

(1968), i.e. it is built bottom-upwards from the basic operations it purports to 

illustrate1. The model is common to both the physical environmentally extended 

accounting and the cost accounting system, consistently with Lin & Polenske 

(1998).  

                                                 
1 Further issues arise from this approach. They concern multiproduct processes and the application of 
allocation procedures in order to determine the cost of producing scrap. However, they will not be 
considered here, for the sake of simplicity. 
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• The IO model is constructed as a commodity-by-industry system, in contrast to 

the original industry-by-industry format of Leontief or the alternative 

commodity-by-commodity form. As such, it fits in the tradition of the supply-

use framework, Von Neumann’s model (1945), Koopman’s activity analysis 

(1951), as well as environmental life cycle assessment (Heijungs, 1997). 

• The IO model is based on physical input-output tables instead of the usual 

monetary tables (Weisz & Duchin, 2006). This is done to emphasize the 

physical causality that is indispensible when discussing the dynamics and 

temporal hierarchy of production. 

• The “activity level analysis” approach, as defined by Heijungs (1997),  will be 

adopted, which implies that the operating time of each of several processes can 

be “implicitly imposed” according to its contribution to fulfilling an exogenous 

requirement of commodities or production plan2.  

Section 2 provides the basic interpretation of feedback loops from both a computational 

and  network perspective. Section 3 discusses, from the same perspectives, a possible 

elimination of cycles as a consequence of the explicit introduction of operation times. 

Section 4 introduces environmental extensions within such framework, in order to  deal 

with the problem of by-products treatment and their closed loop recycling.  

2. The network representation of the balancing procedure 

2.1 Formulation of the base problem 

Assume that an hypothetical 2×2 manufacturing system produces two commodities 

(Commodity 1, measured in kg, and Commodity 2, measured in m3) and consists of two 

unit processes (producing Commodity 1 and Commodity 2 respectively under the 

assumption that the j-th process produces the j-th commodity as its main output) which 

are mutually linked by material flows. For the representation of this, we can adopt a 

linear space, the basis vectors representing kg of commodity 1 and m3 of commodity 2. 
                                                 
2 Each production process considered will be described in terms of parameters that reasonably 
approximate its real characteristics and, on this basis, the total activity levels, the amount of resources that 
must be used to achieve a desired amount of net production and the production costs of both intermediate 
and final products will be estimated. Such an approach is useful as far as enterprise resource and cost 
planning is concerned, as can be seen in Boons (1998), Feltham (1970) and Livingstone (1968). 
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Such a system would be represented in an Input-Output form using a make matrix V 

and a use matrix U (both of which are positive semi-definite) as follows: 

 
100 0 0 20 100 20

( )
0 50 10 0 10 50

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Z V U   (1) 

Such an hypothetical system is self-contained, as far as the inter-industry flows 

are concerned, that is, when we leave out factor inputs, environmental extensions, and 

so on. Matrix Z is called the technology matrix (Koopmans, 1951; Heijungs, 1997). 

Each column represents a technique. The operating time of each process is an aspect 

which should not be neglected in the analysis. Thus, a vector ( )TT = 16c is defined 

whose elements are the operating time basis for each process, say expressed in hours. 

The system described by matrix Z must meet an exogenous set of flows, or final 

demand. An example would be the amount of final and/or intermediate products that 

have been planned to be produced in a month. This production plan sets the final 

demand vector, for example ( )TT = 2000y , i.e. 200 m3 of commodity 2. One can then 

calculate the activity levels at which the processes are required to operate in order to 

meet the production plan by solving the following system of simultaneous equations: 

⎩
⎨
⎧
−

−
2005010
020s100s

21

21

=s+s
=

    

or more generally 

=Zs y    (2) 

which is usually accomplished by post-multiplying the final demand vector by 

the inverse of the net production matrix, provided that the latter exists3: 

11

2

0,0104167 0,0041667 0 0,83333
0,0020833 0,0208333 200 4,166667

s
= =

s
− ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

Z y   (3)  

                                                 
3 This topic will not be further discussed here. However, the Hawkins-Simons Condition – whose 
importance for the significance of the outcomes of a static Input Output model as well as the stability of a 
dynamic one has been  extensively pointed out in Solow (1954) - does not necessarily hold as far as  
physical transactions are in the focus. Suh and Heijungs (2007) recently discussed how the power series 
expansion from can be utilized for a general system that includes the physical systems. The authors 
claimed that this form “unravels a complex network relationship enabling a detailed insight on the 
structure of the system”. 
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The solution s is said to be the vector of operating times . If one denotes the 

diagonalised scaling vector as ŝ , the flows accounted for in Z can then be balanced as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

208,338,33
83,3383,33

ˆ~ sZ=Z . This is a way of representing, for example, an inventory 

problem in Life Cycle Assessment, suggested by Heijungs & Suh (2002). 

