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Abstract. The problem of choice of technique in single production linear models has been extensively analysed under the assumption that the set of processes available in the economy is exogenously given and globally known. However, since 1969 Atkinson and Stiglitz‘s article economists have considered  technical change as a cumulative, localised and adaptive process. The aim of this paper is to develop an adaptive model of choice of technique within a classical theoretical framework. Our model provides, although in a very stylised way, an explicit description of the relationship between the currently employed processes of production and the new ones. This allows us a rigorous analysis  of the “secular” dynamics of the economy.
1.Introduction

The problem of choice of technique in single production linear models has been extensively analysed (see, for example, Pasinetti (1977), Lippi (1979); for a comprehensive treatment see Kurz and Salvadori (1995, Chapters 3 and 5)). One of the main results is that if the set of techniques is compact, then there exists a long-period technique, i.e. a technique at whose prices no existing process pays positive extra-profits. This result has been provided by means of an adaptive process in case of a finite number of processes, and by non-constructive theorems in case of an infinite number of processes (see, e.g. Bidard (1990) and Kurz and Salvadori (1995)).

The literature on choice of technique assumes that the set of processes available in the economy is exogenously given and globally known, and for this reason it presents several shortcomings. First, it does not make clear how the new processes of production are made available. Secondly, it does not make clear what the relation is between the new processes and the current ones. Thirdly, the long-period configuration is independent from the initial technique and the most efficient technique will always be adopted eventually. Therefore, empirically important facts like path-dependent inefficiencies and lock-in phenomena (see, for example, David (1986), Liebowitz and Margolis (1995)) are completely ruled out of the analysis. The way in which new processes are made available concerns mainly the theory of technological discovery, and it will not been taken up here. The second and third points have been at the centre of a radical revision of the view of technical progress in the last thirty years. In fact, since Atkinson and Stiglitz‘s article on localised technical progress (Atkinson and Stiglitz (1969), see also Antonelli (1999)), economists have conceived technical progress as a cumulative, localised and adaptive process that cannot be identified merely with a shift of the production function. In fact, it is mainly a cumulative and localised phenomenon concerning the blueprint currently implemented and, possibly, few other blueprints “close to” the one employed. The theory of ‘technological paradigm’ (or ‘dominant design’ or ‘technological guidepost’) (see, for example, Abernathy and Utterback (1975), Nelson and Winter (1977), Sahal (1981), Dosi (1982)) can be considered one of the main research outcomes carried out within this new and alternative context. This theory posits that firms move along certain technological “trajectories” which represent their technological opportunities and that these opportunities get depleted over time (the so called ‘Wolf’s Law’). Moving along trajectories means, therefore, a “relatively coherent pattern of change of input coefficients” over time (Dosi (2001, p. 16)). Localised technical change further implies that the concept of ‘best practice technique’ is a local concept, and this, in turns, paves the way for lock-in phenomena and path-dependent inefficiencies.

To the best of our knowledge, no attempt has been made to analyse the problem of choice of technique in linear models of production under the assumptions that technical progress is an adaptive and localised phenomenon. The aim of this paper is to start to fill this gap by developing a very general deterministic model of multivalued adaptive choice of technique in a linear model of production à la Sraffa.
 Our model provides, although in a very abstract and stylised way, an explicit description of the relationship between the currently employed processes of production and the new ones, and this allows us to analyse in a rigorous way the dynamics of an economy with localised technical progress. Since our main aim is to provide a rigorous foundation to the theory of localised technological progress, in this initial study we focus only on two basic problems:  the existence of a local secular technique
 and the convergence towards it of the adaptive process generated by the technical progress itself. More specifically, we will provide a fairly general result concerning the convergence towards a local secular technique of the sequence of technologies generated by the adaptive process. We point out that this result ensures also the existence of the local secular technique, and also that the dynamics generated by the adaptive process may be unsatisfactory on both theoretical and empirical ground. Hence  we provide sufficient conditions ensuring that the sequence also satisfies economically reasonable conditions. 

