[image: image35.png]Assign Aggregates

Chapter 4

0y @@

Modifications

v

Chapters

Make Square

Chapter 4

v

Algorithm

Chapter 3

0y @@

Analysis

v

Chapter 5

Finish

Chapter 6

S???-CPC

 DEFINIR Project "CPC-???" CPC-???

 DEFINIR Datum "24-04-01" 24-04-01

 DEFINIR Sector "Support and development department" Support and development department

 DEFINIR Divisie "Division of Macro-economic Statistics and Dissemination, MSP" Division of Macro-economic Statistics and Dissemination, MSP

 DEFINIR Auteur "Michel Vollebregt" Michel Vollebregt

 DEFINIR Titel "Homogeneous Input-Output tables" Homogeneous Input-Output tablestatistics Netherlands

Division of Macro-economic Statistics and Dissemination, MSP
Support and development department
National Accounts department

Deriving homogeneous Input/Output Tables from Supply and Use tables

Michel Vollebregt and Jan van Dalen

Paper to be presented at the Fourteenth International Conference on Input-Output Techniques, Montreal, October 1-15, 2002.

Summary: For deriving homogeneous I/O tables from a System of National Accounts there are several techniques. Clopper Almon describes a technique that provides an acceptable I/O table without having too much manual work. We examined if and how Almon’s method could be used within Statistics Netherlands. We compared Almon’s method to the more standard way of directly applying the product technology assumption to the System of National Accounts. We looked at convenience in use of both methods, how the methods work in theory and how they work in practice. Both methods were tried on National Accounts data of Statistics Netherlands for 1987. Both methods turned out to be applicable. Special attention was given to the amount of manual work that had to be done. We tried to automate as many steps in the process as possible, though it turned out that, regardless whatever method we use, manual work with actual knowledge of the tables is essential.

Keywords: input/output table, supply table, use table, product technology, Almon, negatives, input/output analysis

This is an abridged and slightly adapted version of ‘Different ways to derive homogeneous input/output tables’ by Michel Vollebregt, which is a report of the research done on the subject at request of Eurostat.

Final draft (update to be expected on september 15th 2002)

Table of Contents

21.
Introduction

2.
Background
3
2.1
The System of National Accounts and input/output analysis
3
2.2
Different algorithms for deriving an I/O table from supply and use tables
3
2.3
Overview of the whole process of deriving the table
4
3.
Algorithms
6
3.1
Notation
6
3.2
Product technology
7
3.2.1
Description of the method
7
3.2.2
Conditions for the algorithm
9
3.3
Almon’s algorithm
9
3.3.1
Description of the method
9
3.3.2
Conditions for the algorithm
13
3.4
Almon versus the standard product technology algorithm
14
4.
Initial modifications
15
4.1
Obtaining square tables
15
4.2
Making the supply table invertible
16
4.3
Making at least half of the production primary (Almon only)
16
5.
Modifications after analysing the results
18
6.
Discussion of the results
21
6.1
Unexpected problems with the RAS procedure
21
6.2
Performance
21
6.2.1
Convergence
21
6.2.2
Execution time
21
6.2.3
Number of iterations
22
6.3
Analysis of the results
22
6.4
Step by step progress
22
7. Conclusions
25
The RAS method
27

Introduction

Every year supply and use tables are compiled by Statistics Netherlands (CBS), as part of the National Accounts. For input/output analysis, however, one needs homogeneous input/output tables. Furthermore, Eurostat demands a homogeneous input/output table every five years as well. These tables have not been compiled on a regular basis yet.

There are several techniques for deriving homogeneous I/O tables from supply and use tables. First the so-called product technology model can be applied. In practice, this takes a lot of work. When by simply applying the model, manual corrections have to be made for inconsistencies between the tables and the model. A very sophisticated way to derive a homogeneous I/O table was developed by Paul Konijn. In [4] Konijn describes his method and derives a homogeneous I/O table for the Netherlands for 1987. The drawbacks of his technique, however, are that it requires a lot of specialist information, and is very time consuming. Clopper Almon gives an alternative calculation method for applying the product technology model. He uses much less specialist information than Konijn and still produces an acceptable table. His technique is described in [1].

We compared Almon’s method with the standard method to apply the product technology model. We looked at convenience in actual use, and how the methods work both in theory and in practice. We tried both methods on the 1987 tables, so we could use the work already done by Konijn. This gave us a good impression of the general problems one could run into.

We looked particularly at the amount of manual work that had to be done, although we tried to automate as many steps in the process as possible. However deriving a sensible I/O table always requires a lot of information about the content of the tables, and the idea that we could add information like this automatically is an illusion. Both Konijn and Almon added information to the tables by hand, and we learned that this would remain necessary in any case.

In the next chapter we’ll give a short description of the theoretical background of I/O tables and what the process of compiling them roughly looks like. We’ll see that different steps have to be taken in order to derive the I/O table. Those steps will be covered in chapter 3 to 5. In chapter 6 we’ll analyse the results for the 1987 tables. In chapter 7, we’ll draw the conclusions.

Background

This chapter gives some background information on National Accounts and I/O tables. It is not a full introduction on the subject. A full introduction can be found for example in [4], [6], [7] or [8]. The last section of this chapter gives an overview of the entire process of deriving the I/O table, providing insight in the structure of the rest of this report.

1.1 The System of National Accounts and input/output analysis
Supply and use tables are made as a part of the System of National Accounts (SNA). The supply table (sometimes called ‘make table’) describes the supply of different goods by different industries. The use table describes the use of different goods by different industries.

