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Abstract

One way to proxy the outcome of the R&D process is to count the number of patents

a firm has generated. However, there are several problems with the use of the num-

ber of patents as an indicator of R&D-output (Griliches, 1990). However, the correla-

tion between changes in R&D spending and generated patents is quite high (Pakes and

Griliches, 1984). Different uses of patents as indicators of technological progress range

from ‘simple’ patent counts (Johnson et al., 1995) to the use of ‘specific’ input-output

techniques to measure the interaction between sectors in the innovative process. The

purpose of this paper is to examine whether the techniques that are applied to input-

output tables can also be used for the typical analysis of the specific data on patents and

innovations. The data used in this study denote make and use of patents or innovations

by sector. By applying the techniques developed, it is possible to pinpoint the sectors

that are the most important for innovative activities and the sectors that generate the

highest number of patents due to interaction with other sectors. Since these specific data

are scarce only Canada is investigated empirically.
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1 Introduction

Economic growth matters. The economic backwardness on some continents leaves millions

of people in depriving circumstances, whilst the very fast growth on other continents is

simply staggering. It is difficult to grasp why some countries that are in a backward situation

hardly grow at all while other countries which, on a first glance, are in the same situation

grow very fast. By analyzing countries at a macro level, important information may be lost.

In this paper, a closer look is taken at the sectoral data on innovative activity and patents.

If one assumes that the economic structure can be accurately described by a Cobb-Douglas

functional form, simple derivations show that the extent of economic growth can be split

into three categories, labour, capital and technological progress. The amount of productive

labour increases through an increase in population, the amount of capital increases through

investment and technological progress occurs through investment in R&D. The amount of

productive labour and capital can be ‘easily’ measured but the increase in technology is hard

to measure. Firms conduct R&D, they invest money to increase their productive capacity and

to develop new products or new ways of producing. The outcome of this process however

is hard to measure. One way to proxy the outcome of the R&D process is to count the num-

ber of patents the firm has generated. Numerous studies have been conducted to quantify

the relationship between the inputs of the R&D process and the outcome of the process as

indicated by the number of patents. However, even at a first glance, there are several prob-

lems with the use of patents as an indicator of output. ‘Not all inventions are patentable,

not all patents are patented and the inventions that are patented differs greatly in quality’,

Griliches (1990). Pakes and Griliches (1984) show that there is quite a strong relationship

between R&D and the number of patents granted, at a cross-sectional level. About 90% of

the variance in the number of patents can be explained by changes in R&D spending. If one

uses time-series data only 30% of this variance can be explained by changes in spending,

but the relationship between changes in R&D spending and generated patents is still quite

remarkable.

Different uses of patents as indicators of technological progress range from ‘simple’

patent counts (Johnson et al. (1995)) to the use of ‘specific’ input-output techniques to mea-
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sure the interaction between sectors in the innovative process. Evenson and Englander

(1995), for example, employ a model for economic growth and convergence, using data

on patents at the industry level. The number of patents generated is used as a proxy for the

outcome of the R&D process. The empirical fit is reasonably well. This method contrasts with

the ‘standard’ case in research on economic growth (see e.g. Barro and Sala-i-Martin (1995),

chs. 6 and 7), in which the inputs in the R&D process are used to quantify the technological

progress. It might seem strange to use the inputs in a process as a proxy for the output but,

as Griliches (1994) points out, there are numerous problems in using patents or innovations

as proxies for technological progress. Data on patents and innovations are not always avail-

able and there are some doubts about the relation between patents and inventions. During

the period from 1965 to 1985 the number of domestic patent applications declined in the US

while the R&D expenditures by companies rose. Griliches points to several possible solu-

tions as diminishing returns to investment or too little capacity at the Patent Office. This

study on the other hand supposes that the data on patents and innovations can be handled

as if they represent a transactions table. The empirical results may indicate which sectors are

of most importance for the innovation process. The analysis can indicate the extent to which

interaction takes place between sectors. Verspagen (1995) uses patent statistics to measure

the so-called knowledge spillovers of technological spillovers. He develops a model to estimate

the relationship between (direct and indirect) R&D and productivity growth. Patent data are

used as a proxy of R&D.

