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1 Introduction ∗

In late 1996, the new 1995 European System of National and Regional Accounts, referred

to as ‘ESA 95’, entered into force. It had been adopted by the Council of the European

Union (1996) in order to provide “... a methodology on common standards, definitions,

classifications and accounting rules, intended to be used for compiling accounts and ta-

bles on comparable bases for the purposes of the Community” (Article 1). The 1995

ESA replaced the former European System of Integrated Economic Accounts which was

introduced in 1970 and revised in 1978. A remarkable feature of the ESA 95 is its full

consistency with the 1993 System of National Accounts, henceforth SNA 93, of the United

Nations Statistical Commission (United Nations et al. (1993)). The SNA 93 evolved from

its forerunners, the 1953 SNA and 1968 SNA, under the joint responsability of the United

Nations, the Commission of the European Communities, the IMF, the OECD and the

World Bank. Notably, with the advent of the ESA 95, the European member states have

accepted the duty to supply for their countries symmetric input-output tables according

to unified statistical guidelines and within specified time limits, i.e., in no case later than

by January 1, 2005. These tables constitute a main part both of the SNA 93 and ESA 95

frameworks and are expected to be “... extensively used for purposes of economic analysis

and projections” (United Nations et al. (1993, p. 4)).

Input-output theory has prepared the methodological ground for this task. In par-

ticular, consider the following n-sector economy (n ≥ 2) where A = (aij) stands for the

n× n matrix of production coefficients for intermediate inputs and, respectively, x and y

represent n×1 vectors of sectoral gross outputs and final demands. Output prices and the

sectoral total cost shares of primary inputs shall be collected in n×1 vectors p and w. We

assume that all matrix elements and vector components are non-negative real numbers.

Furthermore, denote as I the n× n identity matrix and let B := I−A. The superscript

T will be attached in order to indicate vector and matrix transposition, where necessary.

Then x and p satisfy the fundamental equations of static input-output analysis (e.g., see

Nikaido (1975, Chapters 1 & 3), Takayama (1997, Chapter 4)):

Primal: Bx = y , Dual: BTp = w . (1)

These equations always possess unique and non-negative solutions x and p for arbitrary

non-negative right-hand sides y and w (component-wise), if and only if the so-called Leon-

∗Earlier versions of this paper have been presented at the Annual Conference OR 2001 of the German

Society of Operations Research (GOR) in Duisburg, at the Annual Meeting 2002 of the Swiss Society of

Economics and Statistics in Neuchâtel, at the Sixteenth Triennial Conference of the International Federa-

tion of Operational Research Societies (IFORS 2002) in Edinburgh, and at a seminar at the University of

Magdeburg. I am indebted to several participants for helpful comments.
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tief matrix B = (bij) is regular and no element of the Leontief inverse B−1 comes out less

than zero. Accordingly, every Leontief matrix which has been compiled from empirical

interindustry data can be shown to inherit this property. Such a matrix may be used, in

principle, to analyse and forecast the effects, e.g., of demand shocks, government spending,

energy consumption, wage policy and tax reforms, on sector outputs (and thus employ-

ment) and on output prices. Embedded input-output systems could thereby become an

integral part of advanced econometric or computable general equilibrium models. The

international INFORUM project (Interindustry Forecasting University of Maryland) links

13 such models for major industrial countries (cf. Nyhus (1988)).1

Both the ESA 95 and SNA 93 recommend that symmetric input-output tables with

product or industry classification be constructed from rectangular so-called supply and

use tables which display the provision of products and the demand for inputs per indus-

try. In practice, these tables are arranged from different and often incompatible statistical

sources. The conversion of two related tables, e.g., into a symmetric product-by-product

input-output table involves the non-trivial transfer of the by-products or secondary out-

puts of each industry to the industry to which these outputs principally belong. Such

a transfer can be achieved by exploiting as much supplementary statistical information

on the sectoral production processes as possible. Otherwise, the conversion must rely

on a-priori assumptions like the so-called industry-technology and product-technology as-

sumptions which may be more or less appropriate in individual cases (cf. United Nations

et al. (1993, p. 307), Almon (2000)). Also, deterministic scaling algorithms like the RAS

technique (Bacharach (1970), Gilchrist/St Louis (1999)) frequently have to be imposed

on the generated data in order to guarantee that the column and row sums of an input-

output table are balanced. This indicates that the respective table entries are essentially

estimates of the underlying true economic relationships and that the tables are likely to be

distorted. In passing, note that the aggregation problem is another serious cause of data

biases as well as plain measurement errors and rounding. After all, even good estimates

may soon become obsolete if technology changes. Ideally, all this has only a small impact

on the Leontief inverse of an empirical input-output model, in which case the model’s

projective power can be maintained. However, consider the following counter-example of

a presumed hierarchical or recursive 5 × 5 economy where a single output unit of each

sector j calls for one unit of intermediate inputs from every preceding sector i such that

aij = 1 whenever j > i, whereas all other input coefficients are zero. Hence:

1The INFORUM URL is provided in the References.
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B =