In the supply and use tables published by Statistics Netherlands, the rows contain products and the columns contain industries. Apart from industries and products, the supply table contains an extra column with imports. The use table contains some rows with primary inputs (like labour) and some columns with final demand. The part of the use table without the extra rows and columns is called the intermediate use table. The primary input rows are sometimes called value-added rows.

A product-by-product I/O table shows how much of each product is needed in order to make each product. The main use of an I/O table is input/output analysis. I/O analysis assumes homogeneous production. This means, that every industry produces exactly one product and every product is produced by exactly one industry. When we derive the I/O table, we shouldn’t make any assumptions that contradict the assumption of homogeneous production. We will weaken the assumption a little bit by using groups of products instead of products. I/O tables can be derived from supply and use tables.

In practice, industries do not only produce their own main products, they also make secondary products, that are main products in other industries. An I/O table is called homogeneous, when corrections are made for this fact.

1.2 Different algorithms for deriving an I/O table from supply and use tables

A well-known method for deriving a product-by-product I/O table uses the industry technology assumption. According to this assumption, every product that is made in the same industry has the same production process, so production processes depend on industries rather than on products. The assumption, however, conflicts with the assumption of homogeneous production that is the basis for I/O analysis. That’s why we shouldn’t take the industry technology assumption.

Another well-known method for deriving a product-by-product I/O table uses the product technology assumption (sometimes called commodity technology assumption). This assumes that every product is always produced in the same way irrespective of the industry in which it is made. This method is more suitable. It will be described in more detail in the next chapter. The problem with this method is that negatives will occur in the I/O table, because of errors in the supply and use tables and because of violations of the assumption. We can try to correct for the errors and violations by hand, so no negatives will appear. An overview of the steps involved in the process of carrying out the method and correcting the errors will be given in the next section.

Clopper Almon describes a variant of product technology in which no negatives occur in the I/O table. This method is described in the next chapter. However, we’ll still need to correct the same errors and violations by hand.

1.3 Overview of the whole process of deriving the table

[image: image1.wmf][image: image21.wmf]1

)

ˆ

(

-

=

q

V

M

Some method or algorithm will be the basis of compiling the I/O table. This can be an algorithm based on the product technology assumption or Almon’s variant of product technology or another algorithm. This is usually a mechanical process, which needs no human intervention. Algorithms will be described in chapter 3.

Before the algorithm calculating the I/O table can be started, some technical adaptations to the supply and use table need to be done. These adaptations are described in chapter 4.

[image: image22.wmf]U

Z

=

)

0

(

After the calculation of the I/O table by the algorithm, we’ll find peculiarities, caused by errors in the original supply and use tables and violations of the assumptions. We’ll determine the causes of the peculiarities, using the result of the algorithm. Then we’ll do some modifications on the supply and use tables to correct for the errors and for the violations. These modifications are described in chapter 5. After the modifications, we need to recalculate the table and we may find new peculiarities. We will have to correct these and recalculate the table again. The process of compiling the I/O table contains a loop here, which goes on until we are satisfied with the result.

At the very end of the process, we may have to do some final corrections.

Algorithms

In this chapter we discuss the basis for compiling the input/output table: the actual algorithm that takes a supply and a use table as input and returns an I/O table. There are different algorithms. We’ll discuss the standard product technology algorithm and Almon’s version of the product technology algorithm. Examples will show how these methods work. More theoretical information can be found in [1] and [4].

1.4 Notation

In this chapter, we’ll use some matrix algebra to denote the exact working of the algorithms. We’ll use the following symbols:

 Supply table:

industries
total

Products
V'
q

Total
g'

Use table:

industries
final demand
total

products
U
E
q

primary inputs
Y

total
g'

Input/output table:

output products
final demand
total

input products
Z
E
q

primary inputs
K

total
q'

An accent (‘) is used to denote the transpose of a matrix. A circumflex (^) will be used to denote the square matrix containing all elements of a vector on the diagonal.
[image: image2.wmf]q

ˆ

is the matrix containing all row totals of the supply matrix on the diagonal.

Note that as usual in the literature, V has industries on the rows and products on the columns. We’ll assume in this chapter that U and V are square. The rows and the columns have the industries and their corresponding product groups in the same order. How to obtain square U and V will be discussed in chapter 4. Note also that the row sums of the supply and use matrices are equal, as well as the column sums. Both the row sums and the column sums of the I/O table are equal to the row sums of the supply table.

[image: image3.wmf]÷

÷

ø

ö

ç

ç

è

æ

K

Z

has column totals equal to the total production of each product. We’ll also use a version of the I/O table that has column totals scaled to one. This version of the I/O table will be denoted by
[image: image4.wmf]÷

÷

ø

ö

ç

ç

è

æ

W

A

and can be calculated by dividing each element of
[image: image5.wmf]÷

÷

ø

ö

ç

ç

è

æ

K

Z

by its corresponding column total, like this:

[image: image6.wmf]÷

÷

ø

ö

ç

ç

è

æ

W

A

=
[image: image7.wmf]1

)

ˆ

(

-

÷

÷

ø

ö

ç

ç

è

æ

q

K

Z

1.5 Product technology
1.5.1 Description of the method

The easiest way of calculating an I/O table is by applying an assumption (or model) on the supply and use tables and then deriving the input/output table. We’ve seen that the product technology assumption serves our purposes.

