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Abstract 

 This paper aims to study some of the factors that influence the sectoral diffusion 

of innovation. The final objective is to arrive at a model of innovation diffusion in order 

to analyse how different economic policies can help to promote it. 

 In the first place, an exploratory analysis is carried out in which some new 

statistics such as the sectoral autocorrelation coefficient are used. Secondly, causal 

analysis is conducted through a sectoral econometric model, where the input-output 

technical coefficient matrix is used as intersectoral interdependence. 

 The proposed model is applied to the Spanish economy using data for the 

periods 1995 and 2001. 
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1.- Introduction 

 In a variety of ways, input-output (I-O) analysis ⎯as originally conceived by 

Leontief⎯ plays an important role in quantitative economics and is an integral part of 

econometrics. Sometimes it is used more directly in the form of non-stochastic 

measurement, although the usual way that the subject is used in econometrics is coupled 

with statistical inference methods. Nevertheless, the use of I-O analysis ideas in 

econometrics goes far beyond conventional model building. By analogy, it affects many 

branches of econometric work and the modelling of intersectoral trade flows (Klein, 

1989). In fact, new developments in the study of technical change appear to be 

particularly promising when they are approached within the framework of I-O analysis. 

 The original static I-O problem has traditionally been the search for an 

“equilibrium” output vector for the I-O sectors composing the economic system, in such 

a way that it could conveniently face the predetermined final demand vector. 

Particularly, when expressed according to I-O sectors and induced industrial demand, 

we have that: 

x  = A   +        (1) x f

and the solution is the standard demand side Leontief model: 

x  =         (2) 1)( −− AI f

where:  is a column vector of output,  is a column vector of final demand, x f I  is the 

identity matrix, and A  is the interindustry matrix of direct input coefficients. The 

matrix  is usually referred to as the Leontief multipliers matrix and its elements 

show the direct and indirect requirements of output per unit of final sectoral demand. 

1)( −− AI

 Moreover, according to the INFORUM2 approach to interindustry modelling 

(Almon, 1991) both real and nominal sides are fully integrated and the original I-O 

equation can be rewritten (Bardazzi, 1996) as: 

x  =       (3) 1)( −− AI ),,( zpxh

where  denotes the variables that are assumed to be exogenous to the model and z p  

represents prices. So, the endogenization of final demand allows prices and quantities to 
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be meaningfully incorporated as endogenous explanatory variables and to explicitly 

express the vector of sectoral outputs as depending on a bunch of exogenous variables.  

 Once equation (3) has been reached, new issues must be faced. In particular, 

topics such as specifying and jointly estimating the model must be addressed. The first 

topic is dealt with immediately, while an answer to the second one is developed later in 

the paper. Specifically, a feasible specification for equation (3) could be achieved 

through an econometric model like the following: 

x  =  + 1β
1)( −− AI 1z 2β

1)( −− AI 2z  + ….. + u     (4a) 

where , , … are the coefficients, , , … are column vectors of regressors, 

andu  is a column vector of random variable. 

1β 2β 1z 2z

 Equation (4) could be economically interpreted as a linear production function 

where variables , ,  are the inputs (e.g. physical and human capital). However, it 

shows several limitations, one of which is that this specification does not distinguish 

between intersectoral and intrasectoral effects. The intersectoral effects are the result of 

interaction among sectors (interindustrial relationships), while the intrasectoral effects 

are consequence of each sector’s size and efficiency. So, in order to reinterpret equation 

(4a) to focus on spillovers, the matrix of technical coefficients, 

1z 2z 3z

A , is decomposed ⎯in 

equation (4b)⎯ as a sum of two matrices, B and . C B is a null diagonal matrix with 

off-diagonal elements identical to those in A , and C  is the diagonal matrix of internal 

sectoral technical coefficients, that is  = diag(C A ). So, we have that: 

   =  +  + …..  +  u  (4b) x 1β
1)( −−− CBI 1z 2β

1)( −−− CBI 2z

which when used in the present case B C ≈ 0, could be approximated by: 

   ≈  +  …..  +    (4c) x 1β ))()(( 11 −− −+−+ CICBIBI 1z u

in order to eventually reach the following expression: 

   ≈ +  +  +  …..  +  u  (4d) x 1β 1z 1β
1)( −− BIB 1z 1β

1)( −−CIC 1z

which has a very rich interpretation from an economic perspective. Particularly, 

following van der Linden and Oosterhaven (1995), the first term of the second part of 

equality is the impact multiplier; the second term captures intersectoral spillovers, while 

the third term covers intrasectoral spillovers. 

