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Abstract 

The RAS method is developed to extrapolate a single matrix such that it conforms to new row 

and column totals. This paper presents a cell-correction of RAS (CRAS) that uses the 

distribution of cell variations, calculated from a series of different RAS projections, to project 

the input-output table (IOT) of a specific region or country. The solution of CRAS is derived 

from an additional optimization problem, based on first order reliability methods, to obtain 

the most likely cell-corrections to the regular RAS solution. To test the performance of 

CRAS, cumulative simulations are made with eleven survey IOTs of Spanish regions for 

1998-2005. The results show that CRAS outperforms RAS when a limited set of survey IOTs 

is used that are close to the target IOT. When more IOTs with more different IO structures are 

added CRAS gradually leads to results that become worse than applying RAS to the single 

IOT that is most similar in IO structure terms. 
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1. INTRODUCTION 

 

RAS is known as an iterative technique to update semi-positive input-output tables (IOTs), 

given an old table and new row and column totals (Stone, 1961; Bacharach, 1970).
3
 It is also 

used to construct regional IOTs given a national IOT or given an IO table of a different region 

in combination with the row and column totals of the region at hand (Hewings, 1969, 1977). 

Both ideas are combined when an old interregional IO table has to be updated given new 

regional row and column totals, and new national cell totals (Oosterhaven, Piek and Stelder, 

1986). In consultancy practice, it is quite often also used to construct national IOTs for 

countries that do not have an own IOT. All RAS applications have in common that one single 

(old) matrix is given that needs to satisfy some set of (new) constraints.  

 In view of the tremendous amount of national, regional, interregional and international 

IO tables now readily available on the internet, it is surprising that hardly any attention has 

been paid to the problem of constructing a new IO table using the information of as many of 

the existing IOTs that is relevant to the construction problem at hand. The one exception is 

the Cell-Corrected RAS method (CRAS) developed by Mínguez, Oosterhaven and Escobedo 

(2009). It is tested on the problem of updating Dutch IOTs over the period 1969-1986, using 

as many of the older tables that are available. In this setting, it is concluded that CRAS 

performs better than RAS when gradual changes need to be forecasted. Using many old tables 

leads to worse results than only using the single most recent table when sudden shocks, such 

as the oil price rises of 1973-74 and 1979-80, need to be covered. 

 Here we will test how CRAS performs as an estimation technique for regional or 

national IO tables where such tables do not exist. It appears that the temporal projection of 

IOTs is far simpler than the spatial projection of IOTs, which is our current topic. The reason 

for this is that time is one-dimensional and uni-directional (from past to future). Space, 

however, is at least two-dimensional and bi-directional. Moreover, distance may be defined in 

many ways, e.g. physical or socio-economic, whereas time essentially is simply time. Hence, 

when only one single IOT is used for a temporal RAS, clearly best choice is to take the most 

recent IOT available. When, however, a single IOT is used for a spatial RAS, the best choice 

is not so obvious. It is not simply the IOT of the region or country most close by physical 

space. In stead it is the IOT of the region or country most close by in terms of IO structure, 

but which region or country that is, is not clear beforehand, as will be shown in the 

application. 

To test CRAS as a spatial projection method we need a set of identically defined, 

survey-based IOTs. The IOTs need to be survey-based, as non-survey IOTs are not suited for 



 3 

testing a non-survey construction technique, while they need to be identically defined across 

regions or countries for the obvious reasons. To test CRAS, we will use the set of survey-

based symmetric IOTs for 11 Spanish regions as collected and harmonized for the 

construction of a seven region interregional semi-survey IOT for Spain for 2005 (Escobedo 

and Oosterhaven, 2009).
4
 As Spain has 17 regions, it follows that 6 Spanish regions do not 

have a survey-based IO table yet. If the test on the eleven existing IOTs is successful, the 

obvious first application of CRAS at the regional level would be the non-survey construction 

of the six yet non-existent Spanish regional IOTs.
5
 

 The setup of this paper is as follows. Section 2 will briefly summarize the nature of 

the Cell-Corrected RAS method and the nature of its use as a spatial non-survey IOT 

construction method. Section 3 will discuss the setup of the test on the existing 11 Spanish 

regional IOTs. The core of the problem is twofold. First, the test has to be set up such that it 

comes as close as possible to its potential use as a non-survey technique. Second, a solution 

has to be found for defining the structural IO distance between the regions at hand. Section 4 

discusses the results of the comparison of the 11 survey IOTs with their non-survey estimates, 

each based either on RAS or on CRAS applied to increasing amounts more and more different 

survey IOTs. Section 5 concludes that CRAS outperforms RAS when a limited set of survey 