1 −1 −1 −1 −1

0 1 −1 −1 −1

0 0 1 −1 −1

0 0 0 1 −1

0 0 0 0 1

 ⇒ B−1 =


1 1 2 4 8

0 1 1 2 4

0 0 1 1 2

0 0 0 1 1

0 0 0 0 1

 . (2)

Instead, if the input coefficient a51 was in fact equal to 0.1 we would obtain:

B =


1 −1 −1 −1 −1

0 1 −1 −1 −1

0 0 1 −1 −1

0 0 0 1 −1

−0.1 0 0 0 1

 ⇒ B−1 =


5 5 10 20 40

2 3 5 10 20

1 1 3 5 10

0.5 0.5 1 3 5

0.5 0.5 1 2 5

 . (3)

We thus conclude that the Leontief matrix in (2) is ill-conditioned in the sense that small

variations in its elements may induce large changes in the elements of the associated

Leontief inverse. Consequently, input-output projections which are computed from such

matrices may not be robust and, therefore, should be treated with caution.

This problem has already attracted a lot of attention in the literature and can be

tackled in various ways. For instance, many input-output systems will incorporate several

so-called key production sectors which have strong backward and forward linkages to

other sectors in the economy (e.g. Rasmussen (1957), Hazari (1970), Hazari/Krishnamurty

(1970), Cuello/Mansouri (1992)). We conclude that statistical input-output data for such

leading sectors must be most accurate in order to prevent large projection errors. The same

idea can also be applied to critical single input coefficients or groups of input coefficients

in a Leontief matrix (see Jilek (1971), Schintke (1976), Maaß (1980), Schintke/Stäglin

(1988), Aroche-Reyes (1996)). Changes in these coefficients would induce more than

average changes in the endogenous variables. Hence, important input coefficients have to

be measured with great care. Ideally, the user of an input-output table would be informed

of key production sectors and would also know how various potential errors or changes in

different selections of input-output coefficients will affect the table’s associated Leontief

inverse. However, this means to provide the user with a vast extra amount of statistical

material. Therefore, we suggest in this paper a unified global robustness measure which

characterizes a complete Leontief matrix. Our measure can detect condition problems

without resorting to additional assumptions on the distribution of errors or changes in

the matrix elements. The measure’s numerical value could be reported along with the

underlying input-output table and should serve as a supporting information for users.

They may then wish to isolate critical input coefficients if the size of this value indicates

the presence of an overall condition problem.

Formally speaking, our measure corresponds to the inverse of the so-called spectral

condition number which can be attached to a Leontief matrix B. Section 2 provides
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the underlying mathematical concepts. The calculation of this measure from statistical

input-output data involves extensive number crunching. Therefore, Section 3 will focus on

selected computational issues. Section 4 introduces convenient bounds and approximation

formulas which can be calculated directly from B without too much loss of knowledge.

A large number of sample applications will finally be presented in Section 5. Section 6

concludes and provides a summary of results.

2 The Condition of a Leontief Matrix

Assume that the true Leontief matrix equals B + εF rather than B where F is a real-

valued n× n matrix and ε is a real-valued scalar parameter which reflects the ‘size’ of the

deviation of the true matrix from B. This deviation may be the result of errors in the

compilation of the underlying matrix of input coefficients A. In a broader sense, the term

εF can also capture unforseen technology changes which might lie ahead.

Next, consider the following parameterized input-output system which replaces the

primal model in (1) (see Golub/Van Loan (1996, pp. 80-82)):

(B + εF)x(ε) = y . (4)

Note that the true Leontief matrix equals B provided that ε = 0 in which case (4) has

a unique solution x = x(0) due to the assumed regularity of B. Hence, x(ε) will be

differentiable for small ε. Therefore, if x′(ε) indicates the respective derivative and o is

the n × 1 null vector, differentiation of both sides of (4) with respect to (small) ε yields

Fx(ε) + (B + εF)x′(ε) = o and hence x′(0) = −B−1Fx. For the same reason, we can

expand x(ε) into a Taylor series around x. In particular, if R stands for second-order and

higher-order terms: x(ε) = x + εx′(0) + R. After all, we conclude that

x(ε) = x− εB−1Fx + R ⇔ x(ε)− x = −εB−1Fx + R . (5)

At this point, consider the Euclidean length or norm ‖x‖2 = (xTx)
1
2 of x. A consist-

ent distance measure for B is given by the so-called spectral norm ‖B‖2 of B which is

defined as the positive square root of the maximum eigenvalue of BTB. These norms pos-

sess the submultiplicative property and will thus satisfy the inequality ‖ − εB−1Fx‖2 ≤
|ε| ‖B−1‖2 ‖F‖2 ‖x‖2. We thereby obtain from (5) an upper bound for the relative error

in an input-output projection of x from a false Leontief matrix B:

‖x(ε)− x‖2

‖x‖2
≤ |ε| ‖B−1‖2 ‖F‖2 +

R

‖x‖2

= ‖B‖2 ‖B−1‖2
|ε| ‖F‖2

‖B‖2
+

R

‖x‖2
(6)
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= κ(B) ρB + r ,

where κ(B) := ‖B‖2 ‖B−1‖2 , ρB := |ε| ‖F‖2 / ‖B‖2 and r := R / ‖x‖2 .