2.2 Interpretation of feedback loops  

From the example above, it can be noted that there is a feedback loop, as previously 

defined. What comes out from such supplier/customer relationship among the two unit 

production processes depicted is that there is no need to purchase Commodity 2 from 

outside the system boundaries considered, since it is supplied by Process 2. From a cost 

accounting perspective, this mean that the Company which runs both Process 1 and 

Process 2 will not act as a price taker as far as Commodity 2 is concerned, in the extent 

the latter will be produced as a main output by Process 2 and will be transferred-into 

Process 1 at its manufacturing cost, which is to be calculated using the monetary 

counterpart of the above described Input-Output scheme as described, for example, in 

Settanni et al. (2007). Heijungs & Suh (2002) exhaustively discussed, in section 4.3, the 

iterative method to solve the system of linear equations in presence of feedback loops. 

The authors pointed out that this situation ultimately leads to delineate «a network with 

recursive relationships as a linear sequence of infinite length». Following such 

interpretation of feedback loop, the entries of vector s can indeed be obtained as the 

column sum of the results which have been calculated in Tab. 1.  

Table 1 

In this sense, one can interpret a feedback loop as a situation in which a certain 

commodity is required before it can be produced.  This happens in two cases. The first 

one is the presence of self-consumption, i.e. if one considers the i-th commodity4 it 

happens that the corresponding element of the use matrix U is 0≠iiu . The second case 

is when the system is cyclic, i.e. “non decomposable” in the sense of Solow, (1954): if 

one considers commodities i and j, with ji ≠ , then ( ) 0≠ij
T uu . In other words, 

                                                 
4 It is herein assumed that commodities are ordered so that the main output of the i-th process is listed as 
the i-th row 
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Commodity i requires Commodity j and vice versa, just as in the numerical example 

described above. 

Despite the fact the system of linear equations can be solved and even 

interpreted, how can be possible – from an enterprise resource-planning  and cost 

accounting perspective – to produce Commodity 1 and 2 simultaneously (the former 

requiring the latter and vice versa) while not neglecting that production takes time? If 

one accounts for transactions within a hindsight-oriented analysis, then it can be 

assumed that during the time span considered, feedback loops are likely to have had 

place together with those imports from outside the system which were necessary to 

activate the production processes in absence of the internally-produced inputs.  

Whereas, when carrying out a foresight “activity level analysis”, such an assumption 

about feedback loops should be reconsidered. At least in the extent that planning for 

costs is concerned, indeed, it makes sense to make a distinction between externally 

purchased and internally provided inputs. In the former case, indeed, the company acts 

as a price taker and the cost structure of the purchased input cannot be influenced unless 

somehow varying the consumption rates of a certain resource. In the latter case, instead, 

internally produced input are assumed to be transferred-into the process that requires 

them and valued according to their (for the moment, assumed variable) manufacturing 

cost (thus performing some kind of “transfer pricing”), which can be controlled. 

2.3 Network representation  

Gambling (1968) and Charnes & Cooper (1967) introduced some network 

characterizations for Input-Output-based cost accounting and planning. Following the 

approach discussed in Schmidt (2005) and Laurin et al. (2005), the herein considered 

system’s behaviour will be represented by using some basic features of the Petri Nets5.  

Figure 1 

In Figure 1, Places (circles) are local states of the system, for example 

available raw materials, intermediate inputs and output, work-in-process, final outputs 

                                                 
5 We basically make reference to Reisig and Grzegorz (1998). 



Feedback loops and closed loop recycling as a driver for dynamics 7 

IIOMME08  Seville - July, 9-11 2008 

and so on6. Transitions (rectangles) are active system components, i.e. processes. A 

marking or a state of a Petri net is given by the token distribution on the places of the 

net. As shown in Figure 1, according to which preconditions are satisfied (i.e., which 

input places are marked), one can determine what  transition is able to fire at a given 

time7. Each run of the system, through the firing of transitions, involves the amounts of 

commodities indicated in Eq.(1). Then the number of runs of each transition is given by 

the elements of the scaling vector calculated in Eq.(3).     

It appears clearly from Figure 1(a) that the availability of Commodity 2 (place 

p3) is a precondition for the operation of Process 1, i.e. the firing of the corresponding 

transition. One could then say that the time at which such commodity is required as an 

input differs from the time at which it is produced, as pointed out in Ijiri (1968). 

Nevertheless, as far as IOA is concerned, Dorfman et al. (1958: p.205) write: "For the 

production of coal, iron is required; for the production of iron, coal is required; no man 

can say whether the coal industry or the iron industry is earlier or later in the hierarchy 

of production." So, they seem to deny that a network means temporal order. The 

following discussion will focus on such aspect, instead. 