IOTs is used that are close to the IOT that has to be projected. When more IOTs with more 

different IO structures are added CRAS gradually leads to results that are worse than using 

RAS on the single IOT that is most close by in IO structure terms. 

 

 

2. THE CELL-CORRECTED RAS METHOD (CRAS) 

 

The goal of a conventional spatial RAS projection consists of obtaining an input-output 

transactions matrix RZ  for region or country R  of dimension m  by n  as close as possible to 

the input-output transactions matrix SZ  of region or country S  of the same dimension, 

knowing only the margins (the row and column sums) of the target RZ .
6
 

 

Statement of the programming model 

 

The proposed new spatial projection method CRAS has two stages. 
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In the first one, data available for different regions are used in a standard RAS approach to 

estimate the parameters of the distributions of statistical deviations between the projected 

(RAS) regional IO tables and the true (survey) regional IO tables, e ~ ),( ee
N σµ  
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That is, we will have T  values for e

ijµ  and e

ijσ , one per target region R. 

 The second stage of the model uses the data of (2) to correct the RAS projection for 

region R  ( )(~ SR
z ) by means of solving the following optimization problem: 
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Where R

iu equal the known row sums of the target matrix RZ , and R

jv equal the known 

column sums of R
Z . Equation (6) assures that the solution is semi-positive, although this last 

constraint is inoperational because all e  values are centered around 1. 
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Once the optimization problem (3)-(6) is solved and the optimal values 
*)(SR

ije are available, 

the solution of CRAS, i.e. the values of the transaction matrix )(ˆ SR
Z , is obtained as follows: 

(7) ;~ˆ )()()( * SR

ij

SR

ij

SR

ij zez =    ;,...,1 mi =    nj ,...,1=  

 

Where (*) refers to the optimal values of )(SR
e .  

 

Solution of the programming model 
7
 

 

It is instructive and handy to derive an explicit solution to better understand the behavior of 

the model. Consider the Lagrange function associated with problem (3)-(6): 
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where iλ  and jγ  are the Lagrange multipliers.  

The derivatives of the Lagrange function with respect to e , λ  and γ  are: 
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Note that (9)-(11) represents a linear system with the following structure: 
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where the dimensions of the corresponding matrices are in parentheses. Matrix A  is a 

diagonal matrix with ( )2
2 e

ijij ea = , matrix B  contains the RAS solution ijz~ , and O  is an zero 



 6 

matrix. Note that, for convenience, the deviation matrix e  has been reorganized in a column 

vector. The elements of the vector c  are ( )2
2 e

ij

e

ijij ec µ= , and u  and v  are the vectors with the 

row sums and column sums of the target matrix, respectively. 

 For the system (12) to have a guaranteed unique solution, the rank of the coefficient 

matrix must be equal to its dimension ( )nmmxn ++ . The first column block 







TB

A
 has rank 

mxn  if 0≠ijσ , ij∀ , and the standard deviations are finite, because in that case A  is a full 

diagonal matrix. However, the rank of matrix B  is 1−+ nm  if 0~ ≠ijz , ij∀ , because in (10)-

(11) there is a redundant constraint due to the compatibility condition that the sum of the row 

totals should equal the sum of the column totals, •• = vu . This redundancy must be removed, 

and therefore (12) must be generated eliminating one constraint in (10)-(11), no matter which. 

Once this condition holds, the system of linear equations is easily solved using sparse-

oriented algorithms (LU, Gauss-elimination, etc.) 