We see from (6) that for each given relative error ρB in B the associated bound on

the relative error in x increases with the size of the factor κ(B). This factor is called the

spectral condition number of B (cf. Wilkinson (1999, p. 87)). Now note that BTB is a

symmetric and strictly positive definite matrix.2 Therefore, its eigenvalues λi will always

come out as positive real numbers. We may accordingly assume without loss of generality

that these numbers satisfy 0 < λ1 ≤ λ2 ≤ . . . ≤ λn. A corresponding assumption will

then hold for their positive roots σi (the so-called singular values of B). Thereby, as the

maximum eigenvalue of (B−1)TB−1 always equals the reciprocal of the smallest eigenvalue

of BTB, we have κ(B) = σn(B)/σ1(B) ≥ 1. We then say that B is ill-conditioned if κ(B)

is large.

Consequently, in the presence of a condition problem with respect to B, the inverse

ratio τ(B) := 1/κ(B) = σ1(B)/σn(B) will be close to zero. We may thus also consider

τ(B) as a measure of the robustness of the input-output model with respect to errors in

the Leontief matrix B. Such a measure has several advantages:

1. As 0 < σ1 ≤ σn, we conclude that always τ(B) ∈ (0, 1] which facilitates the inter-

pretation and comparison of different τ -figures.

2. The underlying spectral matrix norm is known to be subordinate to the Euclidean

vector norm in the sense that the spectral norm is the only matrix norm ‖ · ‖ for

which the expression ‖− εB−1Fx‖ ≤ |ε| ‖B−1‖ ‖F‖ ‖x‖ can hold as a strict equality

(cf. Bauer/Fike (1960, p. 1)). This allows to have a sharp bound on the right-hand

side of (6).

3. We emphasize that τ(B) is independent of both gross outputs x and the unknown

error structure F. In this sense, our notion of robustness refers to an invariant

property of B.

4. The measure τ(B) also does not depend on sector numbering. If P is a n × n

permutation matrix, then B̃ := PTBP = P−1BP because of the regularity and or-

thogonality of P. For the same reason, B̃T B̃ = PTBT (P−1)TP−1BP = P−1BTBP.

Hence, B̃T B̃ and BTB are similar matrices and thereby share the same eigenvalues.

2The symmetry is due to the fact that (BT B)T = BT (BT )T = BT B. Furthermore, introduce as z an

arbitrary real-valued column vector of length n with z 6= o in the sense that z has at least one non-zero

component. Then, w := Bz 6= o, for otherwise z = B−1o = o by the assumed regularity of B. We thus

obtain zT BT Bz = (Bz)T Bz = wT w > 0.
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5. Likewise, note that our measure carries over to the dual input-output model since

BBT is again a similarity transformation S−1BTBS of BTB with S = BT . Hence,

the singular values of BT and B coincide.

In particular, we find that τ(B) = 0.03398 in the case of (2). Note for this case that B is

triangular and thus det(B) = b11 · . . . · bnn = 1. This shows that the poor condition of B

need not be reflected in a low determinant value det(B). In order to illustrate this point

even further, consider the example of n = 20 isolated production sectors with an associated

Leontief matrix B = diag(0.5, . . . , 0.5). If in this example an arbitrary off-diagonal entry

to B was in fact non-zero rather than zero, this would have no impact on all but the single

corresponding entry to B−1. Accordingly, τ(B) = 1 (because of σ1 = σn = 0.5), although

det(B) = 9.53674 ·10−7.

Statistical offices and research institutes could henceforth publish along with their

input-output tables and related Leontief matrices the respective associated τ -values. This

supplementary information would provide the user with a measure of the overall condition

of the supplied data. Such a measure could be an important general indicator of the

robustness of projections which are made from the data set. However, the calculation of

the τ -value of a given Leontief matrix B essentially involves the non-trivial task of finding

reasonable approximations to the largest and smallest of the eigenvalues of the associated

product matrix BTB. This raises important numerical issues which are treated in the

next section.

3 Computational Issues

Almost all advanced numerical software packages like, e.g., EISPACK, IMSL, LINPACK,

MATLAB, or the NAG library, provide canned routines for the (approximate) computation

of selected eigenvalues or of all eigenvalues of real (as well as complex) matrices. These

routines may be firmly used in applied work. However, the user should then be able to make

an appropriate choice of an algorithm. Moreover, empirical research, e.g., in the field of

computational general equilibrium modeling, often involves the development of proprietary

hand-coded software which may have a distinct interface and which also frequently requires

thorough optimization for speed of program execution and memory allocation. Therefore,

we now turn to the important question of how to exploit the particular structure of an

input-output model for computational design. Fortunately, our interest is only in largest

and smallest eigenvalues rather than in a complete matrix eigensystem. We can also

benefit from the fact that our matrix in question H := BTB is symmetric and even

positive definite. Algebraic eigenvalue problems for such matrices are, in general, well-
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conditioned. There are essentially two straightforward methods which serve our purpose.