We’ll give a short explanation of the method by using an example:

Use table:

chemical ind.
toy industry
consumption

chemical products
55
30
5

Toys
0
15
45

primary inputs
45
5

Supply table:

chemical industry
toy industry

chemical products
90
0

Toys
10
50

We can see in the tables that it takes 30 units of chemical products, 15 units of toys and 5 primary inputs to produce 50 units of toys. It takes 55 units of chemical products and 45 units of primary inputs to produce 90 units of chemical products and 10 units of toys. What we want to have in the homogeneous table is the input structure for the separate products, not for linear combinations of the products. Since we assume product technology, the numbers of inputs are independent of the industry in which the products are made. So the 10 units of toys made in chemical industry, require 10/50*30=6 units of chemical products, 10/50*15=3 units of toys and 10/50*5=1 primary input. We can now make the above tables homogeneous by transferring these numbers of units from the chemical industry column in the use table to the toy industry column and transferring the 10 units of toys from the chemical industry column in the supply table to the toy industry column. The use table then becomes our homogeneous I/O table:

chemical ind.
toy industry
Consumption

chemical products
49
36
5

Toys
-3
18
45

primary inputs
44
6

So now we know it takes 49 units of chemical products, -3 units of toys and 44 primary inputs to produce 90 units of chemical products. It takes 36 units of chemical products, 18 units of toys and 6 primary inputs to produce 60 units of toys.

We see that negatives can occur using the product technology algorithm. Note that the bottom part of the I/O table differs from the use table, but the right part of the table remains the same. This is the case in general.

A transformation of values along the columns of a matrix comes down to post-multiplication of the matrix by another matrix. We can show that for the above transformations the following holds:

[image: image8.wmf](

)

1

'

-

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

V

Y

U

W

A

 or
[image: image9.wmf](

)

q

V

Y

U

K

Z

ˆ

'

1

-

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

Together with the equation above, this gives us a recipe to calculate a homogeneous I/O table.

The Product technology algorithm

We assume that U and V are square.

1. Solve A and W from the system of linear equations:

[image: image10.wmf](

)

'

V

W

A

Y

U

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

2. Calculate the I/O table from:

[image: image11.wmf]q

W

A

K

Z

ˆ

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

After running the algorithm, the homogeneous I/O table may contain negatives. We analyse these negatives and remove the causes of the most important ones in the original supply and use tables. After that we run the algorithm again and we’ll be in the recursive process as described in section 2.3. In the end there still may remain small negatives which should be removed . We did this by setting them to zero and then obtain the correct row and column totals again by using RAS-balancing. RAS-balancing is described in appendix B.

1.5.2 Conditions for the algorithm

First of all, the use and supply matrices must be square before the product technology model can be used. Merging products into product groups can do this as is described in the next chapter. Furthermore, after having been made square, the supply matrix has to be non-singular. It’s very likely that this is the case. However, it is possible that a row or column contains only zeros. Techniques to solve this problem are described in chapter 4.

We’ll show why the supply matrix is probably non-singular. We assume that it has been made square and row and columns containing only zeros have been removed. If the matrix is non-singular, it means that there are industries that have linear dependent production patterns. Suppose two industries show this dependency. This would mean that two industries produce exactly the same products at the same rate, which is suspicious. Probably, the two industries are carrying out exactly the same production process. We suggest merging the two industries then. If for example three industries are linear dependent, then there may be two production processes that are carried out by the three industries (or maybe even only one). We then find out if it’s possible to make two industries (or in the worst case one) out of three. It seems very unlikely, however, that three or more industries will show linear dependency.

1.6 Almon’s algorithm
1.6.1 Description of the method

Almon’s method is described in [1]. He only applies his method to the intermediate use table, but notes that the process can also be applied to the rows of the value-added part of the matrix. If we do so, we have to make the row and column sums consistent. We’ll apply the method to all rows of the table and discuss the actions for consistency at the end of this section. Note that we use some different notation in some places than Almon. For example we’ll use Z to denote what Almon calls the recipe matrix R. We do this to use the same notation everywhere throughout this report.

Almon’s method is based on the matrix multiplication from the product technology model as described in the previous section. However, Almon doesn’t calculate this multiplication directly, but uses successive approximations to calculate the I/O table. First we’ll show how Almon replaces the matrix multiplication by these successive approximations. Then we’ll show how Almon adapts the approximations such that no negatives will occur in the I/O table.

First, let us write down again the matrix multiplication:

[image: image12.wmf](

)

1

'

-

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

V

Y

U

W

A

To be able to calculate the I/O matrix recursively, we’ll need to rescale the supply matrix V by dividing each cell by the corresponding column total, like this:

[image: image13.wmf]1

)

ˆ

(

-

=

q

V

M

The above multiplication can then be rewritten as:

[image: image14.wmf]'

'

)

ˆ

)(

ˆ

(

1

M

K

Z

V

q

q

W

A

Y

U

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

-

Now, let’s look again at the example from the previous section. The scaled supply matrix looks like this:

Scaled supply matrix:

chemical industry
toy industry

chemical products
1
0

toys
0.17
0.83

Now we’ll start the approximation of the I/O table. Our very first approximation will be equal to the use table:

First approximation of the I/O table:

chemical prod.
toys
consumption

chemical products
55
30
5

toys
0
15
45

primary inputs
45
5

In the use table we see that chemical industry uses 55 units of chemical products. A large part of these products is used for making chemical products. However, chemical industry also produces 17 percent of the total supply of toys. We’ll have to subtract the units of chemical products that are used by chemical industry for the production of toys. Based on our current approximation of the I/O table, we’ll estimate how many units have to be subtracted. The best approximation we have for the total amount of chemical products used for making toys is the number of chemical products used by toy industry, which is 30. Since the chemical industry produces 17 percent of all toys, we’ll subtract 0.17*30 = 5 units of toys. The same way we can determine that 2.5 units of toys and 0.83 units of primary inputs have to be subtracted from the chemical industry column of the I/O table. The units we just subtracted from the chemical industry column are used for making toys. That’s why we should add those numbers to the toy industry column. Since the toy industry only makes toys, we don’t have to subtract anything from the toy industry column. We now get our second approximation:

Second approximation of the I/O table:

chemical ind.
toys
consumption

chemical products
50
35
5

toys
-2.5
17.5
45

primary inputs
44.17
5.83

Based on this new approximation we can try again to calculate the numbers of units in all columns that are used for secondary production, subtract them from the columns where they are in now, and add them to the columns in which they should be. This comes down to making the same calculations as in the previous step of the recursion, but using the second approximation of the I/O table to estimate the units used for secondary production.