 

 

3. TESTING CRAS AS A SPATIAL PROJECTION METHOD 

 

Next, we discuss how applying CRAS to the 11 Spanish survey-based regional IO tables has 

to be set up in order to test CRAS as a spatial IO projection method. The core of the problem 

is twofold. First, the test has to set up such that it comes as close as possible to its potential 

use as a projection technique. Second, a solution has to be found for defining the structural 

distance in terms of IOTs between the regions at hand, in order to determine how the 

performance of CRAS changes when the information of more and more IOTs is used. 

 

Setting-up CRAS as a spatial IO projection technique  

 

When transit trade is removed, the layout of the typical Spanish survey-based IOT for region 

R is shown in Table 1. The core problem is to use the 11 survey IOTs to simulate a situation 

that resembles the non-survey estimation of the lacking six IOTs, as much as possible. The 

solution of this problem should be based on the data that are indicated with “given” in Table 

1. We claim that the data indicated with “estimation” in Table 1 can be estimated easily from 

the data that are “given” for the six Spanish regions for which there is not yet a regional IOT. 

The data indicated with “CRAS” then remain to be estimated by means of either RAS or 

CRAS.  
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The arguments for selecting the “estimation” part of Table 1 are as follows. We 

assume that nothing is known about both the intra-regional transactions and the exports and 

imports with regards to the Rest of Spain (RoS), because estimating them is the core of any 

non-survey estimation of regional IOTs. We should not assume that problem away by using 

the survey row and column totals of these matrices while comparing RAS or CRAS with a 

survey IOT. Unfortunately, in the past it has been assumed that the total intra-regional 

purchases and sales were known a priori for all sectors (Czamanski and Malizia, 1969; 

Morrison and Smith, 1974; Sawyer and Miller, 1983). As a consequence, it was unjustly 

concluded that RAS, as a non-survey technique, performed far better than competing non-

survey techniques, such as e.g. the Location Quotient method (see Schafer and Chu, 1969). 

The latter, however, have been developed for the difficult estimation of precisely these intra-

regional totals. So, they should not be assumed known a priori (see also Thuman, 1978).  

For the six Spanish regions without an IOT, however, the exports to the Rest of the 

World (RoW) are given, as Eurostat requires National Statistical Offices (NSOs) to collect 

such data. The same holds for regional sectoral gross value added at market prices and its 

constituent components (net taxes on products, other net taxes on production, compensation 

of employees and gross operating surplus). Unknown total use and total output per regional 

sector may be estimated easily by using sector-specific ratios with gross value added at 

market prices as their base.
8
 These ratios may be calculated either from the Spanish national 

IOT or from an appropriate average of the known regional IOTs. In order to separate the 

estimation error of these unknown totals from the estimation error of CRAS, we will use the 

actual information of each of the 11 regional survey-based IOTS while testing CRAS. 

A more problematic decision is whether or not to assume that - for those six regions - 

the imports from the Rest of the World (RoW) can be estimated a priory or not, either as a full 

matrix or as a single row. The only regional foreign import data readily available in Spain are 

the detailed totals by products by region (Datacomex, 2009). Hence, it has to be assumed 

along each row of the foreign import matrix that all purchasing sectors and all categories of 

final demand have the same RoW import ratio. This will of course introduce an estimation 

error. In order not to pollute the estimation error of CRAS with the RoW import estimation 

error, we will use the RoW survey data while testing CRAS. 

When the ‘given’ and the ‘estimated’ data are taken from the survey IOT of region R, 

RAS and CRAS are competing to estimate the remaining data. The IO data of the ten 

remaining regions S  that form the database to estimate the remaining IO data for region R 

thus have the following structure: 
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Note that compared with Table 1, we have aggregated the RoS import table to a single RoS 

import row, as a full matrix is hardly ever required in IO applications, such as regional 

multiplier analysis. 

For region R  we only need the column and row sums of (13), i.e. we need to estimate: 
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to be substituted in (4)-(5).  