These are the power method and the method of matrix squaring.

The classical numerical technique to compute selected eigenvalues of a matrix like

H = (hij) is called power method or vector iteration. The underlying rationale is as

follows (see, e.g., Golub/Van Loan (1996, pp. 406-408) and Wilkinson (1999, pp. 570-

572)). Let z0 6= o stand for an arbitrary real-valued column vector of length n and

consider the sequence of vectors z1, z2, . . . as defined by zk+1 = Hzk starting from k =

0. Note that H is a symmetric matrix and will thus possess n independent (moreover:

orthonormal) eigenvectors xi which span the n-dimensional vector space. Hence, there

always exist real-valued scalars c1, . . . , cn such that z0 = c1x1 + . . .+ cnxn. Consequently,

as Hxi = λixi for all eigenvalues λi of H and associated eigenvectors xi, we conclude that

Hz0 =
∑

i ciHxi =
∑

i ciλixi. Finally:

zk =
n∑

i=1

ciλ
k
i xi = λk

n[cnxn +
n−1∑
i=1

ci(
λi

λn
)kxi] . (7)

Since 0 < λi/λn ≤ 1 for all i < n, the bracketed term [. . .] will converge to a vector of

constants such that zk+1 = Hzk → λnzk. The ratios of each two corresponding (non-zero)

components of zk+1 and zk thereby tend towards the maximum eigenvalue λn of H.3 Next

turn to the shifted matrix H − λnI and its related eigenvalues µi = λi − λn ≤ 0 which

satisfy |µ1| ≥ |µ2| ≥ . . . ≥ |µn| = 0. The power method will thereupon provide us with µ1

from which we also obtain the minimum eigenvalue λ1 of H according to λ1 = µ1 +λn. In

all, the power method is computationally straightforward. A respective computer program

would add a stopping rule and would also control for overflow and underflow errors by

means of an appropriate normalization of the iterates zk.

Note that for a symmetric matrix like H the companion sequence of so-called Rayleigh

quotients R(zk) := zT
k Hzk/zT

k zk also converges to λn. This can be seen from the gradient

∇R(z) which comes out as 2[Hz−R(z)z]/zTz and thus vanishes for an extremum of R(z)

if R(z) and z are an eigenvalue and associated eigenvector, respectively, to H.4 As λn is by

assumption the largest such eigenvalue, we conclude that λn = max
z 6=o

R(z). The Rayleigh

quotients provide, in general, more accurate measures of λn than the ratios of two related

components of successive vector iterates (see Wilkinson (1999, pp. 172-176)). A smaller

number of iterations may thus be needed to extract a tolerable approximation to λn (at the

3Note that the iterates zk converge to an associated eigenvector. This eigenvector will come out as xn

if λn is unique, i.e.: λn > λn−1 ≥ . . . ≥ λ1 > 0 such that limk→∞
(

λi
λn

)k
= 0 for all i < n. If H has a

multiple maximum root λn = λn−1 = . . . = λp, then zk approaches a point in the subspace spanned by

xn, xn−1, . . . , xp, depending on the choice of z0.
4Cf. Johnston (1972, pp. 114-116) for differential calculus in vector and matrix notation.
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computational cost of calculating R(z1), R(z2), . . .). We also conclude that the sequence

of vectors generated by zk+1 = Hzk/R(zk) would progress towards zk rather than λnzk.

This demonstrates that the power method is essentially a fixed-point algorithm for the

mapping Hz/R(z) over the set IRn \ {o}. A sample program in pseudo code can be found

in the Appendix.

However, a specific problem may arise in empirical applications if the matrix of pro-

duction coefficients for intermediate inputs A satisfies the so-called Brauer-Solow column

sum and row sum conditions (see Nikaido (1975, p. 18) and Takayama (1997, pp. 363-

364)). We thereby focus on the important class of applications where interindustry flows

are measured in money value at current prices or at the prices of some base year:
n∑

j=1

aji < 1 ,
n∑

j=1

aij < 1 for all i. (8)

The first group of inequalities then demands that the sectoral total cost shares of inter-

mediate inputs must all be less than one as no sector can do without primary inputs. The

inequalities in the second group hold for many production sectors as an empirical matter of

fact and require that all sectors could make a positive money contribution to final demand

from producing just one unit of gross output each. As a consequence of (8), the sums of the

absolute column entries, respectively, of the Leontief matrix B = I−A will all be less than

2. Now consider the so-called column sum norm ‖H‖1 := max
i

∑
j |hji| of H and observe

that this norm also has the submultiplicative property ‖H‖1 = ‖BTB‖1 ≤ ‖BT ‖1‖B‖1.

