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ABSTRACT 

Regional input-output tables are usually not constructed from
 
survey data but are 

estimated. From known information about the row and column margins, the cells of the 

matrix are estimated using as a priori information either a regional matrix from a past 

period (updating) or a contemporaneous input-output table from the same time period 

(regionalization). This paper proposes the use of a composite Cross-Entropy approach 

that allows for introducing a mixture of both types of a priori information. An empirical 

application is included, where a regional input-output for Asturias (Spain) is estimated 

with this method and the result is analyzed and compared with other more traditional 

estimation techniques. 
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1. Introduction 

The input-output modelling at a regional scale is a topic that has gained a lot of 

attention in the last decades, given the huge number potential applications of such 

models (including regional SAM’s and CGE models) for economic researchers and 

policy makers. The well-known problem is that the compilation of the information 

required to build a survey-based input-output tables is extremely expensive and time-

consuming for the statistical agencies, which causes an important lag between the 

compilation of the information in the surveys and the publication of the regional table. 

Therefore, the use of some non-survey method for estimating regional IO tables is 

becoming more and more popular for input-output users.  

 

Basically, the non-survey techniques for obtaining a regional IO table consist in taking 

as point of departure an initial IO table, which is assumed to be similar to the table we 

want to estimate, together with known information on the row and column margins of 

the actual regional IO table. The basic idea of the estimation process is to choose as 

solution the table that, fulfilling the constraints imposed by the known information, is 

the closest to the prior matrix according to some divergence criterion. One of the most 

used adjusting procedures is the Cross-Entropy (CE) technique, which is based on the 

Kullback-Leibler divergence criterion. This adjusting technique has been proven to have 

an equivalent solution to the popular RAS scaling algorithm (for example, McDougall, 

1999), although some authors claim that the CE procedure is preferable to some other 

alternatives because it allows for the inclusion of a wide range of initial information to 

be used efficiently in the estimation process (Robinson et al. 2001).  

 

This paper explores from a new approach the role played by the initial information in 

the CE-based estimation process. Traditionally, the adjusting problem takes as point of 

departure either a regional matrix from a past period (updating) or a contemporaneous 

IO table from the same time period (regionalizing)
1
. The discussion on the 

characteristics of the different techniques of adjusting have attracted much attention in 

                                                 

1 
The same choice has to be made also with the RAS algorithm.

 



3 
 

the literature (see, to name but a few of examples, Mello and Teixeira, 1993; Jackson, 

1998; Gilchrist and StLouis, 1999; Jalili, 2000; Jackson and Murray, 2004; Oosterhaven 

et al., 2008, or Bonfiglio and Chelli, 2008 ). The novelty of our proposal is that it 

considers the possibility of including several initial matrices in the estimation process of 

a regional IO table, instead of choosing one of them.  

 

The paper is organized in the following sections. Section 2 presents the basis of the CE 

solution to the estimation problem of a matrix with unknown cells but with information 

on its margins. In section 3, the details of the composite CE technique proposed in this 

paper is introduced. Section 4 shows a numerical MonteCarlo experiment where the 

performance of the proposed method is compared with other competing techniques. In 

Section 5 an empirical application with a real-world example is included, where the IO 

table for Asturias (a region of Spain) is estimated. Finally, section 6 concludes the 

paper. 

 

2. The CE solution for the matrix balancing problem  

We will base our explanations on the matrix-balancing problem depicted in Golan 

(2006, page 105), where the goal is to fill the (unknown) cells of a matrix of dimension 

using the information that is contained in the aggregate data of the row and column 

sums. Graphically, the point of departure of our problem is a matrix like Table 1. 

 

 

 

Table 1: Known and unknown data in a matrix balancing problem. 
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The  cells of the matrix are the unknown quantities we would like to estimate (shaded 

in grey), where the aggregates , , and  are 

known. This is a familiar situation in the context of regional IO tables, where is very 

usual to have aggregate information  

(intermediate inputs and outputs per industry) earlier than the flows. 

Note that the  elements can be expressed as sets of (column) probability distributions, 

simply dividing the quantities of the matrix by the corresponding column sums . In 

such a case, the previous matrix can be rewritten in terms of a new matrix  that is 

composed by a set of M probability distributions (Table 2). 

 

 

 

 

 

 

Table 2: The matrix balancing problem in terms of probabilities. 
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 Where the  are defined as the proportions , and the new row and column 

margins as   and  respectively. Consequently, the followings equalities 

are fulfilled by the  elements
2
: 

 

(1) 

 

(2) 

These two sets of equations reflect all we know about the elements of matrix . 

Equation (2) shows the cross-relationship between the (unknown)  in the matrix 

and the (known) sums of each row and column. Additionally, equation (1) indicates that 

the  can be viewed as (column) probability distributions. Note that we have only 

 pieces of information to estimate the    elements of matrix , which 

makes the problem ill-posed.  