The column sums of regional intermediate and final purchases from the whole of 

Spain can be calculated simply from the ‘given’ and the ‘estimated’ survey data in Table 1: 
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The row totals of the regional intermediate and final sales to the whole of Spain are 

also calculated simply from the ‘given’ and the ‘estimated’ survey data in Table 1: 
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The more difficult problem is how to estimate the totals of last row and last column of 

(13), without using the RoS trade data from the IOT of the target region R.
9
 Hence, these 

totals have to be estimated by means of RoS trade data from the IOT of the base region S. To 

make maximum use of the known sector structure of region R, the sectoral trade ratios of 

region S are applied to region R’s ‘estimated’ sectoral purchases (15) and sectoral sales (16). 

This will lead to two, most certainly conflicting, residual estimates of region R’s total intra-

regional transactions. Of the latter, we take the unweighted average to derive the required 

totals of the last row and last column of (13).  

To clarify the need to take an average, the estimation will be formalized by means of 

the well known regional purchase coefficients (RPCs, Stevens and Trainer, 1980) and 
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regional sales coefficients (RSCs, Boomsma and Oosterhaven, 1992). These equal one minus, 

respectively, the sectoral import ratio and the sectoral export ratio: 

 

(17) q
zz

z
RPC

E

E

S

q

S

q

S

qS

q ∀
+

−=
••

•
1  and i

ez

e
RSC

E

E

S

i

S

i

S

iS

i ∀
+

−=
••

1   

  

The intra-regional transaction total may then be estimated as the unweighted average of the 

estimates by means of the RPCs and the RSCs of region S: 
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The exports’ column total and the imports’ row total with regard to RoS, then follow as the 

residual: 
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The calculations (15)-(20) are made 110 times. For each of the 11 RAS projections we 

use the survey IOTs of the 10 remaining regions S.
10

 Subsets of these ten RAS estimates for 

each R are then used to calculate the average deviation and the standard deviation of (2), 

which are used in the second stage of CRAS to produce the cell-corrected estimate of CRAS 

according to (7). 

The next problem is which subsets of S to use. In temporal projections this choice is 

simple: the most recent table is the best choice. Temporal RAS and CRAS projections are 

then simply compared by adding more and more, less recent IOTs to the CRAS method, in 

order to compare the performance of both methods (see Mínguez, Oosterhaven and Escobedo, 

2009). In spatial projections this is far more complicated, although theoretically it is still 

simple. The best choice for RAS is to take the survey IOT of the region S that resembles the 

projection region R best, and the best choice for CRAS is to add the second-best, the third-

best, etc. regions S. Empirically, however, it is not known beforehand which region is first-

best, second-best, etc.  
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To test RAS versus CRAS, our choice is to compare the best choice of regions in both 

cases. Hence, we have to determine the rank order of the 10 non-survey RAS projections of 

each of the 11 survey IOTs. To determine this rank order and to evaluate the performance of 

CRAS we will only compare the intra-regional parts of the IOTs, thus excluding estimates of 

the trade with the RoS. We could also compare the RoS results separately, but comparing the 

intra-regional part is far more important as its estimation errors determine the estimation 

errors of the regional or national multipliers for which regional or national IOTs are used 

most. 

 

Accuracy of different RAS estimates for the Spanish regional IO tables 

 

The comparisons are made by inspecting the distance between a projection z and the true 

value truez , using different matrix distance measures (deMesnard and Miller, 2006). We only 

use additive measures, as their multiplicative equivalents have the same basic properties 

(deMesnard, 2004). Moreover, we only use measures that weigh the error made by the size of 

the IO cell at hand, as their unweighted equivalents provide inferior information. Thus, we 

only use the following matrix distance measures: 

• Weighted Absolute Percentage Error (Butterfield and Mules, 1980): 
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• Weighted Normalized Squared Error (Deming and Stephan, 1940): 
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• Minimum Information Gain (Tilanus and Theil, 1965): 
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Table 2 shows the result of (21)-(23) for the single best RAS projection per target 

IOT. Of course, as might be expected from the above definitions, MIG shows the least 

variation in performance of RAS per target IOT, whereas WSNE shows the largest variation. 