3. From feedback loops to Input-Output dynamics 

3.1 Reformulation of the original scheme. 

Now assume that the total active time period of both processes (i.e. their “operating” 

time) can be subdivided  into two planning periods. One could denote the first time 

interval as  ζ1 and the time interval which immediately follows as ζ2 = ζ1 +1. Assume 

that the width of these time intervals is the same and amounts to  τ time units. It is 

expected that a process runs, in each period, ρ time units, where τ<ρ . Assuming we 

are interested in using hours as the appropriate time units, then we can express each 

interval's width as τ hours.  Processes' lead times are also measured in hours. The initial 

problem in Eq.(1) will be reformulated and extended as follows: 

                                                 
6 Except the “p-start” place, which serves to initialize the system and does not correspond to any physical 
flow. 
7 This is done by removing tokens from the input places and adding tokens to the output places. 
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whereas the matrix of operating times for each process in each period now is 

( ) ( )1616h timecycle ==C .    

The matrix of externally purchased inputs, ( )00010−− =M , has been 

introduced, in order to take into account that Commodity 2 is being purchased from 

outside the system boundaries in the first period8. Thus, matrix G represents the 

technical specifications of both Process 1 and Process 2  considered as active during 

time  interval ζ 1  of width τ . It looks similar to the former matrix Z, though no feedback 

loop has now been taken into account: to get the whole picture for period ζ 1, one should 

now look at the stacked G and –M(1). Matrix L represents the same system considered 

as active during period ζ2 that immediately follows ζ1. Assuming no technology 

change9, then L = G. According to this reformulation of the initial problem, we then 

consider that the Commodity 1 which is produced and consumed during the first period 

is different from the Commodity 1 which is produced and consumed in the next period. 

If such a distinction holds, it is not surprising then to find that O is a null matrix. 

Indeed, it represents flows which go backwards in time. Those flows which, instead, are 

forwarded from the first to the second time period are accounted for in matrix H. The 

former feedback loop has been now taken into account in matrix H because it can be 

read as if Process 1 operating during the second time period requires a certain amount of 

Commodity 2 produced by Process 2 operated during the first period.  

                                                 
8 Assuming just one externally purchased input is obviously unrealistic and only serves the illustrative 
purposes. The number of economic flows included in M depends, instead, upon how the system 
boundaries have been set, and upon the number of cost drivers chosen to trace the conversion costs to 
processes. Settanni and Emblemsvåg (2008) discuss this topic. One further distinction should be made 
within M between time period 1 and time period 2. To avoid this, for the sake of simplicity, it has been 
assumed that the external input price remains the same in the two periods.  
9 This is a strong simplifying assumption. Indeed, some change within the depicted technique is likely to 
occur, especially as the issue of closed loop recycling will be introduced. 
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The representation of the network of processes in Figure 1 now changes as 

depicted in Figure 2. Such network without cycles is called a “process net” in Petri Nets 

Theory10. 

Figure 2 

Despite the environmental extensions, the balancing problem would still 

concern only matrix Z. Thus, the following is to be solved: 
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where superscripts denote the time period the variables refer to. Assuming that 
( )

( ) ( )T2000002

1
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y
y

, solving Eq.(5) means solving the following system of 

simultaneous equations 
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One can solve Eq.(6) by using an iterative method going backward from the 

last equation. This turns out the results shown in Table 2.  

Table 2 

However, the operating time vector can be found as usual, by the matrix-

inversion, which, interestingly, yields ( )T40,80,160,032=s whose elements 
( ) ( ) ( ) ( )2

2
2

1
1

2
1

1 s;s;s,s are such that 
( ) ( ) ( ) ( )

2
2

2
1

21
2

1
1

1 ss+s;ss+s ≈≈ , where s1 and s2 are the 

scaling factors calculated in Eq.(3). All the flows can then be balanced: the ones 

accounted for within the net output matrix, the externally purchased input and the 

processes' operating time vector: 

                                                 
10 Following Reisig and Rozenberg (1998), a process net is a record of all occurrences of events that lead 
from an initial configuration of a network to a final one, with all conditions involved in these events. 
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According to the above results, the main difference between the more compact 

system of equations (2)  which contains feedback loops and the system of equations (5) 

– as far as Z is concerned – which does not contain feedback loops (but explicitly 

covers a time span) is not mainly in the overall material balance. The material flows in 

(4), instead, could be intuitively (since no formal demonstration will be provided here) 

seen as a “temporal decomposition” of the ones in (1). This recalls some basic ideas 

which have been extensively and formally discussed within the dynamics of input-

output systems. Thus, some features of a generalized dynamic input-output model as 

described by ten Raa  (2005, 1986a, 1986b) could be of interest here, in particular, the 

consequences of considering the time used in the production processes, which defines 

the time profile of both inputs and outputs.  