Hence, because of (8), ‖H‖1 < 4 regardless of the number of industries n. At this point, we

can draw upon the fact that ‖H‖1 is an upper bound for the eigenvalues of H (cf. Wilkin-

son (1999, p. 58)). Consequently, if n increases, more eigenvalues will fall into the interval

(0, 4) and the distances between the maximum root λn and the succeeding eigenvalues of

H are likely to become small. This, in turn, would reduce the speed of convergence of the

ratios (λi/λn)k on the right-hand side of (7).

From this viewpoint, note for the power method that zk+1 = Hk+1z0 and consider the

following alternative technique which operates directly on the powers of H (cf. Wilkinson

(1999, pp. 615-617)). This technique is based on the theorem that a symmetric matrix like

H with eigensystem (λ1,x1), . . . , (λn,xn) will always possess a representation of the form

H = X diag(λi)XT where X := (x1 . . . xn) is an orthonormal matrix such that XTX = I.

Hence, Hk = X diag(λk
i )X

T , i.e.:

Hk =
n∑

i=1

λk
i xixT

i = λk
n[xnxT

n +
n−1∑
i=1

(
λi

λn
)kxixT

i ] . (9)

Again, as k increases starting from k = 1, Hk+1 → λnHk such that the ratios of two

arbitrary non-zero elements of Hk+1 and Hk like, e.g., of any diagonal elements, approach
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λn.5 We then receive λ1 = µ1 +λn in a subsequent step from applying the same algorithm

to H− λnI.

The successive product matrices Hk+1 = HkH (k = 1, 2, . . .) can be evaluated in a

straightforward way by accumulating n2 dot products (inner products) of corresponding

columns and rows, respectively, of Hk and H which involves n multiplications and n − 1

additions each. This amounts to a total of 2n3 − n2 arithmetic operations. A single

matrix iterate Hk+1 will thereby have an O(n3) operation count which means that the

associated workload is essentially cubic in the number of industries n.6 At first glance,

this compares unfavorably to the fact that the computation of all n components of a

single vector iterate zk is an O(n2) operation and thus requires an amount of work that is

quadratic in n. However, it only takes s iterations to compute H2s
by means of repeated

matrix squaring! An arbitrary diagonal element of H2s+1 can then be obtained from a

single dot product of the respective row of H2s
and column of H. Apart from this, matrix

squaring greatly benefits from symmetry. This method can thus be effective even in the

case of a large Leontief matrix with singular values which are poorly separated. A sample

computer program which terminates according to an appropriate stopping rule and which

also controls for arithmetic overflow and underflow is in the Appendix.

4 Bounds and Estimates

As we have seen in Section 3, the computation of the τ -value of an empirical Leontief

matrix B will, in general, involve extensive number crunching over a sequence of successive

iterations. Yet, quick and useful approximations of this value can already be derived from

straight formulas. We suggest three such formulas in this section. They provide an upper

bound for τ as well as two τ -estimates. Each formula operates directly on B and exploits

several eigenvalue bounds which are known from the literature.

To begin with, we refer to the fact that the moduli of the roots of a square matrix

are bounded by the smallest and largest of the singular values of this matrix (cf. Zurmühl

(1964, p. 208)). In particular, if µ1, . . . , µn are the roots of a Leontief matrix B, then

σ1 ≤ |µi| ≤ σn for all i. We may assume without loss of generality that |µ1| ≤ |µ2| ≤ . . . ≤
|µn|. Thereby:

τ := σ1/σn ≤ |µ1|/|µn| . (10)

5All rows and all columns of Hk will become parallel either to xn or to a point in the subspace spanned

by some eigenvectors xn, xn−1, . . . , xp, depending on whether there is a distinct root λn or a root λn of

multiplicity n− p + 1.
6There are more efficient, however also much more complicated, algorithms with an associated minimum

O(n2.496) burden. The interested reader is referred to Pan (1984).
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Now observe that µ1 is always real as it equals 1− χ where χ is the Frobenius root of A.

As 0 < χ < 1 (see Nikaido (1975, pp. 127-131)), µ1 will be strictly positive. Furthermore,

since χ ≥ max
i
{aii} (cf. Taussky (1951)), we conclude that |µ1| ≤ min

i
{bii}. At this point,

denote by P := min
i
{1−

∑
j aij} and Q := min

i
{1−

∑
j aji} the minimum row and column

sums of B. Then, |µ1| ≥ max {P,Q} (cp. Brauer (1946, p. 388)). In all:

max {0, P, Q} ≤ |µ1| ≤ min
i
{bii} . (11)

Next recall that the trace of a quadratic real-valued matrix always equals the sum of the

matrix eigenvalues. Hence, tr(B) :=
∑

i bii =
∑

i µi ≤ |µ1| + (n − 1)|µn|. Again, due to

|µ1| ≤ min
i
{bii} because of (11), it follows that |µn| ≥ 1

n−1(tr(B)−min
i
{bii}). Finally, let

R := max
i
{1 − aii +

∑
j 6=i aij} and S := max

i
{1 − aii +

∑
j 6=i aji} stand for the maxima

of the sums of the absolute entries to the n rows and columns, respectively, of B. Then,

|µn| ≤ min {R, T} (cf. Brauer (1946, p 388)). After all:

1
n− 1

(tr(B)−min
i
{bii}) ≤ |µn| ≤ min {R, T} , (12)

which completes our preparatory remarks on suitable bounds for the eigenvalues of B.