 Equation (4d), however, which could be observed as a model in reduced form, 

has significant drawbacks when it comes to being interpreted and estimated that should 

not be ignored. These include: 
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• The coefficients of intersectoral and intrasectoral spillovers are equal. This is very 

rare, as it would imply that both kinds of spillovers would be equally significant.  

• It is impossible to distinguish between the effect and the spillover of each factor. 

• And, from an econometric viewpoint, equation (4d) has serious multicolinearity 

problems. 

Nevertheless, in this work equation (4) is used a reference and it has been our 

source of inspiration in order to develop the model that, including intersectoral 

interdependence, we propose in this manuscript. However, the model will be specified 

in structural form and the resulting equation will be estimated using a procedure that 

takes into account intersectoral relationships to deal with the aforementioned problems. 

Regarding this last issue, we find that spatial econometrics ⎯after the necessary 

adjustments⎯, constitutes an excellent tool to tackle this problem, Anselin (1995). So 

from this point onwards, sectoral econometrics will be called the use of spatial 

econometrical techniques to analyse intersectoral relationships. 

 The rest of the paper is organised as follows. Section two introduces the novel 

concept of sectoral autocorrelation. In Section three develops the econometric model 

and discusses the alternatives. In section four the model previously suggested is 

estimated and results are presented. Finally, section five summarises and concludes the 

paper.  

 

2. Sectoral Autocorrelation: a New Concept  

 According to the reasoning in the previous section, the proposed model would be 

characterised by the presence of sectoral interdependence. That is to say, intersectoral 

relationships should be included. Theoretically speaking, it is logical to assume the 

existence of sector interdependence, as an increase in production in one sector leads to 

greater production in the rest of sectors. However, these sectoral relationships are not 

symmetrical, as an increase in one sector will not affect the rest of sectors equally. 

Consequently, before the causal specification of an econometric model of sectoral 

innovation diffusion, which can explain sectoral interdependence clearly, we must let 

the data talk. This makes studying the univariante sectoral dependence of each variable 

and analysing the possible presence of sectoral autocorrelation a must. 

 The concept of dependence or sectoral autocorrelation therefore emerges when 

there is a relationship between what happens in one sector and what happens in the rest. 
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That is, the value that a variable takes in one sector not only depends on the sector’s 

own characteristics, but also on the value this variable takes in the rest of sectors.  

 The concept of sectoral autocorrelation will therefore be developed similarly to 

that of special autocorrelation. So, sectoral autocorrelation is multidirectional, as is the 

case with spatial autocorrelation and opposite to temporal autocorrelation, which is 

unidirectional. Thus, the concept needs a matrix of sector weightings (called a non-

stochastic square matrix) to be defined, which has variables that capture the degree of 

interdependence between pairs of sectors. 

 Sectoral autocorrelation or the degree of sectoral dependence can be captured by 

means of the I statistic (Moran, 1948), which is defined as: 

I = 
∑ ∑i j ijw

N  
∑

∑
−

−−

i i

ij jiij

XX

XXXXw
2)(

))((
    (5) 

where and  are the observations for sector i and j of the variable of interest, iX jX X is 

the sectoral average,  is the number of observations and  is the i-j element of the 

row-standardised W matrix of weights. As the factor equals  in the case of a 

row-standardised matrix of weights, the first quotient of (5) is equal to one, so following 

Cliff and Ord (1981) this statistic has normal-standard distribution under the null 

hypothesis of sectoral independence in the variable under analysis. The rejection of the 

null hypothesis indicates that the distribution of the variable among sectors is non-

random, and that it follows the patterns defined in the matrix of weights. 