After a number of steps we’ll get the same table as we got in the previous section. Under which conditions the approximations converge will be discussed in the next section. We’ll now describe how to adapt the recursion such that no negatives occur.

Let’s look at the one row in which a negative occurs in the above example. The negative first occurs when we subtract 2.5 units of toys from the value in the chemical industry column. So, we estimate that 2.5 units of toys are needed for the secondary production of the chemical industry. However, according to the use table, chemical industry uses 0 units of toys. To avoid negatives, we only subtract the number of units from the chemical industry column that are indeed available, which is in this case 0. Since we subtract 0 units of toys from the chemical industry column, we also add only 0 units of toys to the toy column. In general, if we have more than two industries, we only subtract the fraction of the estimated number of units used for secondary production that is available in the use table. It’s the same fraction that will be added to the columns where the production is primary.

If we apply Almon’s algorithm on the above example, we’ll get the I/O table.

I/O table:

Chemical pr.
toys
consumption

chemical products
49
36
5

Toys
0
15
45

primary inputs
44
6

Note that the row totals don’t equal the column totals. We will describe later how this can be solved.

We’ll now give a more formal description of the algorithm:

[image: image23.wmf]å

¹

=

=

n

j

h

h

k

ih

jh

k

ij

z

m

c

1

)

(

)

(

Again, we are not finished after running the algorithm just once. We have to analyse the results and make corrections in the make and use tables. The way to do this is to recalculate the new use table by multiplying Almon’s I/O table with the supply table. We can then compare this new use table and the original use table and take away the causes for the biggest differences. Again, we have to rerun the algorithm and make corrections recursively.

After all the necessary modifications, we still have to make a final correction. Almon’s algorithm assures that the row totals of the I/O table are equal to the row totals of both the supply and use tables. However, since we only move fractions of the values from column to column in some cases, the column totals do not necessarily have to be equal to the row totals. This should, however, be the case for a consistent I/O table. Almon suggests that we make corrections for this fact only in the value-added part of the table, by using RAS balancing. We feel the RAS algorithm should be performed on the whole table with all the rows instead of only the value-added rows. This is what we did with the 1987 tables.

1.6.2 Conditions for the algorithm

Like the product technology algorithm, Almon’s algorithm requires the supply table to be square and non-singular. Another requirement is that the supply table causes the successive approximations to converge. A sufficient condition for this is that more than half of the production for each product group in the square table takes place in the primary industry for that product group. So in our example more than 50% of all toys are produced in the toy industry, and more than 50% of the chemical products are produced in the chemical industry. However, the condition is said to be sufficient but not necessary. The approximations may converge anyway, this will only turn out in practice.

For most industries the 50% requirement will hold anyway. For some other industries we may have to make a correction. Unlike Almon we do this by merging industries. This will reduce the number of industries in the final table, but it will take away the problem.

We’ll now discuss why the 50% requirement is sufficient for convergence of the algorithm. Let u be a column of U’ and let z be a column of Z’. We can then rewrite the basic equation for product technology u=Mz to:

[image: image15.wmf]u

z

M

I

z

+

-

=

)

(

Almon’s recursion is based on the Seidel iterative process for solving this equation. Convergence for this process can be proved if the column sums of the absolute values of the elements of I-M are less than 1. This is the case when the 50% requirement is met. We also see here why we have to scale the columns of the supply matrix to one.

To avoid negatives in each step of the recursion Almon scaled down the secondary production of industries when necessary and added this to the primary production. This yields an alternative supply matrix for this row for this step of the recursion which we’ll call Ms. The off-diagonal elements of Ms are less than or equal to those of M. The diagonal elements of Ms are greater than or equal to those of M. From these facts and the fact that the column sums of the absolute values of the elements of I-M are less then one, we can easily derive that those column sums of I- Ms are also less than 1.

Now we’ll look at the solution we get when we correct for negatives. We’re solving both z and Ms from the equation
[image: image16.wmf]z

M

u

s

=

. Note that for different rows u and z we have a different solution Ms. We were able to show that for given z the Ms is as close to M as possible. In other words, the scale factors are sharp: if they were only a little bit smaller negatives would occur.

1.7 Almon versus the standard product technology algorithm

We described two different methods to calculate an I/O table from supply and use tables. Both methods give us the possibility to track errors in the supply and use tables and both methods give us a consistent I/O table without negatives, after a final correction.

The process of deriving the table as described in section 2.3 doesn’t change significantly by choosing one algorithm or the other. The way we track errors in the supply and use tables are different, but we expect that the errors we find are the same. In theory we don’t expect the choice of the method for tracking the errors to influence the final result.