The purpose of this paper is to examine whether the techniques that are applied to input-

output tables can also be used for the typical analysis of the specific data on patents and

innovations. The data used in this study are on patents or innovations generated in a sector

and used in other sectors. If input-output techniques can be applied to the data on patents

and innovations, it is possible to pinpoint the sectors that are the most important for innova-

tive activities and which sectors generate the most patents due to the interaction with other

sectors. Since data are scarce only one OECD country is empirically investigated, Canada.

The rest of the paper is organized as follows. In the second section some attention is

given to the data that are available. The third section discusses the basics of input-output
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analysis. The fourth section indicates the way input-output analysis can be applied to the

patent and innovation data. In the fifth section the data are analyzed, using the concepts that

were derived in the third and in the fourth section. In the last section some conclusions are

drawn.

2 The Data: an Outline

The data which are used in this study are taken from Johnson et. al. (1995). In Johnson

et. al. (1995) several data sets are analyzed. Of these data sets two are used in this study.

One covers the number of innovations in Canada in the period from 1945 to 1978 and one

covers the number of Canadian patents issued in Canada in the period from 1978 to 1981.

This last data set covers only about six percent of all patents generated in that period, more

specifically only the patents that were patented by Canadians. The rest of the patents were

patented by foreigners, fifty-eight percent of the patents were issued to American inventors.

The matrices are non-square. The supplier industries make up the rows and are labelled

industry of manufacturing (IOM). The user industries make up the columns and are labelled

sector of use (SOU). The elements (ij) in the matrices are the number of patents generated in

sector i and used in sector j or the number of innovative activities generated in industry i

and used in industry j. If we denote the matrices by Q, the element q ij thus represents the

number of patents or innovations that are generated in sector i and used in sector j. Some

remarks on the classification of the patents and innovations in the IOM’s and the SOU’s are

made in Putnam and Evenson (1994) and in Johnson et. al. (1995).

Verspagen (1995) points out two potential problems if one uses these data sets to mea-

sure technological spillovers. These problems arise because the data sets only indicate the

flow from producing to using sectors. One potential problem is that because the matrices

strictly focus on producer-user relations, spillover relations that are based on technological

spillovers (the so called knowledge-spillovers) are overlooked. A second possible problem

is that there will be rent-spillovers as well as knowledge-spillovers because the economic

transaction related to the patent grant is measured. Nevertheless we use these matrices be-

cause they are readily available.
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Table 1: Input-output table.

final

sector 1 . . . j . . . n demand total

1 z11 · · · z1j · · · z1n f1 x1

...
...

. . .
...

. . .
...

...
...

i zi1 · · · zij · · ·
... fi xi

...
...

. . .
...

. . .
...

...
...

n zn1 · · · znj · · · znn fn xn

value

added v1 · · · vj · · · vn

total x1 · · · xj · · · xn

3 Intersectoral Dependencies

This section discusses measures for intersectoral dependencies (or linkages) within the stan-

dard input-output framework. These are applied in the next section to input-output tables

of patents and innovations. The input-output table in money terms is given in Table 1.

Z denotes the n× n matrix of intermediate transactions, its typical element zij gives the

delivery from sector i to sector j. f denotes the n × 1 vector of final demands, covering

private and government consumption and investments, and (net) exports. v ′ is the 1 ×

n vector of values added, covering payments for labour and capital, indirect taxes minus

subsidies, and profits. By construction, the ith column sum equals the ith row sum and

gives the total output xi. Hence we have the following identities for the row and column

sums, respectively.

x = Ze + f , (1)

x′ = e′Z + v′, (2)

where e denotes the n× 1 summation vector, consisting of ones.
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The analysis of sectoral interdependencies starts from the intermediate deliveries, adopt-

ing two alternative viewpoints (see Augustinovics, 1970). For the buyer’s dependence, the

relevant question is “Where do the inputs come from?” This question is directed backwards

and considers the columns of the matrix Z. The seller’s dependence is reflected by the

question “Where do the outputs go to?”. The direction is forward looking and analyzes the

intermediate deliveries rowwise. Normalization of the intermediate deliveries according to

the two viewpoints yields the coefficient matrices. Normalization of the columns gives the

input matrix,1

A = Zx̂−1. (3)