For the sake of simplicity, such features will be discussed in the following 

paragraph only with reference to the flows which have been accounted for in the 

technology matrix Z; whereas, the problems which arise when the demand for waste 

treatment and secondary inputs is explicitly taken into account will be discussed later. 

3.2 Elements of dynamic Input-Output and distributed activities 

Assume that there is only one process producing only one commodity.  

1. A process centered at time 0 transfers inputs u0
(d) at times d ≤ 0 into outputs v0

(d) 

at times d ≥ 0; 

2. The time profile (d) of input u shows the lead times that must be observed in 

production. If production is instantaneous, then u(d)≠0 only for d=0. More 
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generally ut+p
(-p) represents the direct requirements of input p time units prior to 

the delivery time t+p, that is at current time (t). 

3. If s(t+p) is the activity level of the process at the delivery time (t+p), due to the 

presence of different lead times (p = 0 ... ∞) the total amount of input that is to 

be present at the current time t is ( ) ( )p+t

=p

p
p+tt su=u ∑

∞
−

0
 . 

4. The time profile (d) of output v is the lifetime of the product. If  v(d)≠0 only for 

d=0, then no amount of commodity will be present at times d>0. More 

generally, vt-p
(p) is the amount of output whose lifetime is p time units, i.e. which 

has been produced at time t-p and contributes to the output available at time t. 

5. If s(t-p) is the activity level of the process at time (t-p), then the contribution to 

the  amount of output available at time t is ( ) ( )pt

=p

p
ptt sv=v −

∞

−∑
0

. This is said to be 

the accumulated capital. 

6. Given the final demand yt, the basic Input-Output material balance for the 

system depicted (one process, one commodity) then becomes:   

( ) ( ) ( ) ( )
t

p+t

=p

p
p+t

pt

=p

p
pt y+su=sv ∑∑

∞
−−

∞

−
00

   (8) 

Following ten Raa (2005), this can also be expressed in terms of a “convolution 

product” as v*s = u*s + y, where the convolution product between two functions 

of time f and g is (f*g)(t) = ( ) ( )pt

=p

p gf −
∞

−∞
∑ . 

The above can be applied to the numerical example adopted so far.  The two 

subsequent periods ζ1 and ζ2 are defined as t=1 and t=2 respectively. Instead of using 

letters u(t) and v(t) to denote the quantities of a single commodity as a function of time,  

now matrices U(t) and V(t) will be used. The process' activity level s and the final 

demand y are now to be considered as vectors. Both the input and output profile of the 

system considered can be thought of as dependent on discrete time periods (t). By using 

equation (7), with a few manipulations, we can now compute Table 3. 
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Table 3 

From Table 3 one can see that for each period (t=1 and t=2), the time horizon is 

to be extended backward and onward, by subtracting p (discrete) time units, where p 

may range from the positives to the negatives. By such an operations, one obtains a time 

horizon which is made of the period t itself (p=0), the periods that come after t (namely 

t-p where p≤0) and the periods that come before t (namely t-p where p≥0). Now one 

shall see the economic activities (production processes, as described by both make 

matrix V and use matrix U) as distributed along such time horizon: 

Table 4 

The assumptions been made, as in ten Raa (2005), that U(p)≠0 only if p ≤0 . For 

the moment, assume V(p)≠0 only if p≥0 (otherwise, if  V(p)≠0 only if p>0 this would 

mean that each commodity which has been used at time t will not produce any output in 

the same period, but at least one period later). In order to obtain the system's gross 

production as well as the interindustry demand at time t, one needs to respectively sum 

up the make and use matrices (multiplied by the corresponding activity levels) over 

time, according to parameter p. This can also be graphically represented as in the figure 

below 

Figure 3    

For each period t, then, the material balance will be calculated taking into account 

not only the outputs and inputs that are “instantaneously” produced and used up in that 

period (being p = 0). The gross output at time t will include, instead, also those output 

which have been produced one or more periods before period t and which contribute, 

according to their own lifetime, to the amount of commodities available at that time. 

Thus, processes centered at time t-p contribute Vt-p
(p)s(t-p) to the stock at time t, 

producing outputs of lifetime p. On the other hand, the interindustry demand at time t 

will also include the input requirements of those processes centered at time t-p (where 

p< 0) that require Ut-p
(p)s(t-p) inputs to be available |p| time units prior to the delivery of 

output, that is at time t.   
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For the sake of simplicity, now assume that such periods as  “-1”, “3” are excluded 

from the planning horizon. Also assume that we cannot see beyond period t=2. Form 

Tab.3 one obtains that at times t =1 and t =2 the balance equation (7) reads, respectively 

2
31

3
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2
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02

222
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21
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1111
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  (9) 

Because of the microeconomic perspective herein adopted, however, it is 

unlikely that the process of accumulation of capital takes (computationally) place in the 

way described above. Indeed, those manufacturing processes whose outputs are durable 

assets which contribute as fixed capital to the production system under study are hardly 

ever included within boundaries of the analysis. In other words, such manufacturing 

processes  are assumed not to enter the enterprise production and cost planning. 