What does influence the final result is which algorithm we choose for calculating the final version of the I/O table. Both algorithms are based on the product technology assumption, but they have different ways of dealing with negatives. Almon gets rid of the negatives during the calculations, where the standard product technology algorithm requires an extra step of RAS-balancing to get rid of the negatives. Since we have corrected for the large negatives, only small negatives remain and we expect that therefore only small differences will occur between the final results of the two algorithms. There may be larger differences in the value-added part of the I/O table, because that is where Almon made all corrections for differences in row and column totals. Another difference is that with Almon we might have to correct for diagonal elements in the scaled supply matrix that are less than 0.5. If this is the case, it will also influence the result. However, in the 1987 tables values lower than 0.5 didn’t cause any problems in convergence.

2. Initial modifications

For both algorithms there are some conditions the supply and use table have to satisfy before it’s even possible to run the algorithm. For both the product technology algorithm and Almon’s algorithm we need the supply table to be square. The supply table has to be non-singular. In rare cases, for Almon’s algorithm we might have to make sure that half of the production of each product is in its primary industry.

In this chapter we’ll first show how we can get square tables, by mapping industries and products in the original tables to aggregates in the square tables. After that we’ll show how changing this mapping can satisfy the other two conditions.

2.1 Obtaining square tables

In theory, we would have to split all industries into separate production processes and assign each product to a production process to get proper square supply and use tables. Though this would produce good results, in practice adding all this information would require a lot of manual work.

Another way to get square tables is not to add columns, but to merge rows into aggregates with products that are alike. Thus we can bring down the number of rows until the supply and intermediate use tables are square. Note that merging different products will cause loss of information. However, merging products into aggregates is something that can be done (almost) completely automatically. That’s why we prefer this method.

Initially we’ll create an aggregate for every industry. Every product is assigned to one of the aggregates, namely its main producer. Square tables are derived from the original tables by mapping the original rows into the aggregate rows. We do the same thing for the industries. Every industry is assigned to its own aggregate. The original columns are mapped into the aggregate columns. This way we get square aggregate-by-aggregate tables instead of rectangular product-by-industry tables.

In the software we used to create the I/O tables, we didn’t distinguish aggregates from industries. We copied the columns of the square tables from the original tables and assigned products to industries instead of to aggregates. However, we think it may be better to create separate aggregates, because this would be a more flexible approach.

Making square tables

In the original tables, every product is assigned to an aggregate and every industry is assigned to an aggregate. In principle, there is one aggregate for every industry. The aggregate to which a product is assigned is called the main industry for the product. Just before running the algorithm, a square table is created. This is done by mapping each product row in the original tables into the corresponding aggregate row in the square table and mapping each industry column in the original tables into the corresponding aggregate column in the square table. The I/O table will contain aggregates on both the columns and the rows.

The initial assignment of products and industries into aggregates is something we do at the very beginning of the process. Making square tables is done just before running the algorithm.

2.2 Making the supply table invertible

As we discussed in the previous chapter, for both algorithms the supply table has to be invertible. We’ve seen that it is very unlikely that two or more non-empty rows or columns from the square supply table will be dependent. If it ever happens, we must modify the table and rerun the algorithm. What is likely, however, is that empty rows or columns occur in the square supply table. We have to remove all empty rows and columns from the square supply table.

If we get an empty row, it means that there is an industry that doesn’t produce any main products. If we want to keep this industry, we can select and assign a main product manually. We recommend merging the empty aggregate with another aggregate.

If we get an empty column, it means that there is an aggregate to which no industries were assigned. Again we merge the empty aggregate to another aggregate.

Removing empty rows and columns

Just after making the square tables, the square supply table is checked for empty rows and empty columns.

If we detect an empty row for an aggregate, we look up the highest value in the corresponding column. This highest value belongs to another aggregate. We merge the two aggregates by mapping the industries and products that were first assigned to either aggregate to the same aggregate. We generate a message to the user, so he can take action if he doesn’t agree.

If we detect an empty column for an aggregate, we look up the highest value in the corresponding row. This highest value again belongs to another aggregate. We merge the two aggregates and generate a message.

Though the merge above may seem arbitrary, it gives reasonable results most of the time.

2.3 Making at least half of the production primary (Almon only)

If Almon’s algorithm turns out not to converge, we have to make sure that half of the production of each product is in its main industry. As we discussed in the previous chapter, in most cases we won’t have to do this, but in the few cases where convergence problems occur we propose using the same approach here as for removing empty rows and columns from the supply table. If an industry doesn’t produce enough of its own main product, we look up the next industry that produces most of this product and merge the two industries.
Removing low main production

Just after making the square tables and removing empty rows and columns, the square supply table is checked for values on the diagonal that are less than half of the column total.

If we detect a value on the diagonal that is too small, we merge the corresponding aggregate with another aggregate. To determine which aggregate we have to merge with, we look up the highest value in the rest of the row. We merge with the aggregate that belongs to that highest value.

We repeat this detection until there is no low production left.

Note that we only have to perform this step if Almon’s algorithm doesn’t converge.

3. Modifications after analysing the results
After running the algorithm, we have to analyse the results to find the causes for the negatives in the I/O table. Negatives are caused by errors in the original tables, violation of the product technology assumption, and lack of homogeneity. Finding and correcting for the causes of the negatives requires (human) expert knowledge about the tables. The negatives cannot be corrected automatically.

The Almon and the standard product technology algorithm require different ways of finding the causes. For the standard product technology algorithm we can list the negative elements in the I/O table in order of size. Instead of the normal I/O table, we can also analyse the I/O coefficients matrix. This is the I/O table with the column totals scaled to one. We advise analysing both matrices, so that big and relatively big errors are spotted.

With Almon we calculate a new use matrix by multiplying the calculated I/O table with the make table. We then list the absolute differences of the new use and the original use matrix in order of size. Again, we can both analyse the use matrix and a scaled use matrix, with the column totals scaled to one. Again, we advise analysing both matrices.