The typical element aij = zij/xj denotes the fraction of the total inputs (i.e. xj) that is bought

from sector i. The input coefficient describes the (additional) input from sector i required per

(additional) unit of product j. Normalization of the rows gives the output matrix,

B = x̂−1Z. (4)

Its typical element bij = zij/xi denotes the fraction of the output (i.e. xi) that is sold to sector

j. The output coefficient describes the (additional) output to sector j per (additional) unit of

product i.

The simplest backward linkages are the direct linkages. They are measured as the column

sums of the input matrix A. The direct backward linkage of sector j is given by

DBLj =
∑
i

aij . (5)

It is interpreted as the additional amount of inputs (taken over all sectors) required directly

for an additional unit of output in sector j and reflects the direct dependence of sector j on

intermediate inputs.

The total (or direct plus indirect) backward linkages are obtained as the column sums of

the Leontief inverse L = (I − A)−1, which are also known as the output multipliers. That

is for sector j as∑
i

lij . (6)

1A hat, for example in x̂, is used to denote the diagonal matrix with elements xi on its main diagonal and all
other entries equal to zero.
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Using equation (3), equation (1) can be written as x = Ax+f . When f is specified exoge-

nously the solution to this (demand-driven) input-output model yields x = (I − A)−1f =

Lf . The interpretation of (6) then is the additional output, in all sectors together, required

directly or indirectly for an additional unit of final demand in sector j. Using the power

series expansion of the Leontief inverse, i.e. L = I +A+A2 +A3 + . . ., the production re-

quired for satisfying ∆f can be separated into three parts. First the initial effect ∆f , second

the direct effect A(∆f), and third all indirect effects (A2 +A3 + . . .)(∆f).

For the application to invention input-output tables, the total backward linkages seem to

be less appropriate as will be indicated in the next section. An alternative is to consider how

much additional production is required if sector j decides to increase its own production

by one unit. Directly, this sector then needs additional inputs from any sector (including

itself). These additional inputs have to be produced, which induces the indirect effects in the

second and higher rounds. Denote the initial increase of production in sector j by ej .2 The

additional inputs required directly are given byAej and all indirect requirements amount to

(A2 +A3 + . . .)(ej). The total output increase induced by an initial output increase in sector

j of one unit thus yields (A+A2 +A3 + . . .)(ej) = (L− I)ej . That is, sector i(6= j) increases

its output by lij and sector j (further) increases its output by ljj−1. The total output increase

in all sectors induced by an initial increase of one unit in sector j is given as

TBLj =
∑
i

lij − 1. (7)

Since we shall not use the linkages in (6), we shall term those in (7) as total backward link-

ages. Given the exogenous change of the output in sector j as a starting-point, (7) can also

be interpreted as an output-to-output multiplier.3

The forward linkages take the output coefficients matrix B as their starting point. The

direct forward linkages are given by the row sums,

DFLi =
∑
j

bij . (8)

2ej is the jth unit vector, i.e. (0, . . . , 0, 1, 0, . . . , 0)′.
3This multiplier is related to the output-to-output multiplier defined in Miller and Blair (1985, p. 328). The

difference is that the total output increase in sector j (i.e. the induced increase ljj − 1 plus the initial increase) is
set at one in their approach. The output increase for sector i then amounts to lij/ljj .
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DFLi denotes the intermediate deliveries per unit of output. The total forward linkages

are obtained again by taking also the indirect effects into account, using G = (I − B)−1 =

(I +B +B2 +B3 + . . .). Equations (2) and (4) yield

x′ = x′B + v′. (9)

When the vector v′ is given exogenously, the outputs may be determined endogenously as

x′ = v′(I − B)−1 = v′G. (10)

The model in (9) is known as the supply-driven input-output model, originating from Ghosh

(1958). The inverse matrix G is termed the Ghosh inverse. The total forward linkages are,

similar to (6), given by the row sums of G,

∑
j

gij . (11)