N ijw

∑ ∑i j ijw N

 Sectoral autocorrelation can be positive or negative. For example, positive 

sectoral autocorrelation exists if the presence of a particular phenomenon in one sector 

favours the diffusion of that same phenomenon to the rest of sectors. 

 Once the concept of sectoral autocorrelation has been defined and a coefficient 

for its measurement has been exposed, the next question to be studied is the influence of 

interindustrial inequalities in the distribution of activity and how this affects sectoral 

production activity. So, some Spanish economic variables ⎯usually identified in the 

literature as key explanatory variables⎯ are analysed in this section in order to find out 

whether they display sectoral autocorrelation. However, the question of what weight 

matrix could be used is unclear. 

 Indeed, there are no universal criteria for defining the weight matrix and the use 

of different matrices could be argued. However, we are of the opinion that sectoral 

dependence is properly captured by the Leontief technical coefficient, so the internal 
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technical coefficient matrix, A , is used in this paper as a measurement of sectoral 

interdependence. Nonetheless, despite considering a matrix of weights based on the 

direct input coefficients among sectors, the distance between two sectors can differ from 

interindustry distance. Thus, for example, Schumpeter defines a coefficient of 

innovative contiguity between productive sectors, , if the intensity in their 

commercial relationships is higher than the average. 

1=ijw

 Table 1 shows the results of computing Moran’s I statistic for several variables. 

In all cases, the null hypothesis of random distribution is rejected and positive evidence 

of the existence of sectoral autocorrelation among Spanish sectors is thereby obtained. 

These results mean that productive activity in one sector is correlated to the profitability 

of other sectors. 

 
Table 1.   Sectoral Autocorrelation in Productive Activity  

(Moran’s I test, normal approximation) 
Moran Index z-value Prob 

Production 0.243 2.922 0.00 
Value added (VA) 0.194 2.381 0.02 
% of employees that at least began secondary 
                          or higher levels of education 

 

0.355 
 

4.122 
 

0.00 

Wage earnings 0.268 3.184 0.00 
Overall earnings 0.199 2.446 0.01 
Number of employees 0.151 1.911 0.06 
Physical Capital 0.138 1.784 0.08 
Source: Own elaboration using data fromINE. 
 

3.- The econometric model  

 Production function framework determinants have been modelled, among others, 

by Leontief (1951), Chenery and Clare (1959), Arrow et al. (1961), Griliches (1967), 

Berndt (1991), Intriligator et al. (1997), and Bernstein (1997). Traditionally, capital 

assets  and the labour force  have been considered the key factors in the 

production function, which is: 

iK iL

iQ  = f ( , )       (6) iK iL
 However, in addition to these elements, other factors have also been taken into 

account. Klein (1952) set up the extended production function more than 50 years ago 

after including the intermediate consumptions in the equation. Likewise, other 

approaches, such as the KLEM and KLEMI production function (see Jorgenson et al. 

(2000) and Klein et al. (2001)) make it possible to incorporate alternative factors into 

the model, obtaining an equation like the following:  

 6



iQ  = f ( , , , ,…)     (7) iK iL iH iRD

where  represents human capital and  denotes research and development 

expenditures. 

iH iRD

 Nevertheless, equations (6) and (7) both omit the interrelationships among 

different productive sectors (interindustrial effects) when these interrelationships could 

be regarded as the local spillovers of the productive system. Inappropriately omitting 

these effects when estimating equation (7) would generate sectoral autocorrelated 

residuals, whichwould result in inefficient parameter estimates and inference problems, 

similar to what happens in temporal autocorrelation. In this case, sectoral econometric 

methodology provides techniques to solve these problems. 