The choice of developing our analysis within a theoretical framework à la Sraffa is not only a question of analytical convenience but is  also due to several theoretical considerations. The first is that linear models seem to be particularly suitable to deal with localised technical progress.
 The second is that localised technical progress, as conceived by the literature on the technological trajectories, should be analysed “(i)n ways that might be to different degrees independent from changes in relative prices and demand patterns” (Dosi (2000, p. 16)). Thus, the classical approach adopted here  seems to be the natural theoretical framework for this task. Finally, by using a classical framework to analyse localised technical change we can provide a contribution to Pasinetti’s theory of structural change (see Pasinetti (1981)(1993)), although limited to its price equation aspect. 
The next section introduces the model intuitively and highlights its properties and limits. Section 3 provides some preliminary remarks, while the model and the results are contained in Section 4. Section 5 contains final remarks.

2. Some preliminaries

In this section we illustrate the model intuitively. Additionally, by means of numerical examples, we motivate some specific results that will be provided in Section 4 and highlight how our model can deal with phenomena like path-dependency and lock-in. 

2.1. An intuitive illustration of the model 

Consider an economy with one produced input (say corn) and one non produced input (say labour). The price equation for this economy is: (1+r) ap + w = p, where r is the rate of profit, p the price of corn, w the wage rate, a the production coefficient of corn and  the labour coefficient. We assume that corn is the standard of value, hence p = 1. Assuming given r and w, from the price equation we can obtain the unitary isocost at (1+r) and w, set which is defined by the relation:  = (1 -(1+r)a)/w (see also Opocher, 2002). Figure 1 illustrates this set for w = 0.5 and r = 0 (curve q) and for w = 0.5 and r = 1 (curve t). Curve v represents the case when w = 2 and r = 1.  It is natural to assume that the set of all potential techniques, indicated by X, is a subset of the first orthant. Figure 1 also illustrates an example of set X (for a non convex case).

(Figure 1 about here(
The adaptive process of localised technical progress we have in mind is illustrated in Figure 2. Suppose the economy starts from a given set of known processes of production, described in the Figure by points T0 and T0’; these two processes of production are historically given. Given the wage rate at level w, process T0 will be employed since it pays the highest rate of profit. Atkinson and Stiglitz (1969) point out that, because of learning by doing or investment in Research and Development (investment that is not made explicit in the model but which can be considered included in the current process of production), a technical advance will be generated, and that this progress may have little or no effect on the other process T0’, while improving the current process of production T0. This can be justified by the fact that only a subset of processes “around” T0, F(T0) will be discovered; hence only if F(T0) contains T0’, then process T0’ also will be affected by technical progress.

(Figure 2 about here(
In the case illustrated in Figure 2, at time 1 producers can choose any process among those in F(T0), and it is reasonable to assume that from process T0 the corn producers will move to process T1, which is one which maximises the rate of profit. Once process T1  is employed at time 1, the subset of processes F(T1) will be available (notice from the Figure that processes in F(T0) can be disregarded because not profitable), a new more profitable process, T2, will be introduced at time 2, and so on.
 A local secular technique is a process T* such that it is the profit rate maximising process amongst all process available, F(T *)(again, sets F(T 0), F(T 1), …can be ignored) (see Figure 2).  In the next section we show that under quite general assumptions on sets F(() a local secular technique exists and that the adaptive process generated by the discovery of new techniques converges towards it.

2.2. Technological change and reasonable dynamics

It should be clear that the dynamics of technology depends upon two facts: the rule of choice of the “best technique” (in the example above we have adopted the profit rate maximisation rule), and the shape and size of the sets F(T 0), F(T 1), …, . As far as the former is concerned, without any cogent alternative behavioural rule, we shall maintain that firms maximizes the rate of profit. As for the latter , we are not able to introduce any natural assumption on the shape and size of sets F(() without a theory of technical discovery. This generality, however, does not allow us to obtain any specific result concerning the dynamic properties of the adaptive process of technological innovation and, as the next example shows, we may have a sequence of technologies with a dynamic which contradicts both empirical facts (see e.g. Nelson and Winter (1982, p. 216)) and the established theory of technological trajectories (see the literature referred to in Section 1). For this reason, in the next section, after obtaining the general converging result we focus our attention on sufficient conditions ensuring that the adaptive process generates a sequence of techniques satisfactory from both the empirical and the theoretical point of view. 