The typical interpretation of (11) stems from (10), and is as follows.
∑
j gij gives the

(additional) output, taken over all sectors, due to an (additional) unit of value added in sector

i. The supply-driven input-output has been hotly debated. A major point of critique was

put forward in Oosterhaven (1988, 1989). Suppose for simplicity that v′ consists of labour

inputs only. Exogenously specifying ∆vj = 1 and ∆vi = 0 (∀i 6= j) results in an increase of

the output in each sector. Thus the output in any sector i (6= j) is increased using the same

amount of labour. Gruver (1989) even shows that in the production process no input is

essential, in the sense that each input can be substituted for any other input. The plausibility

of the interpretation of the supply-driven input-output model in terms of quantities thus

becomes very questionable.4 It should be emphasized that the output coefficients themselves

are not implausible. In the next section, it will be indicated that the Oosterhaven critique

does not apply to the supply-driven analysis of patents and innovations.

4Recently, Dietzenbacher (1997) has shown that the implausibility of the supply-driven model vanishes once
it is interpreted as a price model. In that case, the supply driven model is equivalent to the standard Leontief
price model. The interpretation is that gij describes the change in the output value of sector j, induces by a one
dollar increase in the value added of sector i. Since quantities are assumed fixed, all changes in the output values
are caused by price changes.
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The measure for the total forward linkages differs from (11) and is, similar to (7), given

as

TFLi =
∑
j

gij − 1. (12)

This expression gives the output increase in all sectors, induced by an initial output increase

in sector i.

4 Invention Input-Output Analysis

This section discusses the possibilities for applying standard input-output analysis to tables

with patent and innovations data. The use of invention input-output coefficients was intro-

duced in Evenson and Johnson (1997). Their analysis, however, focussed on the descriptive

nature of these coefficients. Here we go one step further and incorporate also other elements

of input-output analysis. Our main purpose is to find appropriate measures of the contribu-

tion of a particular sector to the innovation process.

The central idea is that knowledge spills over from one sector to another. An invention in

sector i that is used in sector j, may trigger off or be beneficial to research in sector j. The re-

search activities are thus advanced and yield new inventions in sector j. In their turn, sector

j’s inventions affect the inventions in, say, sector k. Hence, sector i indirectly influences the

inventive activities in sector k. To measure the extent and the effects of these direct and total

spillovers, we use the invention output coefficients bij , defined as the percentage of sector

i’s inventions that are used in sector j. The direction of reasoning is forward, answering the

question “Where do inventions go to?”

In the same fashion, invention input coefficients are defined. In this case, the underlying

idea is that inventive research in sector j often defines part of the research agenda in sector

i. Inventions in sector j build forth on and thus require preceding inventions in sector i. The

invention input coefficients aij measure how many inventions of sector i have been used for

generating the inventions in sector j. The coefficients are scaled to measure the average use

per invention in sector j.
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Before we discuss the linkage measures, two difficulties that occur for invention input-

output analysis should be mentioned. First, the input (or the output) coefficients are typi-

cally assumed to be constant. This assumption is unlikely to hold over time and is rather

restrictive when a simulation experiment or an impact study is to be carried out, or when

forecasts are to be made. It should be borne in mind, however, that it is our aim to measure

intersectoral inventive dependencies for a given data set. For that purpose, we ask ourselves

what the effect is of some small change if the coefficients had been the same.

Second, the patent and innovation data do not match the format of the input-output table

(Table 1) exactly. Both the ‘final demand’ vector f and the ‘value added’ vector v are lacking.

The invention input-output table that we use in our empirical analysis records ‘intermediate

deliveries’ amongst 25 (basically manufacturing) industries. Next to this, it also gives the use

of inventions by another 8 (essentially service) industries, which do not generate inventions

themselves. In standard input-output analysis, the main reason for sectoral production is to

satisfy final demand. According to the format of the invention input-output table we could,

of course, define the deliveries to the service industries as the ‘final demand’ block. That

would imply, however, that the ‘demand’ for inventions by the service industries (whatever

this means) would drive the entire model. The total backward linkages as in (6) would then

be interpreted as the total number of inventions required for the use of one invention in any

of the service industries. We are very reluctant to adopt such an interpretation of the ‘final

demand’ block.5 Therefore we use the total linkage measure as in (7) which is not based on

final demand vectors. The lack of a value added vector can be overcome with more ease.