 Therefore, taking these ideas and equation (7) into account, we begin our 

analysis of innovation determinants by using the following model specification 

(variables and data sources used in the empirical application carried out in the next 

section are detailed in Table 2): 

iQ  =  +  +  +  +  +    (8) 1β 2β iK 3β iL 4β iH 5β iRD iu

iiiiii uKKKKQ +++++= 11121 βββββ  

where  is a random effect that could show sectoral dependence problems. iu

 Nevertheless, if sectoral statistics applied to estimating equation (8) point to the 

existence of sectoral dependence in the model, it will have to be reformulated and, 

therefore, sectoral dependence must be explicitly considered in the model’s 

specification. We deem such sectoral autocorrelation in production activity to be a form 

of intersectoral spillover that can determine the system in the economy. Thus, we 

specify the model as: 

Q  =  +  + 0β 1β QWwd 3β K  +  +  4β L 5β H + 6β RD  + u    (9) 

where , Q K , , L H , RD  and  are the vectoral versions of the variables presented in 

Table 2, and  = 

u

wdW A  - diag( A ) is the weight matrix defining the interindustry or trade 

proximity of sectors and quantifies the intersectoral spillover. Therefore,  (a 

weighted sum of interrelation activity in the sectors) represents the sectoral lag for 

production. 

QWwd

 Note that in the way in which equation (9) has been built up, the model does not 

appear to be especially difficult to estimate by using standard procedures of sectoral 

econometrics, since the target sector does not take part in the construction of the 
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variable . However, the flipside of the coin is that this equation fails to capture 

intrasectoral relationships. Hence, in order to make up for this, model (9) could be 

generalised to include intrasectoral as well as inter-sector relationships. In order to 

achieve this, using the main diagonal elements of Leontief technical coefficients  = 

diag(

QWwd

dW

A ) as an indicator of intrasectoral features, a supplementary exploratory variable 

is added to the previous model. Therefore, equation (9) will now read: 

  =  + +  + Q 0β 1β QWwd 2β QWd 3β K  +  +  4β L 5β H + 6β RD  +  (10) u

 Estimating equation (10), however, cannot be directly tackled by means of 

econometric procedures, since the explanatory variable  included the endogenous 

variable. So, in order to overcome these limitations, equation (10) could be rewritten, 

after reorganizing terms, in reduced form as: 

QWd

 ( )dWI 2β− Q =  +  + 0β 1β QWwd 3β K  +  +  4β L 5β H + 6β RD  + u  (10.a) 

or equivalent to: 

Q = ℓ +  + 0β ( ) 1
2

−
− dWI β 1β ( ) 1

QWwd2
−

− dWI β 3β ( ) 1
2

−
− dWI β K  

+  + 4β ( ) 1
2

−
− dWI β L 5β ( ) 1

2
−

− dWI β H  + 6β ( ) 1
2

−
− dWI β RD  +  (10.b) u

 where ℓ  is a vector of one with proper size. 

 The endogeneity problems displayed by equation (10) have been solved in 

equation (10.b) and the model is ready to be estimated by using non-linear procedures. 

For instance, estimates of (10.b) parameters’, conditioned to different values of , 

could be obtained through either Conditioned Maximum Likelihood or 

2β

Least Squares. 

 Finally, we can obtain an expression that shows some analogy with (4.d) using 

 = I +  and replacing it in (10.b): ( ) 1
2

−
− dWI β 2β dW ( 1

2
−

− dWI β )

Q = + 0β 0β 2β dW ( ) 1
2

−
− dWI β ℓ +   + 1β QWwd 1β 2β dW ( ) 1

2
−

− dWI β QWwd  

+ 3β K +  3β 2β dW ( ) 1
2

−
− dWI β K +  + 4β L 4β 2β dW ( ) 1

2
−

− dWI β L  

+ 5β H  + 5β 2β dW ( ) 1
2

−
− dWI β H  + 6β RD  

+ 6β 2β dW ( ) 1
2

−
− dWI β RD  + u        (11) 

 Indeed, when comparing equation (4d), which is derived from input-output 

analysis and equation (11), we found some similarities between them. The main 
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difference remains the fact that the diagonal matrix of technical coefficients is 

multiplied by the parameter  in equation (11). Hence, when  = 1, both equation 

(4d) and (11) are similar to each others in many ways. 

2β 2β

 

Table 2. Variables, Measurement and Data Sources 
Variable Measurement and data sources Expected 

sign 
Q  Production sectors. 

Source:  Spanish National Accounts INE  
A = +  wdW dW Weight matrix. Interindustry matrix of direct input coefficients. 