 

The solution to this type of problems can be obtained by minimizing a divergence 

measure with a prior probability matrix  subject to the set of constraints (1) and (2). 

This is called a Cross-Entropy (CE) problem, which can be written in the following 

terms: 

 

(3) 

                                                 

2
 Note that in such a case, these elements can be seen as conditional probabilities to each column. 
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Subject to the same restrictions given by the set of equations () and (). The divergence 

measure  is the Kullback-Liebler entropy divergence between the posterior and 

prior distributions. The Lagrangian function for the CE problem is: 

 

(4) 

And the solutions are: 

 

(5) 

 

The CE estimation procedure can be seen as an extension of the Maximum Entropy 

(ME) principle (or alternatively the ME can be considered as a particular case of the CE 

procedure), given that the solutions of both approaches are the same when the  a 

priori probability distribution contained in  are all uniform.
3
 It is well-known that 

depending on the choice made when specifying , the general matrix adjusting problem 

can be posed as an updating (if we take as prior a previous regional IO table ) or a 

regionalizing problem (if the national IO table  contemporaneous to the regional 

table we want to estimate is our prior).
4
 In some cases there is no room for this choice, 

simply because only one of these tow priors is available. But it may well be that for one 

specific period and region we can both use as prior matrices  or . This situation is 

becoming more and more frequent in countries with long tradition in building survey 

regional IO tables. 

 

3. A composite CE method: the DWP estimation technique 

                                                 

3 In other words, the ME solutions are obtained by minimizing the Kullback-Liebler divergence  

between the unknown  and the probabilities . 

4
 See Hewings (1984) for a detailed discussion on the role played by the prior information in such 

estimation problems. 
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The above sketched procedure can be extended in order to develop a more flexible 

estimator that allows for including in the estimation process both prior matrices  and 

. Related to the Bayesian Method of Moments (BMOM, see Zellner, 1996, 1997), the 

technique has been proposed in Golan (2001) as data-based method of estimation that 

uses both sample and non-sample information in determining a basis for coefficient 

reduction and extraneous variable identification. In other words, this technique allows 

for shrinking the coefficient of the explanatory variables that can be classified as 

irrelevant in a linear model. Another recent empirical application of this method can 

also be found in Bernadini (2008).  

 

Our objective in the context of a matrix balancing problem will be to identify which of 

the two priors would be preferable for each industry contained in the IO table to be 

estimated and simultaneously to obtain estimated matrices with a good performance. 

For the sake of simplicity, let us assume that we want to estimate a symmetric industry-

by-industry regional IO table ( ). If we denote with  and  the regional and 

national a priori (column) distributions respectively, the objective proposed can be 

achieved by modifying the previous CE program in the following way: 

 

 

 

 

(6) 

subject to:  

 

(7) 

 

(8) 
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(9) 

 

The  parameters are estimated simultaneously with the unknown probabilities  of 

the matrix. Each measures the weight given to the national prior  for each industry 

and it is defined as , where  and  are respectively the 

lower and upper bound defined as the support of these parameters (note that this implies 

that ). The a priori probability distributions fixed for them are 

uniform . 

 

To understand the logic of this data-weighted prior (DWP) estimator an explanation on 

the objective function of the previous minimization program is required. Note that 

equation (6) is divided in three terms. The first term quantifies the divergence between 

the recovered probabilities and the a priori probabilities where a previous regional table 

is chosen as prior, being this divergence weighted by  for each industry. On the 

contrary, the second element of (6) measures the divergence with a simultaneous 

national prior and it s weighted by . The third element in (6) relates to the Kullback 

divergence of the weighting parameters . 

 

The solutions of this minimization program are: 

 

(10) 

 

Where: 

,
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and  are the Lagrangian multipliers associated with restrictions (7). The properties of 

this DWP estimator in the context of classical linear regression models haven tested in 

Golan (2001).
5
 

 

Simultaneously to the estimation of the  cells of the matrix, the DWP estimator 

discriminates for each industry j between the two priors considered. The proposed 

estimation strategy provides estimates of the weighting parameters , obtained as: 

, (11) 

 

which can be used as a tool for this purpose. Note that as the regional prior  

gains weight for industry j and the estimates approach those of the CE updating process. 

On the contrary, large values of , the CE estimation (regionalizing) with a national 

prior  takes over. Consequently, relatively large values of  ( ) will be an 

indication of an industry j characterized by a high weight of the national prior. In other 

words, in this industry would be preferable to use a regionalizing adjustment of the 

contemporaneous national IO table rather than updating a previous regional IO table. 

On the contrary, comparatively small values of  (when ) are a signal of an 

industry j where the updating process should be preferred. 