The vector v′ denotes the creative surplus, defined as the difference between the number of

inventions generated and used, for each sector.

The direct backward linkagesDBLj in (5) denote the ratio between the use of inventions

and the generation of inventions in sector j. They measure how much inventions are used

on average per invention in industry j. If DBLj is smaller (larger) than one, this industry

generates more (less) inventions than it uses and the creative surplus is positive (negative).

The direct backward linkages also reflect the incoming technological spillovers (also spill-

5In addition, it turns out that the ‘final demand’ equals zero for some industries.
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ins) of industry j.

The total backward linkages TBLj in (7) indicate the average number of (additional)

inventions that would be triggered off by one (additional) invention in industry j. In terms

of incoming spillovers, aij reflects the direct spill-ins from i. Indirect spill-ins from industry i

are given by
∑
k aikakj , since the direct spill-in akj embodies spill-ins from i (to the amount of

aik). Higher order terms yield
∑
h

∑
k aihahkakj and so forth. All direct and indirect spill-ins

of industry j are captured by the elements of column j of the matrix (L− I).

The row sums of the output matrix B give the direct forward linkages. They measure

the fraction of industry i’s inventions that is used by industries that generate inventions.

DFLi reflects the direct outgoing technological spillovers (or spill-outs) from industry i to

industries which take part in the invention process.

Taking also the indirect outgoing spillovers into consideration yields that the spill-out

of industry i to industry j is given by element (i, j) of G− I. The direct spill-out from i

to j is given by bij , the indirect spill-outs from i to j via one other industry k are given by∑
k bikbkj , and so forth. The total forward linkages are thus obtained by the row sums of

G− I . An alternative interpretation of G and G− I stems from the supply-driven input-

output model. Then, gij measures the average (additional) number of inventions generated

in industry j, due to one (additional) unit of creative surplus in industry i. The implausi-

bility of the supply-driven model in the standard input-output context, viz. that this cannot

be achieved without any additional creative surplus in industry j, does not hold in the in-

vention input-output context. An additional creative surplus in industry i initially leads to

an additional invention in this industry. The total forward linkages TFLi then indicate how

many further inventions are induced by this.

5 An Application to the Yale Technology Concordance

The linkage measures have been calculated for the Yale Technology Concordance, covering

data for innovations (1945-78) and patents (1978-81), both in Canada. Table 2 reports the

direct linkages, both backward and forward, as obtained from equations (5) and (8). The

direct backward linkages denote the ratio between the innovations (or patents) used and
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Table 2: Direct linkages between sectors.

innovations patents

sector DBL rank DFL rank DBL rank DFL rank

1 9.29 1.00

2 0.95 0.95

3 2.61 (1) 0.93 (2) 70.50 (1) 0.50 (16)

4 0.50 (10) 0.32 (19) 0.79 (16) 0.66 (11)

5 0.14 (18) 0.29 (20) 0.72 (17) 0.81 (6)

6 0.40 (13) 0.77 (5) 0.53 (19) 0.87 (3)

7 0.14 (18) 0.13 (23) 2.55 (4) 0.12 (23)

8 0.44 (12) 0.76 (6) 2.33 (5) 0.83 (4)

9 0.60 (9) 0.56 (12) 1.44 (9) 0.94 (1)

10 1.17 (6) 0.82 (4) 1.12 (12) 0.88 (2)

11 0.61 (8) 0.39 (17) 0.87 (15) 0.45 (18)

12 0.24 (15) 0.25 (22) 1.10 (13) 0.74 (8)

13 0.96 (7) 0.72 (9) 1.73 (7) 0.53 (14)

14 1.73 (3) 0.98 (1) 2.61 (3) 0.78 (7)