We are now in the position to establish an upper bound τ̄ for our robustness measure τ

and to suggest two deterministic τ -estimates τ̂1 and τ̂2. Both the bound and the estimates

are build from the right-hand and left-hand sides in (11)-(12). The respective expressions

have been collected in Table 1 for notational convenience:

a := max{0, P, Q} b := min
i
{bii}

c :=
1

n− 1
(tr(B)−min

i
{bii}) d := min{R, T}

Table 1: Shortcuts

According to (11)-(12), we verify from (10) that the subsequent ratio τ̄ constitutes an

upper bound for τ :

τ ≤ b

c
=: τ̄ . (13)

We stress that this bound depends exclusively on the diagonal entries to B and that it

can be evaluated with very little computational effort. A small further effort is required if

we replace |µ1| and |µn| by the arithmetic means 1
2(a + b) and 1

2(c + d) of their respective

bounds in (11)-(12). The resulting ratio τ̂1 can be considered an estimate of τ which also

takes advantage of off-diagonal information on B:

τ̂1 :=
a + b

c + d
. (14)
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Our second estimate τ̂2 is a variation on τ̂1. We resort to weighted arithmetic means of

the bounds a and b and, respectively, c and d:

τ̂2 :=
Aa + (1−A)b
Cc + (1− C)d

, (15)

where A := a/(a + b) and C := c/(c + d). All of the above three formulas (13)-(15) can

provide valuable approximations to the τ -values of empirical Leontief matrices as will now

be illustrated in our final section.

5 Empirical Results

We conclude with a selection of empirical studies. They are meant to illustrate the range

of possible and reasonable sizes of our robustness measure τ in applied cases. Another

objective of these studies is to examine the usefulness of the concepts which we introduced

in the preceding section. Our sample set consists of a total of 26 Leontief matrices for

domestic production (one matrix) or for domestic production and competitive imports (all

other matrices) of either 12, 58, or 59 industries. We compiled these matrices from input-

output tables of the German Federal Statistical Office over the period 1978-1997. Each

such table has been constructed by the Office from underlying supply and use accounts as

recommended in the ESA and SNA (see Stahmer (1979) for the conversion procedure). We

emphasize that we use these tables for the purpose of demonstration only. Therefore, we

do not go into further statistical details. The interested reader is referred to the References

at the end of this paper.

The τ -measures which can be associated with the Leontief matrices in the data set are

provided in Table 2. Each measure has been computed both from the power method (PM)

and the method of matrix squaring (MSQ) as indicated in the Appendix. Note that the

threshold ε was set to 10−8. The resulting total number of iterations k needed to calculate

approximations to σ1(B) and σn(B) is reported in the last two columns of Table 2. For

each sample matrix B, we also simulated the effect of a 1% increase in the underlying

non-zero input coefficients upon the corresponding matrix inverse. Let εij stand for the

arithmetic mean of the absolute changes (in %) in all non-zero elements of B−1 which

result from such an increase in a single coefficient aij . The largest mean ε := max{εij}
is communicated in the fourth column of Table 1. The next column holds the respective

variance Σ in the elements of |∆B−1|.

Table 2 shows that the τ -measures fall into the interval [0.3528, 0.4583] for the smaller

12-sector input-output tables and into the interval [0.0717, 0.1435] for the medium-size

58-sector and 59-sector tables. This indicates that a Leontief matrix tends to be more



R. Wolff: A Global Robustness Measure 12

Year n τ ε Σ k PM k MSQ

1978 12 0.3984 0.2364% 0.0016% 333 19

1978 58 0.0991 0.3027% 0.0168% 213 19

1980 12 0.3528 0.2559% 0.0020% 174 18

1980 58 0.0842 0.3187% 0.0195% 229 18

1982 12 0.3577 0.2241% 0.0015% 184 18

1982 58 0.0721 0.3843% 0.0275% 210 17

1984 12 0.3620 0.2196% 0.0015% 187 18

1984 58 0.0717 0.3870% 0.0276% 204 17

1985 12 0.3651 0.2184% 0.0015% 224 18

1985 58 0.0765 0.3513% 0.0229% 212 17

1986 12 0.3946 0.1903% 0.0011% 268 19

1986 58 0.0975 0.2965% 0.0157% 203 18

1987 12 0.4098 0.1727% 0.0010% 367 19

1987 58 0.0922 0.3231% 0.0191% 214 18

1988 12 0.4042 0.1797% 0.0011% 368 18

1988 58 0.1111 0.2669% 0.0129% 210 19

1990 12 0.4011 0.1582% 0.0008% 135 19

1990 58 0.1204 0.2263% 0.0098% 216 18

1991 12 0.3962 0.1566% 0.0008% 187 20

1991 58 0.1110 0.2580% 0.0121% 235 19

1993 12 0.3811 0.1427% 0.0006% 253 19

1993 58 0.1186 0.2295% 0.0096% 214 19

1995 12 0.4583 0.1207% 0.0002% 85 17

1995 59 0.1380 0.3169% 0.0099% 154 18

1997 12 0.3909 0.1003% 0.0002% 203 18

1997 59 0.1435 0.2999% 0.0089% 147 18

Table 2: Empirical τ -Measures

robust for less disaggregated tables. We consider this a plausible and intuitive outcome

as the condition of a limit 1 × 1 Leontief ‘matrix’ is always equal to 1. The maximum

average changes ε which are associated with the lowest τ -figures turn out to be as high as

