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Abstract

Firms acting according to the same production technology usually

exhibit di�ering degrees of eÆciency. For various purposes it is in-

teresting to obtain insight into the cross-sectional dispersion of these

eÆciency scores and its evolution over time. It is thereby important
to employ a method that rests on a minimal number of assumptions.

In this paper we show how this task can be performed by Data En-

velopment Analysis (DEA).

The three basic models will be presented, and two of them will be

applied to the Dutch rubber-processing industry to obtain technical

and scale eÆciency scores of the individual �rms.

Keywords: Production frontiers; technical eÆciency; scale eÆciency;
Data Envelopment Analysis.

� Department of Statistical Methods, Statistics Netherlands, P. O. Box 4000, 2270 JM
Voorburg, The Netherlands, e-mail: bblk@cbs.nl. The views expressed in this paper are
those of the author and do not necessarily re
ect the policies of Statistics Netherlands.

y Econometric Institute, Erasmus University Rotterdam, P. O. Box 1738, 3000 DR
Rotterdam, The Netherlands, e-mail: pmdeboer@few.eur.nl, and GAME, Universit�e Libre
de Bruxelles, Belgium.

z Schere 114, 3085 DW Rotterdam, The Netherlands.

1



1 Introduction

Firms acting according to the same production technology usually exhibit
di�ering degrees of eÆciency. For various purposes it is interesting to obtain
insight into the cross-sectional dispersion of these eÆciency scores and its
evolution over time. It is thereby important to employ a method that rests
on a minimal number of assumptions. In this paper we show how this task
can be performed by Data Envelopment Analysis (DEA). But let us �rst
explain what is to be understood by production technology and eÆciency.

The production technology that is relevant for a certain group of �rms1

consists of all the feasible combinations of input quantities and output quan-
tities. Formally,

T = f(x; y) : x can produce yg; (1)

where x � 0 denotes a vector of input quantities and y � 0 denotes a vector
of output quantities. This set is assumed to be closed. A production frontier,
or isoquant, consists of all x that can produce a certain y in a (technically)
eÆcient way, that is without any waste. In the case of a single output the set
of frontiers can be represented by a production function y = f(x). Figure 1
depicts such a function for a single-input single-output technology.

[Insert Figure 1]

Figure 1. Firm A and the production frontier

Consider a �rm A that produces output quantities yA and uses input quanti-
ties xA. Firm A is not eÆcient from the input-oriented point of view, because
it could produce the same output quantities yA by contracting its input quan-
tities by the factor OX1=OXA. It is not eÆcient from the output-oriented
point of view, because it could expand its output quantities by the factor
OY1=OYA while still using the same input quantities xA. In this paper we
will use the input-oriented view.2

Next, consider a �rm F that produces one output with the aid of two
inputs. Let y = f(x1; x2) denote the production function and let w1 and

1More generally, "Decision Making Units".
2For a treatment of the output-oriented view, as well as for more details on the input-

oriented point of view, we refer to Coelli et al. (1998) and Balk (1998).
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w2 denote the (exogenously given) input prices. In Figure 2 II' denotes the
frontier yF = f(x1; x2), and CF = w1x1 + w2x2 the isocost line of �rm F .

[Insert Figure 2]

Figure 2. Firm F and its production frontier

Following Farrell (1957), technical eÆciency is measured along a ray3 from
the origin to the observed point F . The input quantities can be contracted
by a factor TE = OB=OF to produce the same output quantity without any
waste, i.e. TE measures the technical eÆciency of �rm F . The line CB is the
isocost line of B. But operating at point B is not eÆcient from an economic
point of view. A �rm operating at point D is not only technically eÆcient,
but produces the output quantity also at minimal cost. This �rm is the cost
eÆcient �rm. Its isocost line is CD. The so-called allocative eÆciency of �rm
F is measured by AE = OG=OB, and the cost eÆciency by CE = OG=OF .
Obviously, in this framework CE = AE � TE. In terms of associated costs,
we have:

TE =
OCB

OCF

AE =
OCD

OCB

CE =
OCD

OCF

:

It is clear that in order to measure the technical, allocative, and cost
eÆciency of �rms we need an estimate of the production frontiers (or, in the
single-output case, of the production function). The various approaches can
be classi�ed into two groups:

1. The parametric approach, where it is assumed that the production
frontier has a speci�c functional form which depends on a �nite number
of parameters, such as the Cobb-Douglas, CES, HCDES (de Boer and
Harkema, 1993) or translog functional form (Lesuis and de Boer, 1994,
and Lesuis et al., 1996);

2. The non-parametric approach, where such an assumption is not made.
In this paper we shall consider one such approach, called Data Envel-
opment Analysis (DEA).