Example 1. Consider a corn economy like the preceding one. Suppose that the set of all possible potential processes is set X = ((a, ) ( a ≥ 0.25,  ≥ 1,  ≥ 2-2a( and suppose that w = 0.5. The relationship between the coefficients a and  yielding the same rate of profit is described by the following relation:  = 2 – 2(1+r)a. Suppose the initial process employed, T 0, is (a0, 0) = (0.5, 1.5) and that the following rule gives the set of processes known at time t: F(Tt) = ((a, ) ( R2+ ( a ≤ 0.5,  ≤ 1.5,  ≥  2 – (2-(t+2)-1a(. Figure 3 illustrates this case where the shaded area is set F(T0). It is easy to show that at period t any of the processes in set F(Tt) which satisfies the condition  = 2 – (2-(t+2)-1)a ( for time 1, segment P0 in Figure 3) are equally profitable to producers, hence the following choice rule may be used: at time t+1 the process (at+1, t+1) will be adopted, where:

(at+1, t+1)( F(Tt) with t+1 = 1.5 and  t+1 = 2 – (2-(t+2)-1)a t+1 if t is odd and

(at+1, t+1)( F(Tt) with  a t+1 = 0.5  and t+1 = 2 – (2-(t+2)-1)at+1 if t is even.

(Figure 3 about here(
It is easy to show that the sequence (at, t) has two convergent subsequences ((a2t, 2t)( and ((a2t+1, 2t+1)( with ((a2t, 2t)( converging to T* = (a*, (*) = (0.25, 1.5) and ((a2t+1, 2t+1)( converging to T** = (a**, (**) = (0.5, 1) (in Figure 3 subsequence ((a2t, 2t)( lies on the segment T*-T0, subsequence ((a2t+1, 2t+1)( lies on the segment T**-T0). Hence the dynamics of technical progress can hardly be said to have any “coherent pattern of change in input coefficients” because the trajectory ((a2t, 2t)( is purely capital saving, while the trajectory ((a2t+1, 2t+1)( is purely labour saving. As it is clear from this example, the problem lies in the fact that we do not put any restriction on the size and shape of the set of the newly discovered techniques (i.e. of the set F()). In the next sections, we describe the adaptive model introduced here in a formal way and provide sufficient conditions on set F() ensuring that the unsatisfactory dynamics of the kind pointed out in the preceding example does not emerge.
2.3. Path-dependency and lock-in

As already indicated in Section 1, one of the most important features of localised technical change is the possibility to explain important empirical phenomena like path-dependency and lock-in. In this section we show, by means of a  very simple example, how the model here developed can explain such phenomena.

A process is said path-dependent if the dynamics is determined by the initial conditions: “ A path-dependent sequence of economic changes is one of which important influences upon the eventual outcome can be exerted by temporally remote events, including happenings dominated by chance elements rather than systematic forces” (David (1985, p. 332)). Localised knowledge is one of the most important causes of path-dependence, as the mode of development of a technology is strongly influenced by the initial conditions. Linked with path-dependency is the possibility of inefficiency, i.e. the possibility of being locked-in to a technology that does not provide maximal payoffs, this because “[t]aking decisions and … eliminating options in the context of ignorance entail the risk  of missing the best route of development” Foray (1997, p. 737). The following example shows how path-dependency and inefficiency can arise in our model.

Example 2. Consider a corn economy like the one introduced in Example 1. Suppose that the set of all possible potential processes is set X = ((a, ) ( a ≥ 0.025,  ≥ 0.1( and suppose that w = 1. The relationship between the coefficients a and  yielding the same rate of profit is described by the following relation:  = 1 – (1+r)a. Suppose the two initial processes are available: T0= (a0, 0) = (0.125, 0.3), T0’ = (a0’, 0’) = (0.375, 0.3) and that the following rules give the set of processes known at each time and for each process T0 and T0’, where at and at’ indicate the corn coefficients associated with the method effectively employed at time t starting from process T0 and T0’, respectively:

F(Tt+1) = ((a, ) ( R2+ (  = 0.3, 0.025+ 0.1(2+t)-1 ≤ a ≤ at(,

F(Tt+1’) = ((a, ) ( R2+ (  = 0.3, 0.025+ 0.35(2+t)-1 ≤ a ≤ at’(.