0.2559% (1980) and 0.3870% (1984). We conclude from this that the respective Leontief

inverse can be strongly affected even by small changes in the involved input coefficients.

The underlying Leontief matrix should thus be taken with caution as potential errors in

the matrix elements or unforseen technology changes may have a significant impact on

projections which are made from this matrix, on the one hand. On the other hand, the

German Federal Statistical Office has gained much experience in the making of input-

output tables in the last more than 20 years. This suggests that τ -values in the range
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Year n τ τ̄ τ̂1 τ̂2

1978 12 0.3984 0.5861 0.3270 0.3461

1978 58 0.0991 0.1460 0.0475 0.0937

1980 12 0.3528 0.5544 0.2939 0.3107

1980 58 0.0842 0.1385 0.0445 0.0873

1982 12 0.3577 0.5928 0.3066 0.3295

1982 58 0.0721 0.1202 0.0387 0.0761

1984 12 0.3620 0.5979 0.3041 0.3296

1984 58 0.0717 0.1199 0.0386 0.0759

1985 12 0.3651 0.6004 0.3082 0.3298

1985 58 0.0765 0.1298 0.0417 0.0820

1986 12 0.3946 0.6387 0.3448 0.3542

1986 58 0.0975 0.1511 0.0486 0.0955

1987 12 0.4098 0.6511 0.3497 0.3622

1987 58 0.0922 0.1390 0.0448 0.0882

1988 12 0.4042 0.6382 0.3401 0.3564

1988 58 0.1111 0.1632 0.0525 0.1031

1990 12 0.4011 0.6859 0.3662 0.3783

1990 58 0.1204 0.1823 0.0587 0.1154

1991 12 0.3962 0.6850 0.3631 0.3782

1991 58 0.1110 0.1673 0.0539 0.1061

1993 12 0.3811 0.7158 0.3817 0.3939

1993 58 0.1186 0.1820 0.0591 0.1167

1995 12 0.4583 0.7661 0.4545 0.4620

1995 59 0.1380 0.2016 0.0596 0.1119

1997 12 0.3909 0.8118 0.4031 0.4640

1997 59 0.1435 0.2108 0.0704 0.1408

Table 3: Empirical Bounds and Estimates

of 0.45 for small tables and 0.15 for medium-size and bigger tables can be considered a

benchmark result for robust Leontief matrices.

The τ -measures in our sample are compared in Table 3 to their upper bounds τ̄ and to

the estimates τ̂1 and τ̂2 which we introduced in Section 4. The content of Table 3 is further

illustrated in Figures 1-3. In view of Figure 1, it appears that τ and its bound τ̄ are highly

correlated, although τ̄ does not contain any information on the off-diagonal elements of

the respective Leontief matrices. Hence, the main diagonal entries to a Leontief matrix

already seem to account for a large share in the variation of τ . More formally, the OLS

estimation of the model of simple regression τ = βτ̄ + u yields the following results to be
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Figure 1: τ -Value and Upper Bound τ̄

explained below:

τ = 0.5942 τ̄ , DW = 2.139 , R2 = 0.9868 .
(57.41)

(16)

The t-statistic given in parentheses has 25 degrees of freedom. We infer from a single-tail

t-test that the estimate β̂ = 0.5942 is statistically significant at the 1% level of significance.

We also cannot from the Durbin-Watson statistic DW reject the null hypothesis that there

is no first-oder autocorrelation in the disturbances u. Finally, we find that the coefficient

of determination R2 is close to 1. In passing, note for the above model of simple regression

with zero intercept that R2 coincides with the Bravais-Pearson correlation coefficient for

a linear relationship between the dependent and explanatory variables.