The WAPE nicely summarizes that the best RAS projection needs to be improved upon, as the 

weighted average cell-error runs from 25% to 50% per target IOT, which should be 
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considered high. Next, especially when one looks at WSNE, it appears that projecting the IOT 

of the Madrid region is most difficult. This is not too surprising, as the capital region has an 

economic structure unlike any other Spanish region. Looking also at WAPE and MIG, the 

Baleares Islands and the Comunidad Valenciana also appear to be difficult to project. The 

case of Baleares is clear as it is an island economy with a much stronger tourism sector than 

any of the other ten Spanish regions with an IOT. Finally, it appears that only for Asturias, 

one needs a different base IOT to get the best score with each separate distance measure. In 

all other cases, the same base IOT is needed with either two or with all three of the distance 

measures. 

The rank order of the performance of all possible ten base IOTs, of which Table 2 

only shows the best projection, does differ, but not much. Therefore, from here on we only 

present the results for the average of the three measures.
11

  

To get an unweighted average, all three measures need to be normalized. To get 

results that are easy to understand, we normalize each with the minimal value of its single 

best RAS projection for target region R, i.e. we normalize with the values of Table 2. This 

implies that the normalization is dependent upon target region R and the best base region S 

Consequently, for that R(S)-combination, all RAS values of other base IOTs will be larger 

than one, whereas CRAS values may either be smaller or larger than one, depending on 

whether that CRAS projection performs better or worse than the best RAS projection at hand. 

The theoretical minimum is zero, indicating a CRAS projection that produces the true target 

IOT, while the corresponding best RAS projection does not.  

Thus, we only show results for our so-called Average Normalized distance Measure: 
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The rank-order of the results of (24) for the ten RAS-projections of each of the eleven target 

IOTs are shown in Table 3. Figure 1 shows the location and the size of the regions at hand. 

When the information of Table 3 and Figure 1 is combined, three types of regions may be 

distinguished.  

First, large regions with long coasts, like Andalucía, Comunidad Valenciana, and 

Galicia. As we can see in Table 3, Andalucía appears only twice as one of the best four 

regions to predict the regional IOT of another region, and Comunidad Valenciana and Galicia 

do not appear one single time, so this type of regions is not a good choice as base matrix to 
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make a projection. This is most likely due to the fact that these large regions with long coasts 

have different specific main economic sectors (agriculture, manufacturing, and fishing, 

respectively). 

Second, large inland regions, like Aragón, Castilla-La Mancha and Castilla y León. 

They offer a good choice as base IOT to project each others’ IOTs, as they appear five, four 

and six times, respectively, in the group of the best four base IOTs. This outcome may be due 

to the fact that these regions all lack singularities, such as small size, specific economic 

structure, high value added sectors, and having a coast. Castilla y León, for example, is a 

large region with a balanced economic structure, not strongly specialized in specific sectors, 

while it has a relatively central position. 

Third, small regions, like Asturias, Navarra and País Vasco. These offer the best 

choice as base matrix. Asturias, for example, appears always as one of the best three base 

IOTs with all target regions. Navarra appears eight times and País Vasco seven times. The 

economic structure of these regions has a predominance of the industrial sector, especially in 

Navarra and País Vasco, with a service sector less important than in national level (MPT, 

2009). 

Outside these three groups stand the Balearic Islands and the Madrid region that offer 

the first-worst or the second-worst base IOT for most of the other nine regions. This is 

undoubtly due to the fact that, although quite different, both are small regions with a very 

strong service sector, specialized in tourism and central government, respectively. They only 

serve as a good base region once, namely while projecting each other’s IOT. 

This discussion gives a first indication of the type of characteristics that are likely to 

define which regions have a comparable IO structure. Size and location are important, but 

sectoral structure seems to be the single most important factor that determines which IOTs 

present the best base IOT for the spatial projection of an unknown IOT. 

Figures 2 and 3 contain the same information as Table 3, but with the numerically 

differences added. Figure 2 emphasizes the importance of choosing the right base matrix. In 

the case of Andalucía and Navarra, for example, there are only two regions that are more of 

less suitable for a conventional RAS projection, and in the case of Galicia, there is only one. 