We classified the causes of the errors into categories each of which can be corrected by performing a standard correction or trick. These tricks are extensively explained in [5]. Here we point to them briefly.

Trick 1: Merge industries

Description: Two or more industries are merged into the same aggregate of the I/O table. Not only the two industries, but also all main products of the two industries are assigned to this one aggregate.

Application: Two or more industries produce more or less the same products.

Caution: This trick changes the product groups that will be formed in the final I/O table and should only be used when the structure of the I/O table is not yet fixed.

Trick 2: Change main producer

Description: The main producer of a product is changed, so it is assigned to another aggregate in the I/O table.

Application: In the aggregate of main products for a certain industry there is one specific product that has a very different input structure than the other products. The input structure of the product is much more like the main products of another industry.

Caution: This trick changes the aggregates of products that will be formed in the final I/O table and should only be used when the structure of the I/O table is not yet fixed.

Trick 3: Create products
Description: An industry or aggregate gets its own new product. Either all or a number of outputs of the industry are moved into the new product. This way a fraction of the row total of each moved product is put into another row. In the use table, the same fraction of the each element in the row is moved to the corresponding element in the new row. Of course, the industry itself is the main producer for the new product. If the compiler of the tables wishes, the original products are assigned to new main producers: each product is assigned into the aggregate which now has most of its production.

Application:

· Products in a specific industry are so different from the same products in other industries or are produced in such a different way that they shouldn’t be called the same product. In this case, the main producers for the original products should be reassigned.

· Secondary products in a specific industry are by-products from main products in that industry. Because they are produced in one and only one production process, they shouldn’t be considered separate products but added to the industry’s main products. In this case, the main producers for the original products can be left as they are.

Trick 4: Make by-product

Description: The supply of certain secondary products in a certain industry is set to zero. The secondary production is subtracted from the corresponding cells in the use table.

Application: secondary products in a specific industry are by-products from main products in that industry produced by exactly the same process.

Trick 5: Split the industry

Description: An industry is split into two new industries. Some outputs are assigned uniquely to the first new industry and some uniquely to the second. All other products are distributed over the two new industries in the same proportion as the uniquely assigned products. Something similar is done with the inputs. Some of them are uniquely assigned to either the first or the second new industry. The other inputs are divided over the two industries in such a proportion, that the sums of the inputs of the new industries equal the sums of the outputs of the new industries. It’s important not to assign too many inputs to either one of the industries, because then the input into the new industry will be higher than the output. The main producers of the products are changed to the new industry producing most of the product.

Application: An industry is in fact a mixture of two (or more) very heterogeneous production processes that should be considered separately.

Caution:
· Since we split an industry into two, the product groups in the final I/O table will change. However, this is not a real problem, since we can always merge the separate split industries into one single industry again.

· If too many inputs are assigned to either one of the industries, the input into the new industry will already be higher than the output, and negatives will occur in the other inputs. This has to be prevented.

We mentioned a few tricks for correcting the errors in the original tables. The list is not complete. More specialist knowledge might lead to more tricks. However, by defining and using tricks we think we have succeeded in giving a general framework for fairly automated corrections.
4. Discussion of the results
We tried both methods in practice on the Dutch supply and use tables of 1987. These tables contained about 300 industries and 850 products. We made the usual corrections, one or only a few at a time. This gave us many versions of the tables in which each new version was a little bit better than the previous one. For Almon, we performed RAS on the whole I/O table as recommended before.

First of all the RAS procedure caused some unexpected problems as described in the first section. After that we’ll discuss the performances of the standard product technology and Almon’s algorithm. In the third paragraph we’ll briefly discuss the differences for the analysis of errors for the algorithms. Finally we’ll present the progress in each of the twelve steps made.

4.1 Unexpected problems with the RAS procedure

When analysing the 1987 tables, one problem occurred in particular. The RAS algorithm doesn’t converge when negatives occur in the matrix (see [2]) The row with subsidies is an example of a row with only negatives. Operating surplus is an example of a row that contains both positive and negative values. For Almon’s algorithm we left these rows out of the RAS algorithm.

When performing the standard product technology algorithm, these negative values didn’t cause any problems since we first set all negatives to zero. However, to obtain consistent results we have choosen the same approach as in the Almon case.
An alternative method which does not have these problems with negative elements is the use of Lagrange multipliers. Harthoorn and Van Dalen (1987) give an explanation of this method. Recently a Windows application has become abailable at Statistics Netherlands, based on the Lagrange algorithm. Unfortunately at the time our research was carried out it wasn’t available yet.

4.2 Performance

4.2.1 Convergence

As we saw before, Almon’s algorithm may fail to converge if its main producer produces half of the production of each product. However for the 1987 tables this wasn’t the case

4.2.2 Execution time

To be able to compare execution time, we ran both algorithms on the very first version of the tables. We set Almon’s algorithm to iterate only once.

As expected both algorithms run fast enough on a modern computer.

The execution times were:

Almon (one iteration only):

33 seconds

Standard product technology:

26 seconds
4.2.3 Number of iterations

We looked at the number of iterations needed to run Almon. We repeated the steps until reaching the desired precision, in our case a precision of 1. That gives the following results:

1st table:

Maximum number of iterations:
20

Mean number of iterations:

2.7

Maximum number of ‘stops’:

1633

Mean number of ‘stops’:

183

11th table:

Maximum number of iterations:
18

Mean number of iterations:

2.4

Maximum number of ‘stops’:

1134

Mean number of ‘stops’:

144

The worst cases concern the number of times numbers had to be scaled down (called ‘stops’ here).