It is easy to check that at+1 = 0.025 + 0.1(2+t)-1 and at+1’ = 0.025 + 0.35(2+t)-1, hence
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, that is, any firm which starts its activity by using process T0 will get profits higher than any other firm starting by using process T0’.

3. Technical preliminaries

Consider a single production n-good economy à la Sraffa (1960). We suppose that the set of all possible techniques potentially available in sector i = 1, 2, …, n is given by set Xi and set X = (iXi. A generic process of sector i is denoted by bi ( (ai, i) where ai is the 1xn-dimensional input vector and i the labour coefficient. A generic technique is described by a matrix A = (a1, …, an)T of input coefficients and by a vector  = (1, …, n)T of labour coefficients, where (ai, i) ( Xi (the superscript T indicates the transposition operator). A generic technique (A, ) is denoted also by T 

Assumption 1. For every i, Xi is a compact subset of Rn+1+; moreover, for any bi, ( Xi, one has that ai ≥ 0 and ai ≠ 0. Finally, for every  T ((A, ) (X, matrix A is indecomposable.

The compactness of sets Xi and the indecomposability of matrix A are simplifying assumptions. Indecomposability means that all goods are basics (see Sraffa (1960)). Let us assume that technique T ((A, ) (X is used. The following price equation is associated:(1+r(T))Ap(T) + w(T) = p(T), where the symbols have the usual meaning. We assume that for every T( X, w(T) = w and that dTp(T) = 1; i.e. the wage rate is exogenously given at level w and the bundle indicated by vector d is used as standard of value. It is well known that, under particular assumptions on technology (see later), a positive maximum wage rate W(T) can be associated to technique T= (A, ).

Lemma 1. The rate of profit r(T) is a continuous function of technique T in X.

Proof. It follows from Assumption 1, which ensures that some elements of matrix A are positive. 
Behavioural assumption. Producers introduce a new process only if it pays positive extra-profits at the current production prices. 

The following lemma implies that this behaviour ensures that whenever a new process is introduced the economy experiences an increase of the uniform profit rate. In fact, consider two techniques T and T’:

Lemma 2. If (1+r(T))A’p(T) + w ’ ≤ p(T), with some inequality holding as strict inequality, then r(T’) > r(T). 

Proof. The result is well known as the Okishio Theorem, so the proof will be omitted (see, for example, Bowles (1981)). 
4. A model of choice of techniques with localised technical change

Consider the economy introduced in the preceding section and suppose that a technique Tt = (At, t) is adopted at time t. Let us assume that the set of processes available at time t+1 in industry i are the elements of the set Fi(Tt) ( Xi. This set is also called the set of technological opportunities of industry i at time t+1. Let us adopt the following definitions: A global secular configuration (GSC) is a technique T* = (A*,  *) ( X such that for every i: (1+r*(T*))ai p(T*) + wi ( pi(T*) for every (ai, i) (Xi. A local secular configuration (LSC) is a technique T* = (A*, *)(X such that for every i : (1+r(T*))ai p(T*) + wi ( pi(T*) for every (ai, i) (Fi(T *). Finally, suppose that only the subset of processes Yi( Xi is “temporarily” available to industry i, then a temporary configuration with respect to the subset of techniques Y (TC-Y) is a technique T* = (A*, *)(Y ( iYi such that for every i: (1+r(T*))ai p(T*) + wi ( pi(T*) for every (ai, i) (Yi. Intuitively, a TC-Y is a technique which yields non-negative extra costs in all industries at the current production prices and given the set of processes currently available in the economy. Notice that over time a LSC is a self-enforcing configuration, while a TC-Y is not necessarily so if technical progress is taken into account. The following is a standard result and means that a TC-Y is a profit rate maximising technique among the available ones.

Remark 1. A TC-iFi(T) is a solution to the following problem: max r(T) sub T ( iFi(T).