In many cases, picking the third, fourth or fifth best base IOT already leads to estimation 

errors that are up to 50% larger than that of the best base matrix, which already was not to 

good to start with (see Table 2). In addition, Figure 3 shows that picking a really wrong base 

IOT for a conventional RAS projection easily leads to errors that are 50% to 150% larger than 

those of the best choice. 
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To conclude, this section indicates that the performance of using RAS as a non-survey 

technique in the old fashioned way is weak, even when the best choice of base IOT is made. 

Moreover, not choosing the best base matrix may lead to errors that could be up to three times 

larger. Finally, it shows that the non-similar part, so-called the “non-fundamental part” of the 

economy is unfortunately quite large, at least in the case of the Spanish regions studied (see 

Jensen, Hewings and West (1987) for the concept of fundamental economic structure, and 

Thakur (2008) for a recent temporal application). Next, we consider if using CRAS can 

improve the quality of RAS as a spatial projection method. 

 

 

4. COMPARING RAS, AND CRAS WITH MORE AND MORE REGIONS 

 

By choosing the first-best region in each single projection we give RAS a head start to CRAS, 

but to not disadvantage CRAS unduly we successively add the second-best, the third-best etc. 

when comparing CRAS with RAS. To make this comparison we estimate the parameters of 

the distributions of statistical deviations between the projected and the true IOTs for each of 

the Spanish regional tables, as indicated in (1). Then we calculate the average and standard 

deviation corresponding to those statistical deviations, as in (2), and apply that data in (3). 

As we observe in Table 4 and Figure 4, for all the regions there are three to nine 

CRAS combinations that produce errors that are up to 70% smaller than the best RAS 

projection. The CRAS method with the two, three or four most similar IOTs produces always 

a better projection than the best RAS projection, while CRAS method with the five most 

similar IOTs is better than the best RAS in nine out of eleven cases, and where CRAS does 

not improve RAS, it is only 3% and 1% worse. 

On the other hand, when still more, increasingly dissimilar IOTs are added, the 

performance of CRAS deteriorates quite systematically. This is especially the case when the 

last one or two IOTs are added, which are quite often those of Madrid and the Baleares. Still, 

with each number of base IOTs there are cases to be found in which CRAS outperforms RAS. 

The problem of course is how the analyst, not knowing which CRAS combinations perform 

better, decides on the number and the specific base IOTs to include in a CRAS projection. 

The target IOTs of the Baleares and Madrid, and to a lesser extend also those of 

Castilla-La Mancha and Galicia, are of special interest, as in those four cases almost any 

CRAS approach, regardless of the number of IOTs used, is better than the best RAS. There is 

little that these four regions have in common in terms of IO structure, but Figure 4 shows that 

the spread in their CRAS performance measure is relatively small, while Table 2 shows that 
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the best RAS projection, especially of the Baleares and Madrid, tends to be worse than that of 

the other regions. So, when one has a bad conventional RAS projection it is easier to improve 

it by adopting of CRAS, but again when one has a bad conventional RAS projection will not 

be known beforehand. 

 

Finally, Table 5 summarizes the improvement of the CRAS projection with the best 

two, three, four and five base IOTs compared to the best RAS projection. We see that there 

are very relevant improvements to be made in all cases, with a minimum of 51% for 

Andalucía and a maximum of 72% in the case of Galicia. In all cases, except for Asturias and 

the Baleares, the largest improvement is reached when the two most similar IOTs are 

combined in CRAS 2. The main practical problem is of course how to determine these two 

best regions. 

Hence, in conclusion, in our opinion, choosing CRAS with the three to four most 

similar IOTs probably is the best strategy, as trying to choose the single best IOT for a 

conventional RAS projection almost certainly leads to a worse result as one easily picks the 

second or third best instead of the first best, whereas choosing CRAS with the three to four 

best IOTs, including one or two wrong choices, most certainly produces a better result. 