Otherwise, one would be forced to introduce further elements within the analysis such 

as th depreciation of outputs at each age. Thus, we choose here to put the more 

restrictive condition such as no capital goods are being produced within the system 

considered, i.e. Vt
(p)≠0 only if p=0  (t = 1,2). 

Although processes within the system boundaries won't provide durable assets 

to be used as inputs into the other processes, the accumulation of the commodities 

produced is likely to take place in the form of inventories. The initial stocks of 

commodities of lifetime p = 1 which comes from period t = 0, preceding the planning 

period,  are assumed as exogenous constants: )0()1(
01 sVK =  is a matrix whose elements 

are constants and represents the initial inventory of commodities available at time t = 1. 

If e is defined as a unity column vector of appropriate dimensions, one calculates 

eKyd 111 +=  where K1e is the row sum of matrix K1.  

The system of equation (9) can now be expressed in a matrix form as 
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  (10) 

Instead of being introduced as additional exogenous (positive) elements of the 

final demand, the final inventories of commodities can be thought of as proportional to 

the increase of the system's activity levels between two periods. “Capital coefficients” 
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must be defined as an additional element of the material balance equation, since they 

represent the amount of a certain commodity which is needed by a certain process in 

order to sustain an expected unit increase in its activity levels11.  

Assume that the elements of matrix B are such “capital coefficients”. In other 

words, Bt+1
(p) is the material requirement at time t for inventories usable one period 

after, that needs an investment to be made |p| (where p≤0) time units prior to t. Eq.(8) 

can then be reformulated as follows    

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) t
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 (11) 

From Eq.(11) one can compute Table 5.  

Table 5 

To illustrate the new element in the mass balance equation (11),  capital 

coefficients matrices will be arranged as two time distributions (limited to time periods t 

=1 and t = 2). This is shown in Table 6. 

Table 6 

Given the assumptions made so far and extending the time horizon to three 

time periods, we can summarize the mass balance equation as  
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Following ten Raa (1986), now define  

for p = 0, ][ )0(
1

)0()0()0(
++−= tttt BUVG   (t=1,2) 

                                                 
11 Duchin and Szyld (1985) referred the investment term in the dynamic system to the increase of 
productive capacity that has been projected several time periods in advance. The microeconomic model 
herein outlined, however, will assume that the processes can only provide final stocks of the respective 
commodities so that the downstream capacities will not be exceeded. 
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for p ≠ 0, ][ )1()(
1

)()( +
−+−− −+−= p

pt
p

pt
p

pt
p

t BBUG   (t=1,2)  

The first definition is obtained by summing up the elements in the t-th row and 

column of the 2×3 matrices in the left-hand side of equation (11). The second definition 

is obtained by summing up the elements in the (t+p) -th row and column of the same 

matrices. Equation (11) can be adapted to the numerical example and expressed as 

         
( ) ( )

t
pt
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p
t = ysG −

≤
∑

0
 (t=1,2)  (13) 

  
If we assume that we cannot see beyond t = 2, then (10) reduces to 
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The above system can be expressed in matrix form as 

( )
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=  

which is very similar to the traditional dynamic input-output scheme as can be 

found in Miller and Blair (1985), Leontief (1968), Leontief (1966), though adapted for 

the use of Make-Use matrices.  

This also recalls the numerical example presented in the previous paragraph.  

In particular,  G1
(0) = V1

(0) +U1
(0) +B2

(0) = G if B2
(0) = 0   and G2

(0) = V2
(0) +U2

(0) +B3
(0)= 

L= G if B3
(0) =B2

(0) =0 and V1
(0) = V2

(0) and U1
(0)= +U2

(0)  that is there is no technological 

change between the two periods. Matrix G1
(1) = -U2

(-1) +B3
(-1)-B2

(0) expresses, instead, 

the amounts of commodities which are to be produced one period before being used up 

in production and includes feedback loops, - U2
(-1) , as defined at the beginning of this 

paper. Thus G1
(1)= H  in the extent B3

(-1)– B2
(0) =0 

3.3 Introducing environmental extensions 

Also some environmental extensions can be considered. It has been assumed 

that the system also produces two waste types, or secondary products, which either 

undergo some end-of-pipe treatment or serves as secondary inputs. The net generation 
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of waste k by process j is recorded as the generic element ( )kjN of the matrix N , 

whereas the element ( )kjN of the matrix N represents the input of the same waste into 

that process. Following Nakamura & Kondo (2006), each process is assumed either to 

produce a given waste k or to use it as a secondary input, i.e. 0)()(:, =×∀∀ kjkj NNkj . 