3The advantage of radial eÆciency is that it is invariant with respect to the units of
measurement.
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Before introducing DEA, however, we will brie
y discuss the parametric
approach. It is assumed that there is a continuum of �rms, all facing the same
production frontiers, say, for ease of exposition, having the Cobb- Douglas
functional form:

ln(y) = �1 + �2 ln(x1) + �3 ln(x2) + ": (2)

We dispose of data on n �rms which constitute a sample from the population
facing (2). In order to estimate the parameters �1, �2 and �3, one might use
the method of least squares. In this case, the disturbance term " is commonly
assumed to be normally distributed. For more complicated functional forms,
one often has to resort to the method of maximum likelihood, necessitating
the assumption of normality.

When using this method, one implicitly assumes that all n �rms operate
in a technically eÆcient way, since " only accounts for "statistical" noise.

This method has been criticized by Aigner, Lovell and Schmidt (1977),
and, independently, by Meeusen and Van den Broeck (1977). They suggested
to decompose " as

" = v � u (3)

where v is a symmetrical disturbance term, accounting for "statistical" noise,
such as measurement error and other possible random in
uences, and u is
an one-sided disturbance term that accounts for ineÆciency ("economical"
noise); u and v are assumed to be independently distributed. Usually, v
is assumed to be distributed as N(0; �2

v), and u is commonly assumed to
be half-normally distributed.4 This method is known as Stochastic Frontier
Analysis (SFA).

In Figure 3 we give an idea of the di�erence between the two methods in
the simple case of one output and one input. The acronym "LS" stands for
"least squares" and "SF" for an SFA model.

[Insert Figure 3]

Figure 3. Least squares versus SF

4Other distributions that have been considered are the exponential, the truncated nor-
mal, and the two-parameter Gamma distribution. For more details we refer to Kumbhakar
and Lovell (2000).
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The econometric estimation of this type of models, however, is computation-
ally burdensome and can lead to estimates that are not satisfactory. When
using the half-normal distribution, for instance, one frequently encounters
the problem that the estimated value of the variance, �2

u, is negative. See for
instance Brouwer (1999).

A school of researchers moreover feel that the imposition of a speci�c
functional form to the production frontiers as well as a speci�c probability
distribution, such as the half-normal, is unduly restrictive. They propagate
DEA as a non-parametric alternative.

By way of example, in this paper we apply DEA to show how to assess
the performance of �rms in a certain industry. To that end we present in
section 2 the basic models; in section 3 we discuss the data used as well as
some results, whereas section 4 concludes.

2 Data Envelopment Analysis: the Basic

Models

Let be given a population of �rms that produceM -dimensional output quan-
tity vectors y � 0 withK-dimensional input quantity vectors x � 0, governed
by the closed production possibility set T de�ned in (1). We dispose of data
on a sample D of n �rms.

De�ne the K�n matrix X, whose columns are the input quantity vectors
xi, and the M �n matrix Y , whose columns are the output quantity vectors
yi (i 2 D).

The principle of DEA is to compare the performance of �rm i (i 2 D)
to that of a linear combination of other �rms. That linear combination will
be called the "reference unit" in the sequel. This implies that the input
quantities of �rm i should not be smaller than those of the reference unit,
and that the output quantities should not be larger than those of the reference
unit. Mathematically:

xi
>
= X� and yi

<
= Y �; (4)

where �0 = (�1: � � � ; �n). With respect to T we assume:

Assumption 1: "Monotonicity" or "disposability".

If (x; y) 2 T , and x0 >= x _ y0 <= y, then (x0; y0) 2 T .
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Assumption 2: "Data envelopment".

(xi; yi) 2 T (i 2 D):

Imposition of assumptions 1 and 2 leads to the Full Disposable Hull (FDH)
model due to Deprins, Simar and Tulkens (1984). In Figure 4 we depict the
FDH model for the case of one output and one input.

[Insert Figure 4]

Figure 4. The production possibility set according to FDH

In the FDH model there is only one reference unit: either one other �rm, or,
in case the �rm lies on the production frontier, the �rm itself. In the latter
case the �rm is, according to the FDH model, eÆcient. Mathematically this
means that �i 2 f0; 1g and �0� = 1, where �0 = (1; � � � ; 1) is the summation
vector.