 

 

5. CONCLUSIONS 

 

The availability of many different regional or national input-output tables provides the 

researcher with extra information that may be used to improve the accuracy of any spatial IO 

projection method. We show that the CRAS method precisely does that by adding cell-

specific corrections to RAS, which only uses one single known matrix. The cell corrections of 

CRAS are determined by minimizing the sum of the squared mean deviations of RAS 

projections between the multiple known tables, weighted by the inverse of their standard 

deviation. 

 In the test of the performance of CRAS relative to RAS with eleven Spanish regional 

survey IOTs for 1998-2005, it is shown that it is crucial to choose the right IOT table as a 

base matrix to get a good performance of the RAS method as a spatial IO projection 

technique. When the wrong IOT is chosen estimation errors may easily be up to three times as 

large compared to using the right IOT, which already suffers from estimation errors between 

25% and 50%.  
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This sensitivity for the right choice of base table is considerably reduced when CRAS 

is used with three to four IOTs of regions with an economic structure that is considered to be 

most similar to the IOT that has to be projected. In that case CRAS may give a reduction in 

the error of 50% to 70% compared to the RAS projection. Based on our Spanish test, 

however, the analyst is advised against adding more IOTs to a CRAS projection, as those 

IOTs may become too different from the IO structure of the target region or country. Only 

when there are no base IOTs that seem similar to the target IOT, as in our test with Madrid 

and the Baleares, it might be advisable to use as many distantly comparable IOTs as possible. 
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TABLE 1. Layout of the standardized Spanish regional input-output table* 
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* The meaning of the symbols is: x = total output and total use; z = intra-regional intermediate and final 

demand; SR, = Spanish regions; m = number of supplying sectors; n = number of purchasing sectors; y = 

indicator of final demand category, f = number of final demand categories; e = exports; E = Rest of Spain 

(RoS); M = Rest of the world (RoW); p = imports; g = value added. 
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TABLE 2. Matrix distance measures of best RAS projection per target IO table 

 Target input-output table 

 ada ara ast bal clm csl cva gal mad nav pva 

WAPE in % 26.9 29.9 33.8 48.1 42.3 26.0 46.7 33.9 50.3 32.3 36.5 

Base IOT ast csl ara nav csl ara ast ast clm csl nav 

WNSE/1000
 

166 16 32 212 117 32 176 45 723 19 111 

Base IOT ast csl nav nav csl ara ast ast clm ara nav 

MIG*1000 334 304 359 553 405 326 536 373 496 349 386 

Base IOT pva csl ada nav ada nav pva ast pva csl ada 

 

 

 

TABLE 3. Rank order of RAS projections, average of three matrix distance measures 

  Target input-output table 

  ada ara ast bal clm csl cva gal mad nav pva 

1
st
  ast csl nav nav csl ara ast ast clm csl nav 

2
nd

  pva nav csl mad nav nav clm pva ast ara ada 

3
rd

  nav ast ara ast ast ast pva nav pva ast ast 

4
th

  csl pva pva clm ada clm ara csl bal pva ara 

5
th

  ara clm ada ada pva gal nav ada ara clm csl 

6
th

  clm gal gal ara bal ada ada ara nav gal clm 

7
th

  gal cva cva cva ara pva gal clm csl cva cva 

8
th

  cva ada clm csl gal cva csl cva ada ada gal 

9
th

  bal bal mad gal cva bal bal bal cva mad mad B
a

se
 m

a
tr

ix
 a

cc
u
ra

c
y 

ra
n

k
in

g
 

10
th

  mad mad bal pva mad mad mad mad gal bal bal 
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TABLE 4. Normalized performance of best RAS, and best CRAS by number of regions 