Though this is not the only way to proceed, it seems most convenient for cost 

accounting purposes. A numerical example is given below. 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0000
0000
0400
8,0000
02,0000

0000
0004
008,00

kg
kg
kg
kg
kg
kg
kg
kg

3)  time(in, 2  typewaste

3)  time(in, 1  typewaste

2)  time(out, 2  typewaste

2)  time(out, 1  typewaste

2)  time(in, 2  typewaste

2)  time(in, 1  typewaste

1)  time(out, 2  typewaste

1)  time(out, 1  typewaste

00
N0
N0
0N

W
W

W
(2)

(1)

(1)

(2)

(1)        (15) 

These flows can be balanced as follows: 
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We now turn to the problem of determining the demand for waste treatment by 

each production process12. Consider the above. As a simplifying assumption, the by-

products generated in a certain time period can only be used as secondary inputs in the 

period that immediately follows. The amount of waste that is not recycled internally, 

determines the demand for its treatment. This must be calculated for each production 

process and  for each period, in order to accurately assign the waste treatment costs. 

                                                 
12 This is based on the algebra of the Waste IO model developed by Nakamura & Kondo (2002), though 
adapted for the purposes of Enterprise IOA. 
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First, the recycling ratio for each waste type k in each period t is determined. 

With reference to Eq.(7), it reads:  

∑∑ ==
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n

j kj
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j kj
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k NNrkt
1

)(
1

)1()( )
~

()~(:,   (17) 

where n is the number of production processes in each period (in our example, n=2).  

Such ratios can be collected in a vector, which, as far as our numerical example is 

concerned, reads  ( )TT()( 000,6250( 21 == )rrr ) . The “sale of waste”, i.e. the 

amount of waste produced in the first time period which has been sold within the supply 

chain of processes considered in the following period, totals ⎟
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percentage of the output of waste which is not recycled within the time horizon 

considered, instead, is )ˆ( rI − . Such quantity will undergo some treatment. Assume 

there is one such treatment process  that is run internally. It produces an output that is in 

fact a treatment service, measured by the physical amount, expressed as weight, of the 

wastes that undergoes it. If there is not a one-to-one relationship among the waste types 

and the treatment processes, then a matrix Q is to be exogenously defined whose 

element 10 << lkq  indicates the amount of k-th waste type which undergoes the l-th 

treatment. For example, ⎟⎟
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yields13 the demand for waste treatment can in each period, respectively14 

( )128,0048,0~
, −−=IIIG  and ( )2,32,3~

, −−=IIIL . The negative figures within such 

matrices are not to be interpreted as feedback loops, since they have been calculated 

only as a computational contrivance which allows the assignment of treatment process’ 

costs to production processes.  

The treatment process which is run internally, is to be included within the 

scheme.  Input requirements from the production processes are recorded as the entries of 

matrix III ,G ( III ,L  in the following period). The net output of the treatment process is 

recorded in matrix IIII ,G ( IIII ,L in the following period). External input requirements and 

cycle time are specified, respectively, within matrices II,•−M and II,•C . The treatment 

processes turns wastes into releases into the environment. The latter are recorded within 

the matrix of environmental flows R . The system can then be reformulated as follows, 

under some assumptions15: 
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where )1()1( ~
Nr T is the “sale of waste” in period t =1. It equals the “input of 

waste” in the immediately following period. It has been assumed that one cannot see 

                                                 
13 Some null matrices of dimension 1×2 have been introduced within the outcome of Eq.(7) in order to 
allow such operation. 
14 The subscripts “I” and “II” have been introduced in order to make a distinction among those rows and 
columns which refers to the production processes and treatment processes respectively. 
15 Neither the treatment process produce the same output of the production processes nor vice versa. The 
treatment process is not being supplied with production processes’ main outputs ( IIIG , =0, IIIL , =0) and 
it does not require treatment services. It only produces releases into the environment. 
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beyond period t =2. This prevents one to assign non-zero values to the input of waste in 

period t =3. The network of processes can now be depicted as in Fig.416. 