15 0.35 (14) 0.54 (13) 0.27 (22) 0.33 (21)

16 0.07 (22) 0.28 (21) 0.38 (20) 0.61 (13)

17 0.14 (18) 0.45 (15) 1.02 (14) 0.83 (4)

18 0.12 (21) 0.75 (7) 0.24 (23) 0.65 (12)

19 2.50 (2) 0.69 (10) 4.63 (2) 0.67 (10)

20 0.46 (11) 0.74 (8) 2.28 (6) 0.70 (9)

21 0.23 (17) 0.52 (14) 0.55 (18) 0.46 (17)

22 0.24 (15) 0.42 (16) 1.25 (10) 0.44 (19)

23 1.50 (5) 0.86 (3) 1.67 (8) 0.53 (14)

24 1.69 (4) 0.66 (11) 1.24 (11) 0.41 (20)

25 0.01 (23) 0.33 (18) 0.28 (21) 0.21 (22)
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generated. A ratio smaller than one indicates that more inventions are generated than used

in this industry. For the 25 industries in the innovation data set, three sectors have a ratio

larger than 2, nine industries have a ratio between 0.5 and 2, and the remaining 13 industries

all have a ratio smaller than 0.5. About 50% of the industries generate more than twice

as much innovations than they use. For the 23 industries in the patent case we find that

six industries have a ratio larger than 2, 13 have a ratio between 0.5 and 2, and only four

industries have a ratio smaller than 0.5. The patent data clearly indicate a much smaller

creative surplus than the innovation data. Observe also that for almost all industries the

direct backward linkages are larger for the patent than for the innovation data.

The direct forward linkages cannot be larger than one, by definition. For the innovation

data we find that for nine out of 25 industries more than 50% of its innovations are used by

non-inventing industries, implying relatively small (direct) spillovers within the innovating

process. For the patent data, this holds for seven out of 23 industries.

For the purpose of interpreting the direct linkage measures in terms of incoming or out-

going technology spillovers, it should be noted that the results in Table 2 are somewhat

misleading. For example, DBLj measures how much additional inventions would be used

for an additional invention in industry j. The numbers of innovations range from 28 (ships)

to 724 (machines), and from 2 (mining) to 1359 (machines) in the case of patents. Therefore it

is unlikely that the probability of an additional innovation manufactured in “ships” is equal

to that in “machines”. In contrast to assuming an additional invention in an industry, we

assume that innovation activities can be stimulated and result in a 1% increase of the cur-

rent number of inventions.6 The weighted direct backward linkages (DBLWj) are equal to

the number of inventions (divided by 100) used by industry j, and the direct forward link-

ages (DFLWi) equal the number of industry i’s inventions (divided by 100) as used by all

inventing industries. That is,

DBLWj = 0.01
∑
i

aijxj and DFLWi = 0.01
∑
j

bijxi.

6A more appropriate weight would be obtained by taking industrial R&D expenditures into account. If xi
denotes the number of inventions and ci the R&D expenditures in industry i, the ratio xi/ci reflects the number
of inventions per dollar. Taking a billion dollar increase in the R&D budget of an industry as the starting-point
would imply that the ratios xi/ci were to be used as weights. Lack of data, however, prevents us from doing so.
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The total (backward and forward) linkages are weighted in the same way,

TBLWj = 0.01
∑
i

lijxj and TFLWi = 0.01
∑
j

gijxi.

The weighted linkages are reported in Table 3 for the innovation data and in Table 4 for the

patent data. The most striking result in these tables is the large difference between the direct

and the total linkages. Note that this outcome does not depend the weighting scheme that

is used, any other set of weights would yield exactly the same ratios TBLW j/DBLWj and

TFLWj/DFLWj . In Table 3, for example, the average ratio between the total and the direct

backward linkages is four. The total forward linkages turn out to even five times as large as

the direct forward linkages, on average. For an assessment of the full effects of an increase

in the number if inventions it is therefore important to take the indirect effects into account

as well. These are on average three (four) times the size of the direct effects for the backward

(forward) linkages.