Consequently, the estimator of the production possibility set by the FDH
model is given by:

TFDH = f(x; y) j x
>
= X�; y

<
= Y �; �0� = 1;�i 2 f0; 1g; i 2 Dg: (5)

Assumption 3: "Convexity".

If (xj; yj) 2 T where j 2 F � D, and if
P
F �j = 1 (�j � 0) then

(
P
F �jxj;

P
F �jyj) 2 T .

Assumptions 1, 2, and 3 lead to the model proposed by Banker, Charnes and
Cooper (1984). It is called the BCC model and is characterized by variable
returns to scale (VRS). In Figure 5 we depict the model for the case of one
output and one input.

[Insert Figure 5]

Figure 5. The production possibility set according to BCC

The estimator of the production possibility set by means of the BCC model
is given by:

TBCC = f(x; y) j x
>
= X�; y

<
= Y �;�i � 0; �0� = 1; i 2 Dg: (6)
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Assumption 4: "Ray unboundedness".

If (x; y) 2 T , then (kx; ky) 2 T for k � 0.

The assumptions 1, 2 and 4 lead to the model due to Charnes, Cooper and
Rhodes (1978). It is called the CCR model and is characterized by constant
returns to scale (CRS). In Figure 6 we depict the model for the case of one
output and one input.

[Insert �gure 6]

Figure 6. The production possibility set according to CCR

The estimator of the production possibility set according to the CCR model
is

TCCR = f(x; y) j x
>
= X�; y

<
= Y �;�i � 0; i 2 Dg: (7)

In order to estimate the frontiers (5)-(7) we need an estimate of the vector
of parameters �.

As mentioned in the introduction we use the Farrell (1957) measure of
technical eÆciency which, for the input-oriented view, reads:

�(x; y) = minf� : (�x; y) 2 Tg: (8)

In order to estimate this eÆciency measure we have, for each �rm i, to solve
the following linear programming (LP) problem:

min
�

� (9)

subject to

yi
<
= Y � (10)

�xi
>
= X� (11)

�i0 � 0 (i0 2 D): (12)
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Solving these problems means that we are imposing the CCR model. When
we additionally impose5

�0� = 1; (13)

we have the BCC model, while imposing additionally

�i0 2 f0; 1g (i0 2 D) (14)

we have the FDH model.
Let �̂i;j denote the solution of the LP problem for �rm i 2 D according to

model j (j = CCR, BCC, or FDH), then �̂i;j is the estimate of the technical
eÆciency of �rm i according to model j:

TEi;j = �̂i;j (i 2 D): (15)

Because BCC is a restricted version of CCR , and FDH in turn of BCC, it
follows that

�̂i;CCR � �̂i;BCC � �̂i;FDH : (16)

When CCR (constant returns to scale) and BCC (variable returns to scale)
yield the same technical eÆciency score, then the �rm is said to be scale

eÆcient. Therefore, a natural estimate of scale eÆciency is

SEi =
�̂i;CCR

�̂i;BCC
� 1: (17)

In order to measure cost eÆciency, the function to be minimized becomes
instead of (9)

min
�;x�

w0x� (18)

whereas the constraint (11) is replaced by

x� >
= X�: (19)

Let x̂�

i;j denote the solution of the LP problem for �rm i 2 D according
to model j (j = CCR, BBC, or FDH), and let xi denote the actual input

5Imposition of �0� � 1 leads to a model exhibiting non-increasing returns to scale.
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quantity vector, then the cost eÆciency of �rm i according to model j is
estimated by

CEi;j =
w0x̂�

i;j

w0xi
(i 2 D): (20)

The allocative eÆciency of �rm i according to model j is �nally estimated
by

AEi;j = CEi;j=TEi;j (i 2 D): (21)

3 Application

We work with a balanced panel of 18 Dutch �rms, classi�ed as belonging to
the rubber-processing industry, over the period 1978-1992. Averaged over the
whole time period they account for over 80% of the industry's value added.

The various outputs are aggregated to a single one, namely the de
ated
money value of gross output. The inputs are aggregated to three types:
materials (including energy), labour, and capital.