Figure 4 

The whole system, including the treatment process, needs to be rescaled. The 

scaling vector is calculated as IIII yAs 1−= . The reference flows vector IIy  includes 

the final demand for waste treatment, which is set to zero. Assuming 

( )02000000=IIy , then ( )28,1110352,011=IIs . This yields 
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3.3 Applying costs 

In a deterministic approach, a vector of standard cost coefficients, expressed in 

monetary units, can be exogenously defined for each unit of the relevant cost drivers: 

the externally purchased inputs, the “input of waste” and the cycle times expressed as 

machine hours17. As to the latter, it can be used to assign variable conversion costs to 

processes according to a predetermined overhead cost rate. Assuming that the prices of 

externally purchased inputs do not change from t =1 to t = 2, the equivalent of the 

“value added” vector  which is used within the leontevian price system can be 

calculated as follows: 

                                                 
16 Instead of representing the waste outflows from processes going into the treatment one, it has been 
represented the flows of treatment services going from the treatment process into the production ones. 
17 Also the environmental flows R can be used as cost drivers and attached a cost rate. 
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( ) ( )4,15004,2248,2681,49,83,20
~
~
~

)2(

)1()2()1( =
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
G
G
D

pppω T
D

T   (21) 

where ( ) ( )5630−=−= T
C

T
M

T
D ppp : T

Mp  is the standard cost of purchasing raw 

materials and other process inputs from outside the system; T
Cp is an overhead cost rate 

that could be used to trace, by using machine hours as a driver, such costs as machinery 

depreciation, indirect labour and so on18. Each waste type k will be sold (and purchased) 

within the system at exogenous prices kp . It is not its “manufacturing cost”19; it could 

also happen, indeed, that 0≤kp .  In our example, assume 

( ) ( )5,05,05,05,0)2()1( −−−−=pp . The following  

 ( )5,2338,37,45,232,47,61 == −Aωp TT   (22) 

 yields , the unit production cost for the output of each stage of the supply chain 

considered in each time period. It includes those cost incurred to run the treatment 

processes internally, which have been assigned according to the demand for such 

treatment. The following 
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yields the monetary counterpart of the balanced systems’ net output matrix A~ .  The 

following 

( )064,6760000ˆ~
== IIp ypeA   (24) 

                                                 
18 If the conversion costs are not common to all processes, then each cycle time should be recorded in a 
separate row. This allows different overhead cost rates to be applied to different processes. 
19 The manufacturing cost of producing a waste can be determined applying some joint product costing. 
The computational procedure would be similar to the allocation one as described by Heijungs and Suh 
(2002) as to LCA. According to the cause-effect principle, the cost of producing a waste together with a 
given main output, once determined, should be transferred into the process requiring the latter. 
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turns out to be the total manufacturing cost of the net output that meets the final 

demand. 

3.4 A comparison between steady state and two-periods model 

If we had run all the previous calculations using a steady-state representation of the 

system, we would have obtained ( )5,233,36,4=Tp , wich can be compared to 

Eq.(20). The total manufacturing cost of the net output that meets the final demand 

would have read ( )TIIp 06680=y . 

which is slightly less than the one obtained in Eq.(21), basically because, ceteris 

paribus,  using an externally purchased input in period t =1 in Process 1 instead of the 

internally produced Commodity 2 is more expensive. 

4. Conclusions 

The present note have discussed some simple issues of dynamics which are induced by 

a different perspective on feedback loops as might be of interest for Input-Output based 

enterprise resource and cost planning. The main point has been that if one does not 

neglect that production takes time, then feedback loops themselves may induce some 

form of dynamics within an Input-Output computational structure which recalls the kind 

of dynamics that is quite often described when dealing with IOA. 

Also the formal repercussions of such view on a simple hypothetical 

environmental extension  has been illustrated. Many aspects of the analysis, however, 

have not been discussed within the present note which would have entailed focusing on 

much more formal aspects. Yet, the aim has been that of contributing to the debate 

about the issue of dynamics namely within an environmental management tool like Life 

Cycle Assessment (LCA), as discussed in  Udo de Haes et al. (2004), and especially as 

far as its integration with Cost Accounting  is concerned. The latter has been discussed 

in Huppes et al. (2004) and Norris (2001). 

The basic assumption here has been that, as pointed out in Settanni et al., (2007), in the 

extent the computational structure of both LCA and its economic counterpart (Life 

Cycle Costing - LCC) is to be somehow consistent, it must be input-output-based in 



22 Settanni, E; Heijungs, R 

IIOMME08  Seville - July, 9-11 2008 

both cases, and the latter is to include the appropriate environmental extensions. Issues 

of dynamics must then be considered, in dealing with such topics, consistently with the 

theory of Input-Output Analysis. 
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Tables: 

Table 1 

Run S1 S2 

1 0,8 4 

2 0,032 0,16 

3 0,00128 0,0064 

 0,83328 4,1164 

Iterative method to solve the system of linear equations in presence of feedback loops  

Table 2 

Run S1
(1) S2

(1) S1
(2) S2

(2) 