The dynamics of the economy is modelled according to the following adaptive process which should further highlight the difference between LSCs and TC-Ys:
Adaptive Process (AP): At time 0 we assume that technique T0 = (A0, 0) is historically activated, determining a price vector p(T0) and a rate of profit r(T0). With reference to industry i, the subset of process Fi(T0)( Xi will be “discovered” at time 0 and these processes will be available at time 1. Set Fi(T0) can be called the technological opportunity set of firms in industry i at time 1. From the interpretative point of view set Fi(T0) is obtained because of either an activity of R&D or learning by doing. It is worth emphasising that in our model, this set does not depend only upon the process employed in industry i but it may also depend on the processes used in other sectors. So, the way in which we formalise technological progress is able to deal with the existence of spillovers among sectors. Since we want to characterise knowledge as local, it is reasonable to assume that bi0 (Fi(T0) (for further assumptions on Fi(T0) see Assumption 3 below and remarks hereafter). At time 1 we assume that a TC-iFi(T0) technique, say T1, is adopted.
 Hence, at this time a price vector p(T1) and a profit rate r(T1) will rule. At time 1, however, a new subset of processes Fi(T1) is discovered in industry i and will be available at time 2, and so on. 
The following assumptions summarise the properties we adopt on the initial technique (A0, 0) and on the set Fi(Tt) for every t and every i:

Assumption 2: The dominant eigenvalue of matrix A0 is less then 1. Moreover, 0 ≤ w ≤ W(T0).

Assumption 3. For every i, correspondence Fi: Xi (Xi defined as above is compact-valued and continuous. Moreover, bit (Fi(Tt).

The first part of Assumption 2 ensures that the technique introduced at time 0 is productive; the second part implies that p(T0) is positive and r(T0) is non-negative. The first part of Assumption 3 is technical, in particular continuity means that set Fi(Tt) changes “smoothly” as the technique used changes. The fact that bit (Fi(Tt) ensures that Fi(Tt)  is always non-empty,  moreover, it characterises the new processes as being localised “around” the currently employed process (more specific topological assumptions could be introduced to characterise this “local” property; for example, it may be assumed that set Fi(Tt) contains a neighbourhood of process bit. These assumptions, suggestive as they may be, are not necessary for the subsequent analysis).

Lemma 3. Under Assumptions 1 and 2, the AP is well defined. Moreover, it generates a sequence of positive price vectors {p(Tt)} and non-negative profit rates { r(Tt)} such that for every t, r(Tt+1) ≥ r(Tt), where the equality holds only if the technique Tt is a LSC. 

Proof. Given the initial technique T0 = (A0, 0), at time 1 the technique employed is a TC-iFi(T0). Set iFi(T0) is closed by Assumption 2 and therefore compact by Assumption 1. By Lemma 1 the problem in Remark 1 is well-defined, so the technique that will be chosen at time 2 is also well-defined, and so on. The second part of the lemma follows from the Behavioural Assumption and from Lemma 2. 
Proposition 1. Under Assumptions 1 and 3 and for whatever initial technique (A0, 0) satisfying Assumption 2, the AP stops either in a finite or in a infinite number of steps. In the first case, the (finite) sequence of techniques converges to a LSC; in the latter case, the (infinite) sequence of techniques either converges to a LSC or the limit of every convergent sub-sequence is a LSC.

Proof. If AP stops in a finite number of steps, then the finite sequence must, trivially, converge to only one LSC. If the AP generates an infinite sequence of techniques, by Assumption 3, for every i and for every t correspondence Bi defined by the set Bi(Tt) - where the latter is the set of processes in industry i which belongs to some TC-iFi(Tt) - is upper semi-continuous; moreover, it is closed valued. Hence, it is closed (Border (1985), Proposition 11.9.(a)). Notice that Bi(Tt) ( Xi. Now, the AP together with the correspondence iBi(T(t)) can be modelled as an algorithm à la Zangwill (1969), and it is possible to show that all conditions for applying Convergence Theorem A in Zangwill (1969, p. 91) are satisfied. Thus, by this theorem, the assertion holds true. 
Proposition 1 is a quite general result, since it shows not only that, under the stated assumptions, the economy converges to the LSCs, but it also ensures, thanks to a standard compactness argument, the existence of a LSC. A shortcoming of Proposition 1, already signalled, is that if the AP generates an infinite sequence of techniques, this sequence may converge to two or more radically different LSCs. A straightforward way to exclude this possibility is to assume that there is a unique LSC (and hence a unique GSC). In this case, in fact, an easy argument shows that the whole convergent sequence generated by the AP converges to the GSC. The remaining part of this section is devoted to provide two alternative sufficient conditions ensuring that the whole (infinite) sequence converges to a single LSC.