Source: Spanish National Accounts INE 
 

wdW  Weight matrix. Inte-industry matrix of direct input coefficients. 
Without the elements of the main diagonal. 
Source: Spanish National Accounts INE 

 

dW  Weight matrix. Intraindustry matrix of direct input coefficients. 
Only includes elements from the main diagonal. 
Source: Spanish National Accounts INE 

 

QWwd  
 

Intersectoral spillovers: sectoral lag for production.  
Source: self calculations with weight matrix.  

+ 

QWd  
 

Intrasectoral spillovers: sectoral lag for production.  
Source: self calculations with weight matrix.  

+ 

K  
 

Capital assets. 
Source: Fundación BBVA and IVIE.  

+ 

L  Number of employees by sector. 
Source: Spanish National Accounts and EPA. INE  

+ 

H  Relative number of employees that at least began secondary or 
higher levels of education by sector 
Source: Population Census. INE.  

+ 

RD  R&D expenditure by sector. 
Source: INE.  

+ 

INE: Spanish National Statistical Institute (www.ine.es); Hispalink (www.hispalink.org); IVIE: Instituto Valenciano 
de investigaciones económicas (www.ivie.es) 
*Agriculture, energy, intermediate goods, capital goods, consumption goods, construction, transport and 
communication services, market services and non market services.  
 

4.  Econometric results 

 In this section we estimate the model proposed in the previous section. The 

model has also been estimated by generalized least square estimator. After that a a test 

for the presence of sectoral autocorrelation is  specified in equation (8). Table 2 shows 

the variables used, while the data is divided into 38 productive sectors in the Spanish 

economy from the 1996 Spanish input-output table. 

 The econometric results are presented in Table 3. The signs of the outcomes are 

consistent with the anticipated results (see Table 2). Therefore, we find that both 

classical production factors (capital assets and labour force) and structural sectoral 

factors (such as human capital and R&D expenditures) promote each sector’s 
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productive activity. So, as can be deduced from the results of equation (8), both human 

capital and R&D expenditures ⎯taken as a proxy variable of innovation within each 

sector⎯ make a positive contribution to supporting the sectoral level of production. 

 Nevertheless, a more detailed observation of the estimation outcomes from 

Table 3 reveals the presence of an innovation interrelationship among the different 

sectors. Indeed, when we compare the coefficients obtained for the variable RD  in the 

three models, we find this variable to be significant in equation (8) but not when 

sectoral autocorrelation is taken into account. 

 In particular, as the ERRLM −  and LAGLM −  tests (Anselin 1988) clearly 

show, as the statistics are significant for both weight matrix A  and  at a level of 

1%, the null hypothesis of sectoral autocorrelation absence is rejected in model (8) and 

this indicated a misspecification of the model. Thereby a sectoral lag in either 

disturbances or the endogenous variable should be incorporated. The correction for 

heterocedasticity is, however, not necessary as the Breusch-Pagan test shows. 

wdW

 Following the “classical” specification search approach adopted in spatial 

econometrics and given that the value of the LAGLM −  statistic is higher than is the 

case with the ERRLM − , for both weight matrices, the estimation of the sectoral lag 

model is the preferred specification (equations (9) and (10.b)). So, the correct 

interpretation has to be made based on the sectoral lag model, which removes any 

misspecification in the form of sectoral autocorrelation. 

 The sectoral interdependence that Anselin’s tests indicated has been included in 

equation (9) through the lag term . The estimation of equation (9) confirms that 

the inclusion of this term capture the sectoral autocorrelation yields a significant 

coefficient. In this sense, the sectoral autocorrelation variable indicates that each 

sectoral productive power influences the productive activity of the rest of the sectors. 

QWwd

QWwd

 

Those spillovers are spread by interindustrial relationships using technical coefficients 

as multipliers. Moreover, adding the variable  in equation (9) has prompted R&D 

expenditures to lose significance. The effect on promoting activity that R&D investment 

undoubtedly has is swallowed up by the sectoral autocorrelation term which favours 

each sectoral production through intricate interindustrial relationships. 