The money value of gross output, of materials and labour come from
the yearly production surveys of Statistics Netherlands. In order to arrive
at volumes (at 1980 prices), the value of gross output is de
ated by �rm-
speci�c weighted averages of sectoral price index numbers for inland sales
and sales abroad; the labour cost (wage bill including social security contri-
butions) by sectoral index numbers of contractual wages; and materials cost
by appropriate price index numbers.

User costs of capital and the price of capital are calculated by a method
that makes use of �rm and time speci�c depreciation costs, capital goods
scrapping rates, corporate tax rates, interest rates, and price index numbers
of investment goods. For details, we refer to Greve (1998).

We notice that the number of �rms is rather small. Since the applica-
tion of the FDH model requires quite some observations (otherwise almost
any �rm will be classi�ed as being eÆcient, see Post 1999), we refrain from
applying FDH.

For each year and each �rm we have calculated the technical eÆciency
score according to the CCR-model (CRS), and according to the BCC-model
(VRS). From these scores we derived the scale eÆciencies as well. In Table
1 we summarize our �ndings.
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Table 1: Technical and scale eÆciency in the Dutch rubber-processing indus-
try, 1978-1992

Year Technical eÆciency Scale eÆciency
CCR-model BCC-model

(CRS) (VRS)
Min Mean Ne� Min Mean Ne� Min Mean Ne�

1978 0.711 0.885 5 0.828 0.960 12 0.737 0.923 5
1979 0.730 0.913 4 0.857 0.978 12 0.730 0.935 4
1980 0.670 0.883 5 0.778 0.941 9 0.692 0.941 7
1981 0.808 0.929 6 0.846 0.967 11 0.872 0.961 6
1982 0.752 0.921 6 0.848 0.970 11 0.795 0.948 7
1983 0.776 0.946 5 0.941 0.989 13 0.776 0.957 5
1984 0.806 0.952 10 0.897 0.990 15 0.806 0.962 11
1985 0.869 0.962 7 0.926 0.995 15 0.869 0.967 7
1986 0.710 0.947 6 0.711 0.977 14 0.838 0.970 6
1987 0.872 0.959 6 0.919 0.986 12 0.872 0.973 6
1988 0.796 0.926 7 0.879 0.959 10 0.819 0.967 7
1989 0.763 0.933 6 0.837 0.957 9 0.835 0.975 6
1990 0.718 0.913 6 0.738 0.952 8 0.859 0.960 6
1991 0.846 0.952 5 0.855 0.967 9 0.907 0.985 7
1992 0.871 0.949 7 0.876 0.970 10 0.930 0.979 7
Min = minimum eÆciency score; Mean = arithmetic average of the
eÆciency scores; Ne� = number of eÆcient �rms (eÆciency score 1)

EÆciencies according to the CCR-model

We observe that the minimum eÆciency score varies considerably; from 0.670
in 1980 (which means that that particular �rm could have realized a gain of
33% in terms of a reduction in inputs) to 0.872 in 1987. The mean scores
vary from 0.883 in 1980 to 0.962 in 1985; the average over the whole period
being 0.933. It follows that the �rms, on average, show a rather high level
of eÆciency, which is to be expected since the �rms that are considered, are
survivors. The number of eÆcient �rms is the lowest in 1979 (4) and the
highest in 1984 (10), with an average of 6.1 over the whole period.

EÆciencies according to the BCC-model
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As noted above there is an additional restriction imposed to the minimization
problem so that the scores according to the BCC model are higher than those
resulting from the CCR-model, see (16). The minimum eÆciency score shows
almost the same variation as before: from 0.711 in 1986 to 0.941 in 1983, but
the mean score varies from 0.941 in 1980 to 0.995 in 1985, and exhibits a low
variation about the average of 0.971 over the whole period. The number of
eÆcient �rms is the lowest in 1990 (8) and the highest in 1984 and 1985 (15).
On the average 11.3 �rms are eÆcient according to the BCC-model.

Scale eÆciencies

We observe that the minimum scale eÆciency and the mean increase over
the time period considered. The number of scale eÆcient �rms is the lowest
in 1979 (4), and peaks in 1984 (11).

4 Conclusion

In this paper we have used a non-parametric technique, Data Envelopment
Analysis, in order to obtain insight into the location and dispersion of tech-
nical and scale eÆciencies of the �rms belonging to a certain industry. The
technique is inexpensive and rest on a minimal set of assumptions. The in-
formation it provides constitutes a welcome addition to the usual measures
of sectoral performance.
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