The differences between the rankings of the industries are fairly small. In Table 3, the

ranking of DBLWj and TBLWj differ by six or more places in only one case (industry 8,

petroleum). Also for the forward linkages such a large difference between the direct and to-

tal rankings is observed only once (industry 9, aircraft). For “petroleum” the large difference

can be explained from the fact that it largely depends on innovations from “mining” (indus-

try 3). In its turn, “mining” has very strong backward linkages which thus upgrades the

backward linkages of “petroleum”. The difference between the rankings of the direct and

total forward linkages for “aircraft” is induced by the fact that this industry’s innovations

are used almost exclusively by itself or by non-innovating industries.

The differences between the rankings for the direct and the total linkages are somewhat

larger for the patent data. We find a difference in ranking of six or more places for four

industries (6, 9, 12, 17) in case of backward linkages and in one industry (9, aircraft) in the

case of forward linkages. It turns out that the diagonal element of the input matrix (and thus

also of the output matrix) is extraordinarily large (0.94).

Key sectors have been defined as sectors that have forward as well as backward linkages

that are above average. The underlying idea was that a stimulus in these industries with

strong linkages could initiate a further development due to the interactions (both forward
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Table 3: Weighted linkages between sectors, innovations data.

innovations

sector DBLw. rank TBLw. rank DFLw. rank TFLw. rank

1 2.88 (4) 25.66 (2) 0.31 (23) 1.92 (21)

2 2.10 (5) 10.14 (6) 2.11 (3) 14.24 (3)

3 3.42 (2) 23.12 (3) 1.21 (9) 9.09 (5)

4 0.86 (12) 1.40 (17) 0.56 (19) 2.07 (20)

5 0.41 (17) 0.53 (22) 0.84 (14) 3.62 (16)

6 2.10 (5) 6.34 (8) 4.05 (2) 20.90 (2)

7 0.34 (19) 1.62 (15) 0.31 (22) 0.60 (24)

8 0.22 (23) 2.18 (13) 0.38 (21) 2.86 (19)

9 1.92 (7) 4.67 (9) 1.79 (5) 4.31 (13)

10 0.91 (11) 3.81 (10) 0.64 (18) 3.00 (18)

11 0.17 (24) 0.31 (24) 0.11 (25) 0.53 (25)

12 0.24 (22) 0.73 (20) 0.26 (24) 1.19 (23)

13 1.05 (10) 3.72 (11) 0.79 (16) 3.78 (15)

14 1.49 (9) 10.11 (7) 0.84 (14) 5.61 (10)

15 0.57 (15) 1.70 (14) 0.87 (13) 5.15 (11)

16 0.28 (20) 1.17 (18) 1.11 (11) 7.00 (7)

17 0.36 (18) 0.44 (23) 1.15 (10) 4.27 (14)

18 0.85 (13) 2.30 (12) 5.43 (1) 29.32 (1)

19 4.78 (1) 30.07 (1) 1.32 (7) 5.68 (9)

20 0.82 (14) 1.62 (15) 1.32 (7) 6.03 (8)

21 0.47 (16) 1.02 (19) 1.07 (12) 5.08 (12)

22 0.26 (81) 0.59 (21) 0.46 (20) 1.81 (22)

23 2.93 (3) 15.59 (4) 1.67 (6) 8.92 (6)

24 1.71 (8) 12.38 (5) 0.67 (17) 3.21 (17)

25 0.07 (25) 0.12 (25) 1.94 (4) 11.14 (4)
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Table 4: Weighted linkages between sectors, patents data.

patents

sector DBLw. rank TBLw. rank DFLw. rank TFLw. rank

1

2

3 1.41 (7) 4.49 (7) 0.01 (23) 0.02 (23)

4 2.42 (3) 7.44 (3) 2.04 (4) 6.98 (4)

5 3.16 (2) 9.96 (2) 3.53 (2) 14.85 (2)

6 1.49 (6) 2.70 (12) 2.43 (3) 5.70 (6)

7 0.84 (13) 1.84 (16) 0.04 (22) 0.46 (18)

8 0.14 (23) 0.47 (23) 0.05 (21) 0.16 (22)