Assumption 4: There exists a family of disjoint compact neighbourhood of the LSCs, say N, such that each element of the family contains at most one LSC and, if T is a LSC, then (iFi(T) ( N(T), where N(T) ( N.

Assumption 4 intuitively means that each LSC does not belong to the technological opportunity set of any other LSC. In the language of technological paradigm, this assumption might be interpreted in the sense that each trajectory leading to a LSC is ‘powerful’ (see Dosi (1982, p. 154)). The following proposition states that Assumptions 1 ,2, 3 and 4 are sufficient for generating “nice” dynamics.

Proposition 2: Under Assumptions 1, 2, 3 and 4 the whole (infinite) sequence generated by the AP converges to a LSC.

Proof. First we show that if (Tt( is a sequence generated by the AP, then d(Tt, Tt+1)( 0 as t((, where d is any metric defined on the set of techniques. Suppose not. Then, there exists a sub-sequence (Tt ( such that d(Tt, Tt+1) ( > 0 as i ( ∞. We may assume that (Tt( converges to T* and that (Tt+1( converges to T**. Clearly, d(T*, T**) ≥ . By Proposition 1, T* and T** are LSCs; moreover, Tt+1 F(Tt), then by Assumption 3, T**  F(T*) But this contradicts Assumption 4. Suppose now that the assertion of Proposition 2 is not true. Therefore, if (Tt ( is the sequence generated by the AP, then there must exist (at least) two subsequences, say (Tt’( and (Tt’’( converging to T’ and T”, respectively. By Proposition 1, every accumulation point of sequence (Tt ( is an LSC; therefore, by Assumption 4, it is possible to take two positive numbers ’ and ’’ such that points T’ and T” are the only accumulation points in B’(T’) and B”(T’’), where B’(T’) ( N(T’) and B”(T’’) ( N(T”). Choose a positive number Z in such a way that d(T(z), T(z+1)) < ’/3 for z ≥ Z (That such a number exists follows from the result at the beginning of this proof). However, T’ is an accumulation point of sequence ( Tt (, therefore for infinitely many indices s one has that d(Ts, T’) < ’/3. On the other hand, T” is another accumulation point of { Tt }, hence, by the fact that (T”)  B’(T’), there must exists infinitely many indices q such that d(Tq, T’) ≥ 2’/3. From the way in which Z has been defined, it follows that there exist infinitely many indices m ≥ Z such that (’/3) ≤ d(Tm, T’) ≤ (2’/3). This implies that there exists an accumulation point in the set {T  X | (’/3) ≤ d(T, T’) ≤ (2’/3)} ( N(T’), which contradicts Assumption 4.  
Assumption 4 imposes conditions on the “size” of the sets of technological opportunities of each industry when the economy is at LSCs. However, especially in the case in which technical progress is induced by learning by doing, it is natural to assume that learning by doing is bounded, i.e. that the incremental discovery of new processes of production tends to zero as time passes (see Young (1993, especially footnote 3; but refer also to Wolf’s Law quoted in the Introduction for R&D). The boundedness of learning by doing in our approach can be formalised by assuming that the “size” of set Fi(Tt) tends to zero as time flows. 

Assumption 5. For every i, diam(Fi(Tt)) ( 0 as t ( ( where diam(Fi(Tt) = inf(n ( B(n) ( Fi(Tt)( and B(n) denotes a ball of radius n in 
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Assumption 5 ensures the following result, whose proof is trivial.