4.3 Analysis of the results

As proposed in chapter 5 for the standard product technology algorithm we all negatives in the I/O table are listed in order of size. For Almon’s algorithm all the differences between the use and the new use matrix are listed in order of size. We expect that the same problems will be detected.

Now for both methods we also have a RASsed I/O matrix from which we could calculate a new use matrix. Again, we can compare the values of this ‘after-RAS-new-use’ matrix with the original use matrix.

We conclud three things. First of all, most differences in the analysis methods are in the order in which the problems are listed and not in the particular problems detected (with a few exceptions). Secondly, we think that after RAS analysis is more effectively than before RAS analysis. Third of all, the RAS algorithm might better be replaced by a more sophisticated method like the Langrange approach.

4.4 Step by step progress

We collected some statistics for all different versions of the tables. For product technology, we wrote down the following variables:

· the absolute value of the sum of all negative values in the I/O table, divided by the sum of all positive values in the I/O table.

· the sum of the absolute values of the differences of all cells before and after the RAS algorithm, divided by the sum of all values in the original I/O table.

· the sum of the absolute values of the differences of all cells in the old use and the new use table, divided by the sum of all values in the use table.

For Almon, we wrote down the following variables:

· the mean number of stops per row.

· the sum of the absolute values of the differences of all cells in the old use and the new use table, divided by the sum of all values in the use table, before performing the RAS algorithm.

· the sum of the absolute values of the differences of all cells before and after the RAS algorithm, divided by the sum of all values in the original I/O table.

· the sum of the absolute values of the differences of all cells in the old and the new use table, divided by the sum of all values in the use table after performing the RAS algorithm.

Then we also wrote down the sums of the absolute values of the differences of all cells in the I/O table compiled by using Almon and the product technology, divided by the sum of all values in the I/O table.

product technology
Almon

% neg.
% RAS diff.
% use newuse diff.

mean # stops
 % use newuse preras
 % RAS diff.
 % use newusepostras

% diff almon prod.

1
2.046
5.63
3.05

183
1.93
2.34
2.67

1.010

2
1.335
3.81
2.35

171
1.54
1.83
2.20

0.731

3
1.247
3.57
2.23

169
1.46
1.75
2.10

0.709

4
1.156
3.31
2.08

168
1.39
1.60
2.00

0.655

5
1.094
3.14
2.00

158
1.35
1.59
1.95

0.649

6
1.072
3.07
1.95

157
1.32
1.55
1.90

0.619

7
1.030
2.98
1.92

149
1.31
1.53
1.88

0.634

8
1.004
2.93
1.90

147
1.28
1.54
1.86

0.635

9
0.992
2.90
1.88

146
1.27
1.52
1.84

0.631

10
0.976
2.87
1.86

144
1.25
1.49
1.81

0.623

11
0.952
2.81
1.82

144
1.22
1.46
1.78

0.619

If we analyse the results, we see that the percentage of negatives in the I/O table derived by product technology goes down in each step. Also, the mean number of stops per row descends, the RAS corrections get smaller in each step, and so do the differences between the old and new use tables. This all was to be expected, but it’s good to see that the corrections produced results.
In general, the RAS corrections for Almon are smaller than the RAS corrections for product technology. This can be explained by the fact, that the RAS corrections for product technology have to get rid of all the negatives. In the case of the Almon tables we only have to equal row and column totals.

The difference between Almon’s first table and the first product technology table is 1.010 percent of the total value of the I/O table. This percentage goes down in every step. Of course, fewer negatives occurred in the table after each step and less corrections had to be made by both Almon and product technology. However, the percentage of negatives descends relatively more quickly than the differences between the tables.

If we compare the two methods in practice, we see that the differences between the old and new use tables are somewhat smaller for Almon. This indicates that Almon’s I/O table is a bit closer to the model
[image: image17.wmf](

)

1

'

-

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

V

Y

U

W

A

. Almon tries to keep the adjustments in the I/O-table as small as possible. That’s why the eventual new use table is closer to the original use table as well. This may be a reason to choose for Almon’s algorithm instead of product technology.

Conclusions

In this report we looked at different ways to compile a homogenous I/O table out of a supply and a use table. We compared two methods: the standard product technology method and Almon’s method. Both methods as they were described in this report provide the same thing: a homogeneous I/O table without negatives.

Negatives in the homogeneous I/O table are caused because of errors in the original tables and in the assumptions. By correcting for the errors, we take away the causes of the negatives. However, the fact that a negative no longer occurs doesn’t mean we made a good and meaningful correction. We have to keep in mind that the purpose of the compilation process is to derive a sensible I/O table, not just any I/O table without negatives.

Detailed knowledge about the supply and use tables is necessary when big negatives are corrected. We can’t just automatically correct errors, we have to carefully choose how to correct. Detailed knowledge about the supply and use tables is essential and independent of which algorithm we use this always causes a certain amount of manual work.

We found a way to make the corrections easier by classifying corrections into a few different types. For each type of correction we constructed a trick that only needs some parameters before it can actually be performed. These tricks reduced the amount of manual work to a minimum.
The phases in the process - deriving an I/O table by applying the algorithm, searching for problems, correcting for them and rerunning the algorithm - are the same for both methods we tried. We use the same tricks to correct the same problems in both methods. A difference in applying the two methods is that Almon’s algorithm, although it is a bit slower, seems to be a bit better at detecting problems. A point for further research in the process is the last phase, where the I/O table is made consistent. Instead of RAS balancing we might want to use the Langrange method.