QWwd
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Table 3. Estimation of production activity with interindustrial relations 
Dependent variable:  iQ

 
 

OLS Estimation Bootstrap 
CLS 

Estimation 

Variable 
 

Equation 8 Equation 9 Equation 10.b 
 

Constant 

 
          -4.850   -5.047*** 2.111 

QWwd  -  0.659* - 
( ) 1 QWwd2

−
− dWI β  - -  1.034* 

K  0.084*  0.088*     0.036*** 
L  0.314*  0.291*   0.027* 
H   0.214**    0.196***   0.340* 
RD     0.059*** 0.021  0.033 

 

AIC 

 
     1314.6 -   1308.46 

2R  0.936 0.963 0.947 
LM-ERR ( ) wdW  

0.126 - - 
LM-LAG ( ) wdW  

          11.067 - - 

LM-ERR ( A ) 
 

6.310 - - 

LM-LAG ( A ) 
 

          12.916 - - 
LR Test  7.75*       11.87* 

Breusch-Pagan (4 gl) 0.001 - 0.001 
JB normality 0.809 - 0.887 

     Source : Own Elaboration. 
                  NOTE:  Significance level indicated as * for 1%, ** for 5% and *** for 10%. 
                  Number observations = 38 
 

  

 In fact, we remember that, from an economic perspective, the variable  

could be regarded as a catalytic spillover for the diffusion of interindustrial activity. 

This fact is coherent with the hypothesis expressed during the model specification and 

with the econometric results. The coefficient of this variable displays a positive sign and 

is statistically significant, indicating that the productive power of all sectors is 

encouraged by general policies aimed at promoting R&D investments. 

iwdQW
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 Model (9) offers very rich outcomes, but does not take into account intrasectoral 

relationships. Equation (10.b) tries to fill this gap. In this model, where both 

intersectoral and intrasectoral relationships have been considered, the results bring 

similar things to light. The coefficient that quantifies both spillovers is significant, 

though with a higher magnitude. Furthermore, as was the case with equation (9), the 

R&D variable is insignificant, as the effect of this variable on sectoral production is 

now captured by intersectoral and intrasectoral interdependence. In fact, we can 

remember that equation (10.b) could be observed as a final form where the coefficients 

assess total effects. 

 

5.- Final remarks and Conclusions 

 The aim of this paper is to analyse how R&D expenditures affect productive 

activity, and how they are distributed throughout the economic system. That is, to 

analyse whether R&D expenditure on behalf of a particular sector spills over into the 

production power of the rest of sectors. 

 The input-output framework is used as a source of inspiration to reach the 

theoretical model. Unfortunately, the I-O scheme shows significant rigidity when it 

comes to quantifying both intersectoral and intrasectoral spillovers. In fact, using the I-

O approach both spillovers will display the same coefficient. In order to overcome these 

limitations, we propose an econometric model that is specified and estimated by means 

of tools from spatial (sectoral) econometrics. This technology detects sectoral 

autocorrelation and makes it possible to specify a suitable model with the desired 

properties from an econometric point of view. 

 The approach of this paper is completely original as it incorporates intersectoral 

dependences into the production function through sectoral autocorrelation. Sectoral 

autocorrelation is a novel concept indeed, which is used for the first time in this paper to 

measure interindustrial relationships and is explicitly included in the production 

function. 

 The first results indicate that the factors typically used to explain production 

(capital assets and labour force) are once again significant. In addition to these factors, 

the quantity of qualified workers (human capital) is also a key variable that promotes 

productive activity. All the results are robust since the values obtained in the three 

models estimated are quite stable and are in line with our expectations. Moreover, when 
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autocorrelation is not included in the model, sectoral R&D expenditure is recognized as 

a key variable when it comes to explaining sectoral production power. 

 Moreover, the estimates obtained when interindustrial interdependences are 

established in the production function show that both intrasectoral and intersectoral 

diffusion exists in industrial activity. Spillovers spread by means of intersectoral 

technical coefficients. To sum up, it is worth noting that the two models that included 

sectoral autocorrelation draw different coefficients for intersectoral and intrasectoral 

spillovers, thereby indicating that both types of spillovers have different effects on each 

sector. 
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