 

4. Testing the DWP estimation technique with numerical 

experiments 

In order to test the performance of the proposed estimation technique, we have carried 

out a numerical simulation exercise where the DWP estimation is compared with a more 

traditional adjusting process where only one prior matrix is considered. 

 

                                                 

5
 Under some mild assumptions (see Golan 2001, page 177) the consistency and asymptotic normality of 

the DWP estimates can be ensured. Additionally, these assumptions also guarantee that the approximate 

variances of the DWP estimator is lower than the approximate variance of the generalized CE estimator, 

which in turn is lower than the approximate variance of a ML-LS estimator (see Golan, 2001, page 179). 
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In the experiment we have fixed a target matrix  of interindustry flows with dimension 

 where the only known information is the column and row margins. This matrix 

has been fixed as the actual industry-by-industry symmetric table for the region of 

Asturias (Spain) in 2005, published by SADEI (the regional statistical agency of 

Asturias). Moreover, the matrix  has been transformed into a matrix of column 

coefficients  to be estimated from the information contained in vectors  and y. We 

also defined several a priori matrices  to be used in the estimation of . Firstly, we 

have generated a matrix  that plays the role of a previous matrix for this region. The 

values of this matrix have been obtained as ; where  is a perturbation 

term that behaves as   and . 

 

4.1. First experiment 

Additionally to this a priori matrix, we have also generated a matrix  that is 

assumed to be a national matrix contemporaneous to our regional target matrix . The 

elements of  have been obtained as , being . Note that 

is clear that the prior contained in matrix  is closer to matrix  than the prior 

contained in . In this scenario we have estimated matrix  by three different ways: 

updating the previous regional matrix , regionalizing the national matrix  and 

using the proposed DWP estimation technique that takes both matrices as possible 

priors. These three estimation strategies correspond respectively with the minimization 

of the three following divergence measures: 

 

 

(12a) 

 

(12b) 
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(12c) 

 

subject to the same type of constraints explained before. To evaluate the performance of 

these estimation approaches, 1,000 trials have been carried out and we have computed 

the average of a measure of overall deviation between the target matrix and the 

estimates. Specifically, we obtained the mean absolute error percentage (MAPE), given 

that is frequently used in the studies that evaluate the performance of updating IO 

tables. It is defined as: 

 

 

(13) 

 

where the  elements denote the estimated flows. To extend this evaluation, we also 

obtained the deviation MAPE measure between the actual and estimated technical 

coefficients , where  and  is the total output of industry j in the target 

IO matrix. These output values are assumed as known in the experiment and they have 

been fixed as the actual output values of the regional IO table of Asturias in 2005. 

Finally, we paid also attention to the accuracy in the estimation of the output 

multipliers, obtaining the MAPE for the  elements of the matrix L, being 

 the inverse of Leontief.
6
 The following table summarizes the results 

obtained: 

 

                                                 

6
 We also follow the usual procedure of not taking into account the element on the main diagonal of L in 

this comparison, given that these cells cannot be smaller than one by definition. 
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Table 3. First experiment: average MAPE for flows, technical coefficients and 

output multipliers 

 

MAPE 

 Technique (prior used) 
   

Regionalizing ( ) 
10.56 3.85 9.56 

Updating ( ) 
5.42 1.91 4.87 

DWP ( , ) 
6.00 2.15 5.48 

 

Not surprisingly, the best results in this experiment are those obtained by the updating 

approach: given that the matrix taken as prior is closer to the target matrix than the 

matrix chosen in the regionalizing approach, the accuracy of the former technique is 

larger. It is important to note that, in such a situation, there are not gains by using the 

proposed DWP estimation. This is given by the fact that there is one a priori matrix that 

in all the cases (industries) is closer to the target matrix than the other alternative. 

Irrespectively on the industry, it would be always better to use as prior the previous 

regional table  than the competing national prior  and it would be also preferable 

to any possible combination of  and . The weighting parameters , estimated by 

the DWP technique are not very helpful either in this case 

 

Figure 1. Average estimates of the weighting parameters  in the first experiment 

 

The figure shows that the average estimates are around the threshold value 0.5 under the 

conditions specified in this first experiment. This is a signal that points out that the 
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DWP technique does not manage to discriminate clearly between the two options for 

priors. All in all, the results obtained from this first experiment seems to suggest, 

finally, that the DWP option does not perform comparatively better than an adjusting 

technique with only one prior if one of the initial matrix considered is always preferable 

than the other.  

 

4.2. Second experiment 

In the second numerical experiment we try to replicate other type of situations, where 

the use of a specific prior is not preferable to other alternative in all the cases. This 

happens in situations where the researcher wants to estimate a regional IO table 

characterized by having, in the one hand, part of its industries with in the (column) 

coefficients that present a similar distribution to a previous regional table. However, in 

the other hand, some other industries are more similar to a contemporaneous national IO 

table.  