Almon and the standard product technology algorithm have different ways to get rid of the remaining small negatives after correcting for the large negatives. The way we correct for the larger negatives greatly influences the final result. However, the negatives that remain are only small and using the other algorithm to remove them will only cause small differences in the final I/O table. Still, there is a slightly smaller difference between the use table calculated after the algorithm and the original one for Almon.

In summary, we can conclude that Almon’s algorithm could be applied at Statistics Netherlands. However, independent of which algorithm we choose, the biggest difficulty in deriving the I/O table will be the manual correction for errors. When comparing Almon’s method with the standard product technology algorithm, we see that Almon’s method is a bit slower, but seems to be better in detecting errors and violations

The RAS method

The RAS method is well know method to adjust tables to the given marginal totals. See Bacharach [2] for more details.

Suppose an nxm-matrix A, desired row totals
[image: image18.wmf]i

r

~

(i=1..n) and desired column totals
[image: image19.wmf]j

s

~

(j=1..m) are given. This section describes a method to find row multipliers ri (i=1..n) and column multipliers s​j (j=1..m) for A such that the matrix N with
[image: image20.wmf]j

ij

i

ij

s

A

r

N

=

 has the desired row and column totals.

[image: image24.wmf])

(

)

(

k

ij

ij

k

ij

c

u

s

=

Literature

1. Clopper Almon: Product-to-Product Tables via Product-Technology with No Negative Flows, Economic Systems Research Vol. 12 No. 1, 2000

2. M. Bacharach: Biproportional Matrices & Input-Output Change, Cambridge University Press, 1970.

3. R. Harthoorn, J. v. Dalen: On the Adjustment of Tables with Lagrange Multipliers, Statistics Netherlands, 1987.

4. Paul Konijn: The Make and Use of Commodities by Industries, University of Twente, 1994

5. Michel Vollebregt, Different ways to derive homogeneous input/output tables, Statistics Netherlands, 2001.

6. European System of Account ESA 1995, Eurostat, 1996

7. Input-Output Manual, Eurostat, 2002 (Draft)

8. System of National Accounts 1993, United Nations e.a., 1993

Acknowledgements

We’d like to thank Winfried Ypma, Sake de Boer and Piet Verbiest of Statistics Netherlands and Paul Konijn of Eurostat for their support during the project.

Figure 2.1: schematic overview of deriving the table

Almon’s algorithm

We assume that U and V are square.

Calculate the scaled supply table:

� INCORPORER Equation.3 ���

Calculate the first approximation of the I/O table:

� INCORPORER Equation.3 ���

For each row i:

For each column j:

Estimate the total amount of good j that is used by industry i for secondary production:

� INCORPORER Equation.3 ���

If cij > uij calculate the scale down factor:

� INCORPORER Equation.3 ���

Otherwise set the scale factor � INCORPORER Equation.3 ��� to 1

Make a new estimation of zij, by taking u�ij, subtracting the units used for making other products than product i in industry i and adding the units used for making product i in other industries than industry i:

� INCORPORER Equation.3 ���

Repeat step a until for all j � INCORPORER Equation.3 ��� is within the desired precision.

4. Perform step 2 and 3 for K and Y (the value-added part of the matrix).

Note that also a row with subsidies may be a part of the supply table. Of course, a subsidy row only contains negatives and therefore should not be scaled down. For these rows, in step ii the scale down factor always has to be set to 1.

RAS

For each j from 1 to m

Initialize � INCORPORER Equation.3 ���

2. Calculate the kth estimation � INCORPORER Equation.3 ��� and� INCORPORER Equation.3 ���:

For each i from 1 to n

� INCORPORER Equation.3 ���

For each j from 1 to m

� INCORPORER Equation.3 ���

Repeat step 2 until for all i � INCORPORER Equation.3 ��� and for all j � INCORPORER Equation.3 ��� is within the desired precision.

Project number:

BPA number:

Date:

August 15th 2002

40

29

[image: image25.wmf])

(

k

ij

s

[image: image26.wmf]å

¹

=

+

+

-

=

n

j

h

h

k

ij

hj

k

ih

k

ij

k

ij

ij

k

ij

z

m

s

c

s

u

z

1

)

(

)

(

)

(

)

(

)

1

(

[image: image27.wmf]|

|

)

(

)

1

(

k

ij

k

ij

z

z

-

+

[image: image28.wmf]1

)

0

(

=

j

s

[image: image29.wmf])

(

k

i

r

[image: image30.wmf])

(

k

j

s

[image: image31.wmf]å

=

+

=

m

h

k

h

ih

i

k

i

s

a

r

r

1

)

(

)

1

(

~

[image: image32.wmf]å

=

+

+

=

n

h

hj

k

h

j

k

j

a

r

s

s

1

)

1

(

)

1

(

~

[image: image33.wmf]|

|

)

(

)

1

(

k

i

k

i

r

r

-

+

[image: image34.wmf]|

|

)

(

)

1

(

k

j

k

j

s

s

-

+

_1055238799.unknown

_1055317949.unknown

_1055654979.unknown

_1055655399.unknown

_1055655603.unknown

_1055656137.unknown

_1057572111.unknown

_1055656115.unknown

_1055655416.unknown

_1055655294.unknown

_1055654780.unknown

_1055654813.unknown

_1055319668.unknown

_1055249749.unknown

_1055250062.unknown

_1055251784.unknown

_1055250392.unknown

_1055249781.unknown

_1055246014.unknown

_1055248841.unknown

_1055239209.unknown

_1053342509.unknown

_1053343208.unknown

_1053415255.unknown

_1053342880.unknown

_1053342969.unknown

_1053327590.unknown

_1053337101.unknown

_1053327328.unknown