An inspection of Figures 2 and 3 reveals that τ̂1 and, in particular, τ̂2 appear to be

useful approximations to τ . For example, the OLS estimation of τ = βτ̂2 + u gives:

τ = 1.0473 τ̂2 , DW = 2.292 , R2 = 0.9849 .
(56.26)

(17)

The interpretation of this equation is much like the interpretation of equation (16). How-

ever, now we should also test the null hypothesis H0 : β = 1 against the alternative

hypothesis H1 : β 6= 1. The corresponding t-statistic comes out as 2.5419 and indicates

that we cannot reject the null hypothesis at the 1% significance level.
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Figure 2: τ -Value and Arithmetic-Mean Ratio τ̂1
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Figure 3: τ -Value and Weighted-Arithmetic-Mean Ratio τ̂2

We end this section with a short remark on computational evidence. In almost all

applications, we found that the respective norm ‖H‖1 was less (often: much less) than

4. Only three applications had an associated norm ‖H‖1 which was slightly above 4.

However, even in the cases of up to 59 production sectors, both the power method and the

method of matrix squaring worked fine and consumed at most a few seconds of computing

time on a modern personal computer in order to find tolerable approximations to the
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respective τ -values. It turned out that the power method operated noticeably faster on

bigger matrices from which we conclude that the problem of poorly separated eigenvalues

of H does not seem to have been an important issue for the matrices in the sample set.

6 Conclusion

This study has investigated the problem of robustness of input-output projections in the

context of the new European System of National and Regional Accounts (ESA) and of the

System of National Accounts (SNA). We argued that the entries to a symmetric input-

output table should be considered as estimates of the underlying true economic relation-

ships and that they may be distorted for various reasons. In particular, both the ESA

and SNA recommend that symmetric input-output tables be constructed from separate

make and use matrices. These matrices may come from very different and incompatible

statistical sources. The conversion of two such matrices into a symmetric input-output

table involves the non-trivial transfer of the by-products of each industry to the industry

to which these goods belong. Deterministic scaling algorithms which are frequently used

in the making of input-output tables are a further cause of data biases, as well as aggre-

gation errors, measurement errors and rounding. Apart from all this, even good estimates

may soon be rendered obsolete if technology changes.

These problems may seriously affect the projective power of an empirical input-output

model. Therefore, we proposed a measure τ of robustness of input-output projections with

respect to errors or changes in the underlying input coefficients for intermediate flows. In

contrast to the literature, τ is a global measure which characterizes a complete Leontief

matrix. We suggested that statistical offices and research institutes report this measure

along with their input-output tables and that it may thus serve as a helpful supplementary

information on the overall condition of the supplied data. Formally speaking, our measure

τ corresponds to the inverse of the spectral condition number which can be associated

with every empirical Leontief matrix. We argued that the numerical computation of this

number can be performed with the help of standard routines. Furthermore, we showed that

convenient approximations of our measure can already be derived from straight formulas

without too much loss of knowledge.

We concluded with a large set of empirical sample applications which were taken from

publications of the German Federal Statistical Office. These applications revealed that

τ -figures in the range of 0.45 for small tables and 0.15 for medium-size and bigger tables

may be considered a benchmark result for robust Leontief matrices. Our approximation

formulas proved to be very useful.
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Appendix

Table A1 provides a pseudo-code implementation of the power method. The user has to supply

the matrix H = BT B while the routine computes numerical approximations to the maximum root

and an associated eigenvector, respectively, of H. Output is returned in λ and z. The routine will

terminate if λ does not change by more than ε or otherwise after kmax iterations. Both ε and kmax

are also user input:

Input: H, ε, kmax

Output: λ, z

λ := 1, z := ι, k := 0

DO

k := k + 1, θ := λ

y := Hz
z := y/‖y‖2
λ := zT Hz

LOOP WHILE (|λ− θ| > ε AND k < kmax)

Table A1: The Power Method

Note that λ = 1 and zT = ιT := (1 . . . 1) upon initialization. This may be modified, e.g., if helpful

a-priori information is available to the user. Also note that the Euclidean norm ‖y‖2 :=
√

yT y of y

has been utilized for scaling in order to prevent arithmetic overflow or underflow. The eigenvalue λ

will thus be approximated by the Rayleigh quotient associated with a normalized z which satisfies

zT z = 1. In general, all vectors and matrices and also λ, θ and ε should be stored in a high-precision

format, whereas k and kmax will be short (in exceptional cases long) integers.

The technique of matrix squaring is coded in Table A2. The resulting eigenvector to λ is

returned in h1 which is the first column of H. Observe that the user-supplied H will be destroyed.

All elements of H are scaled by its entry |hij |max of maximum modulus. The user may also consider

to scale H with a power of 2 close to |hij |max in order to avoid roundoff:
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Input: H, ε, kmax

Output: λ,h1

λ := 1, y := h1, k := 0

DO

k := k + 1, θ := λ

H := HH
H := H/|hij |max

λ := hT
1 y/h11

LOOP WHILE (|λ− θ| > ε AND k < kmax)

Table A2: Method of Matrix Squaring

The symmetry of H should be exploited when coding the expression H := HH. Table A3 gives

an example. We assume that the user has allocated memory for a matrix Q = (qij)n×n which can

hold H. The columns of Q are labelled qi (i = 1, . . . , n). We economize on the computation of

(n2 − n)/2 dot products as we can do without separate calculation of the sup-diagonal entries to

H:

Input: H, n

Output: H := HH

Q := H

FOR i = 1 TO n

FOR j = 1 TO i

hij = qT
i qj : IF j < i THEN hji = hij

NEXT j

NEXT i

Table A3: Exploiting Symmetry
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