9 0.26 (22) 6.38 (5) 0.17 (17) 3.06 (8)

10 1.98 (4) 18.85 (1) 1.55 (7) 12.15 (3)

11 0.27 (21) 0.77 (22) 0.14 (19) 0.26 (21)

12 0.43 (20) 2.73 (11) 0.29 (12) 1.13 (11)

13 0.52 (17) 0.99 (20) 0.16 (18) 0.34 (20)

14 0.47 (18) 1.08 (19) 0.14 (20) 0.41 (19)

15 1.60 (5) 2.80 (10) 1.93 (5) 5.12 (7)

16 1.13 (9) 2.65 (13) 1.79 (6) 6.39 (5)

17 0.61 (15) 2.93 (8) 0.50 (9) 2.26 (9)

18 3.25 (1) 5.38 (6) 8.78 (1) 23.43 (1)

19 1.25 (8) 6.66 (4) 0.18 (16) 0.54 (16)

20 0.91 (11) 2.83 (9) 0.28 (14) 0.89 (12)

21 0.79 (14) 1.28 (18) 0.66 (8) 2.04 (10)

22 0.60 (16) 1.31 (17) 0.21 (15) 0.50 (17)

23 0.95 (10) 2.00 (14) 0.30 (11) 0.77 (13)

24 0.88 (12) 1.88 (15) 0.29 (13) 0.58 (15)

25 0.44 (19) 0.89 (21) 0.33 (10) 0.68 (14)
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Table 5: Key sectors.

Innovations

FW > 6.45 FW ≤ 6.45

BW > 6.45 key sectors:

2, 3, 23 1, 14, 19, 24

BW ≤ 6.45 6, 16, 18, 25 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 20, 21, 22

Patents

FW > 3.85 FW ≤ 3.85

BW > 3.85 key sectors:

4, 5, 10, 18 3, 9, 19

BW ≤ 3.85 6, 15, 16 7, 8, 11, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25

and backward) with other industries. An advantage of using the weighted linkage measures

TBLWj and TFLWi that the linkages have the same average. For the innovation data the

average total linkage is 6.45, for the patent data it is much smaller, 3.85. The industries can

thus be classified into four categories, depending on whether the total linkages are below or

above average. The results are given in Table 5.

For the innovation data, we find three key sectors (forestry, mining, and paper & print-

ing), eight industries with either the forward or the backward linkages above average, and

14 industries in which both linkages are below average. For the patent data the numbers

are four (electrical machines, electrical equipment, motor vehicles, and other machines), six,

and 13, respectively. If research in some industry is stimulated so as to yield, for example,

a 1% increase in the number of its inventions, this induces the largest (or at least above av-

erage) effects when the stimulus takes place in a key sector. This holds irrespective of the

viewpoint one adopts with respect to the propagation of the effects, i.e. using the backward

or the forward type of reasoning.

A point that requires further attention is the weak correlation between the results for the

two data sets (see also Johnson and Evenson, 1997). Note, for example, that three of the four
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key sectors for the patent data are reported as industries weak linkages (both forward and

backward) for the innovation data. Although the simple column sums of A and the simple

row sums ofB show some resemblance, the patterns within the matrices do not. The spread

in the matrix of patents is much larger than in the matrix of innovations. Since we measure

the interactions between industries, this leads to quite different results.

6 Concluding Remarks

We can conclude that input-output techniques can be applied to the available data on inno-

vations and patents. The empirical investigation can show what sectors are of most impor-

tance in the sense that they generate the highest number of innovations or patents in reaction

to an increase in demand. The most important sectors in the economy appear to be, as far as

innovations are concerned: forestry, mining, and paper & printing, and, as far as patents are

concerned: electrical machines, electrical equipment, motor vehicles, and other machines.

These sectors are not the ones that generate the highest numbers of innovations or patents.

By applying input-output techniques to the patents and innovations data, we are able

to obtain more information about sectors, more specifically we can show the magnitude of

the interaction that takes place between sectors due to exogenous changes. This information

is much more useful than the use of the number of patents or innovations a sector uses or

generates as an indicator of the importance of a sector.
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