1 0,032 0,16 0,8 4 

Iterative method to solve the system of linear equations without feedback loops  

Table 3 
t p t-p Ut-p

(p)s(t-p) Ut=∑Ut-p
(p)s(t-p) t-p Vt-p

(p)s(t-p) Vt=∑Vt-p
(p)s(t-p) 

1 -1 2 U2
(-1)s(2)  2 V2

(-1)s(2)=0 by assumption  

1 0 1 U1
(0)s(1)  1 V1

(0)s(1) 

1 1 0 U0
(1)s(0)=0 by assumption  0 V0

(1)s(0)  

    U1=U1
(0)s(1)+U2

(-1)s(2)   V1=V1
(0)s(1)+V0

(1)s(0) 

2 -1 3 U3
(-1)s(3)  3 V3

(-1)s(3)= 0 by assumption 

2 0 2 U2
(0)s(2)  2 V2

(0)s(2) 

2 1 1 U1
(1)s(1)=0 by assumption  1 V1

(1)s(1)  

2 2 0 U0
(2)s(0)=0 by assumption  0 V0

(2)s(0)  

    U2=U2
(0)s(2)+U3

(-1)s(3)   V2=V2
(0)s(2)+V1

(1)s(1)+V0
(2)s(0) 

Time values of make and use matrices 

Table 4 
    t-|p| t t+|p|   

  (p>0) -1 0 1 2 3 ... (p<0) 

Use Matrix 1  - - U1
(0)s(1) U2

(-1)s(2) U3
(-2)s(3) U1-p

(p)s(1-p) 

 
t 

2  - - - U2
(0)s(2) U3

(-1)s(3) U2-p
(p)s(2-p) 

Make Matrix t 1 V1-p
(p)s(1-p) V-1

(2)s(-1) V0
(1)s(0) V1

(0)s(1) - -  

  2 V2-p
(p)s(2-p) V-1

(3)s(-1) V0
(2)s(0) V1

(1)s(1) V2
(0)s(2) -  
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Table 5 
t p t-p p+1 Ut-p

(p)s(t-p) Ut=∑Ut-p
(p)s(t-p) Bt=∑[Bt-p+1

(p)s(t-p+1)-Bt-p
(p+1)s(t-p)] Vt-p

(p)s(t-p) Vt=∑Vt-p
(p)s(t-p) 

1 -1 2 0 U2
(-1)s(2)  B3

(-1)s(3)-B2
(0)s(2) V2

(-1)s(2)=0 by assumption  

1 0 1 1 U1
(0)s(1)  B2

(0)s(2)-B1
(1)s(1)=B2

(0)s(2) by 
assumption  

V1
(0)s(1) 

1 1 0 2 U0
(1)s(0)=0 by assumption  B1

(1)s(1)-B0
(2)s(0)=0 by assumption  V0

(1)s(0)=0 by assumption  

     U1=U1
(0)s(1)+U2

(-1)s(2)          Bt=B3
(-1)s(3)-B2

(0)s(2)+B2
(0)s(2)  V1=V0

(1)s(0) 

2 -1 3 0 U3
(-1)s(3)  B4

(-1)s(4)-B3
(0)s(3) V3

(-1)s(3)= 0 by assumption 

2 0 2 1 U2
(0)s(2)  B3

(0)s(3)-B2
(1)s(2)=B3

(0)s(2) by assum.  V2
(0)s(2) 

2 1 1 2 U1
(1)s(1)=0 by assumption  B2

(1)s(2)-B1
(2)s(1)=0 by assumption  V1

(1)s(1)=0 by assumption  

2 2 0 3 U0
(2)s(0)=0 by assumption  B1

(2)s(1)-B0
(3)s(0)=0 by assumption  V0

(2)s(0)=0 by assumption  

     U2=U2
(0)s(2)+U3

(-1)s(3)   V2=V2
(0)s(2)+V1

(1)s(1)+
V0

(2)s(0) 

Table 6 
  t+|p|, (p=0...-∞)   

  1 2 ... (p<0) 

B1-p+1
(p) 1 B2

(0)s(2) B3
(-1)s(3) B1-p+1

(p)s(1-p+1) 

 
t 

2 B2
(1)s(2) B3

(0)s(3) B2-p+1
(p)s(2-p+1) 

B1-p
(p+1) 1 B1

(1)s(1) B2
(0)s(2) B1-p

(p+1)s(1-p) 

 
t 

2 B1
(2)s(1) B2

(1)s(2) B2-p
(p+1)s(2-p) 

 

Figures: 

Figure 1 

 
The initial system state (a), after firing process1 (b) and after firing process2 (c). 
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Figure 2 

 

 

Figure 3 
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Figure 4 

 
 
  