 Target input-output table 

 
ada ara ast bal clm csl cva gal mad nav pva 

Best RAS* 1.02 1.00 1.13 1.00 1.07 1.00 1.03 1.00 1.03 1.02 1.09 

CRAS 2 0.50 0.39 0.45 0.51 0.31 0.35 0.44 0.28 0.38 0.30 0.43 

CRAS 3 0.78 0.69 0.42 0.44 0.43 0.78 0.54 0.43 0.40 0.61 0.52 

CRAS 4 0.87 0.73 0.54 0.53 0.66 0.96 0.97 0.42 0.79 0.81 0.70 

CRAS 5 1.01 1.03 0.76 0.46 0.70 1.01 0.99 0.43 0.81 1.00 0.82 

CRAS 6 1.17 1.16 0.73 0.76 0.79 2.31 1.24 0.56 0.85 1.24 1.14 

CRAS 7 1.32 1.20 0.99 0.80 0.81 1.95 1.34 0.63 0.81 2.69 1.32 

CRAS 8 1.36 1.33 1.53 0.72 0.82 2.58 1.33 0.83 0.86 3.35 1.48 

CRAS 9 1.32 1.37 1.75 0.70 0.84 2.46 1.38 0.93 0.95 5.66 1.89 

CRAS 10 1.93 2.21 1.76 0.78 1.51 3.74 1.34 1.47 1.09 5.91 1.89 

* The best RAS may not be equal to 1, as it is the average over three matrix distance measures, which 

are not always normalized with regard to the same base region (see Table 2). 

Best overall approach. CRAS outperforms RAS. 

 

 

 

 

TABLE 5. Performance of the CRAS approach in relation to the best RAS approach* 

Region ada ara ast bal clm csl cva gal mad nav pva 

CRAS 2 51% 61% 60% 49% 71% 65% 57% 72% 63% 70% 60% 

CRAS 3 24% 31% 63% 56% 59% 22% 47% 57% 61% 40% 52% 

CRAS 4 14% 27% 52% 47% 38% 5% 6% 58% 23% 20% 36% 

CRAS 5 1% -3% 23% 54% 35% -1% 4% 57% 21% 2% 25% 

* (1 – ANM
CRAS 

/ ANM
RAS

)*100%. 
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FIGURE 1. Spanish regions with a regional survey IO table (italics, year in legend). 
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FIGURE 2. Best five RAS projections of the eleven Spanish regional survey IO tables. 
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FIGURE 3. Worst five RAS projections of the eleven Spanish regional survey IO tables. 
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FIGURE 4. Projection error of RAS versus CRAS with more and more, less alike regions. 
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Footnotes: 

                                                
1 Faculty of Economics and Business, University of Groningen, Postbus 800, 9700 AV Groningen, 

The Netherlands. E-mail: j.oosterhaven@rug.nl. 
2
 School of Civil Engineering and Planning, University of Castilla-La Mancha, Avenida de Camilo 

Jose Cela 2, 13071 Ciudad Real, Spain. E-mail: fernando.escobedo@uclm.es. 
3
 Meanwhile it has been proved that the old iterative solution to the RAS updating problem (Stone, 

1961) is equivalent to solving the non-linear minimization of information gain (MIG) (Bacharach, 

1970, Snickars and Weibull, 1977, Bachem and Korte, 1979). See Junius and Oosterhaven (2003) for a 

Generalized RAS (GRAS) algorithm, which also covers cases with negative cells and negative 

constraints. 
4 As a spatial projection technique, CRAS may also be tested on e.g. the harmonized set of European 

IOTs (Eurostat, 2002). 
5
 There are two more Spanish regions with IO data, Cataluña and Canarias, but they only have a use 

table. The application of CRAS to Cataluña and Canarias may therefore be more accurate than that for 

the other four regions. 
6
 The idea of minimizing the distance between a known matrix and the target is logical as no further 

information is assumed to be available (Miller, 1998). 
7 This section is copied from Mínguez, Oosterhaven and Escobedo (2009). We have deleted the 

superscript )(SR  to simplify the notation. 
8
 In practice, this should be done at the most disaggregate level possible. 

9 This is precisely the reason why using a national IOT to construct a regional IOT can not be done 

with any measure of accuracy, as the national IOT does not contain any information on interregional 

trade.  
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10

 We use the symmetric IO tables of 11 regions in current prices with 30 sectors, all of them from the 

period 1998-2005. Note that all RAS solutions are obtained within this absolute error tolerance: 
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11 These separate results are available upon request with the second author.  
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