Proposition 3. Under Assumptions 1, 2, 3 and 5 the (infinite) sequence of techniques generated by the AP converges to a LSC.
5. Final remarks 

In this paper we have developed an adaptive linear model with localised technical progress. We have provided sufficient conditions ensuring that the dynamics converges towards local secular techniques and that the sequence is compatible with empirical results and with theoretical assertions concerning the patterns of change of technical coefficients.  It may be worthwhile to emphasise that the theory of technological trajectories we have adopted is only a simplified view of it. In particular we have excluded trajectories concerning the evolution of the structure of the produced goods. 

We have assumed throughout the paper that the set of technological opportunities is multivalued. This assumption may be justified also on the grounds of the fact that local technical progress can have spillovers on nearby processes. 

Finally, if we assume that only one new process is discovered at each time, then our analysis is simplified; however, while Proposition 1 still holds true, the problem of ‘irregular’ dynamics disappears. In fact, under the assumption of continuity, the adaptive process generates a sequence of techniques with only one accumulation point. In this case, moreover, our analysis can be considered the discrete time version of Pasinetti’s theory of structural change, although limited only to the price and distribution side of the economy.
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Figure 1. The figure illustrates the set of potential techniques X and three a-


                   loci  each ensuring given wage and profit rates.
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Figure 2. The figure illustrates the iterative process activated by the localised technical progress (with wage rate constant). At time 0  it is assumed that processes T0 and T0’ are known. Process T0 is activated, and the profit rate r0 is earned. At that time the set of methods F(T0) will be discovered and will be available at time 1. At time 1 the technique yielding the highest profit rate, T1, will be adopted, profit rate r1 will be earned, and so on, until the secular local configuration T* is attained, at which no further improvement in technology is possible.
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Figure 3. This figure shows that it is possible to generate dynamics which are capital saving at odd periods and labour saving at even periods, contradicting theoretical and empirical findings.














�EMBED Word.Document.8 \s���








( Antonio D’Agata, D.A.P.P.S.I., Facoltà di Scienze Politiche, Via Vittorio Emanuele 8, 95131 Catania (Italy), tel +39 095 746 21 11, fax +39 095 746 41 93, email � HYPERLINK "mailto:adagata@unict.it" ��adagata@unict.it�





* I would like to thank Arrigo Opocher, Neri Salvadori and two anonymous referees for useful comments on an early draft of this paper. Particular thanks to Grazia D. Santangelo for long and constructive discussions and to Nicoletta Di Ciolla for shaping my language. Financial support of C.N.R., M.U.R.S.T. and Catania University (Fondi di Ateneo) is gratefully acknowledged. The usual caveats apply.


� Multivalued adaptive models have been widely employed in economics see for example, Cherene (1978) and the bibliography here quoted. For a more recent application see D’Agata (2000).


� Following a terminology close to Marshall’s one, we distinguish between long-period and secular configurations. According to this author, the long-period configuration is a situation in which all factors of production can be freely changed and it yields the concept of normal prices. The secular movements of normal prices being the movements “caused by the gradual growth of knowledge, of population and of capital, and the changing conditions of demand and supply from one generation to another”  (Marshall (1982, p. 315)). Since we consider the problem of technical change, our analysis consider secular movements of normal prices. The associated rest situation will be called a secular configuration. The local nature of the secular configuration we consider is due to the fact that knowledge of techniques is localised.


� “A paradigm-based production theory suggests as the general case, in the short term, fixed-coefficient (Leontieff-type) techniques, with respect to both individual firms and industries….”(Cimoli and Dosi (1995, p. 249)) (but see also David (1975)).


� An approach similar to ours has been adopted by Nelson and Winter (1982, Chapter 9) within an evolutionary context. See also Cimoli and Dosi (1995) and Cimoli  and Della Giusta (1995).


� This assumption means two facts worth emphasising: first, that producers are profit rate maximizers; second, that at each period input prices are equal to output prices. It is our opinion that while the former assumption can easily be replaced by alternative assumptions of non fully rational behaviour without any substantial change of the subsequent analysis,  the latter assumption is quite restrictive within our context (see, e.g. Kurz and Salvadori (1995, Chapter 12)) and its relaxation should require the adoption of an intertemporal approach which would make the analysis less transparent. 
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