 

Keeping the rest of conditions identical to the first one, in this second experiment we 

introduce a new national a priori ; where the elements have been defined as: 

 

 

 

In other words, this new a priori matrix is characterized by having one half of their 

columns (from industry number 1 to number 15) completely random; which means that 

in these cases it would be preferable taking  as initial matrix. However, for the other 

one half of the industries (number 16 to 30) it happens the opposite, given that the 

distribution is closer to the target matrix than the prior . Under these new conditions 

we repeated the simulation and computed the MAPE measures for the flows, technical 

coefficients and output multipliers. Table 4 reports the average results we found in the 

1,000 trials: 

 

Table 4. Second experiment: average MAPE for flows, technical coefficients and 

output multipliers 

 

MAPE 
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 Technique (prior used) 
   

Regionalizing ( ) 60.38 22.41 54.87 

Updating ( ) 5.42 1.91 4.87 

DWP ( , ) 4.84 1.82 4.72 

 

Now we observe some interesting results. Firstly, we can see how using only the new 

national IO table as prior for the estimation of our target matrix would increase the 

deviation between estimates and the actual values. The erratic behaviour we specified 

for 15 out of the 30 industries contained in  causes this result. But this does not 

mean that all the information contained in this matrix should be neglected, because in 

the other one half of the industries the column coefficients distribute closer to the target 

matrix than the regional prior . If we incorporate both matrices of a priori 

information in the adjusting process by using the DWP estimation, we let the data speak 

for themselves and choose the most appropriate prior for each industry, which in the end 

obtains smaller deviation measures.  

 

The average results obtained for the weighting parameters  also show a clear picture 

of how the DWP estimation works: 

 

Figure 2. Average estimates of the weighting parameters  in the second 

experiment 
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Note that now we have a complete different picture form the results obtained in the first 

experiment. Under the conditions described in this second experiment, the DWP 

estimation technique allows for identifying the industries where the distribution of the 

coefficients should be taken from one of the initial matrices (industries from 1 to 15). 

Even when the a priori expected value is =0.5, the information included into the 

estimation process leads the DWP technique to give much bigger weights to one of the 

priors in this first group of industries. Note also that for the second group (industries 

from 16 to 30) this information does not seem to be enough to obtain estimates of  

significantly larger than 0.5, although the overall results in terms of our MAPE 

deviation measure is satisfactory. 

 

5. An empirical application: estimating the regional IO table for 

Asturias, 2005 

As a complement to the numerical simulation made in the previous section, this section 

presents an empirical application of the proposed DWP technique and compares the 

results obtained with other competing techniques. For this purpose, we took again the 

industry-by-industry symmetric IO table for the region of Asturias (Spain) in 2005. 

Assuming that the only known information of this matrix are the row and column 

margins (intermediate outputs and inputs respectively) and the vector x of total output, 

we try to estimate the inter-industry flows matrix Z, the matrix A of technical 

coefficients and the Leontief inverse L. For this purpose, we will apply and adjusting 

process to obtain the column-coefficients matrix P from different initial matrices, all 

they having the same industry classification at 30 branches. Details of the industry 

classification are given in the Appendix. 

 

Specifically, we considered the symmetric Spanish IO table for 2005 ( , obtained 

from the Spanish Statistical Institute INE), and two previous regional matrices for 

Asturias in 1995 and 2000 ( and , respectively) published by SADEI. The 

specification of these two previous regional tables requires an explanation: if we only 

had considered as prior the regional table for 2000, we would have a situation as the one 

described in the first numerical experiment (because the coefficients in 2005 are 

probably close to those of the 2000 table). We opted for including the 1995 table as 
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initial matrix to illustrate how the DWP technique works in a case of a large time lag 

between the published regional tables. Consequently, it is probable that the regional 

economy experiences a structural change in part of their industries between 1995 and 

2005. In such a situation, taking the 1995 table as prior would not be the best option for 

all the industries, because the contemporaneous national IO table for 2005 could be 

preferable as initial distribution in the estimation of the coefficients for some industries 

(the situation studied in the second experiment).  

The following table summarizes the results obtained in this study case: 

 

Table 5. MAPE for flows, technical coefficients and output multipliers for several 

estimation strategies 

 

MAPE 

 Technique (prior used) 
   

Regionalizing ( ) 36.35 15.08 38.41 

Updating1 ( ) 24.47 9.61 24.72 

DWP1 ( , ) 25.35 10.50 27.17 

Updating2 ( ) 38.53 16.07 39.88 

DWP2 ( , ) 25.45 10.58 27.39 

 

In the estimation problem studied here, we have available a previous regional IO table 

from 2000 sufficiently close to the target matrix, so this option is always preferable to 

any other of the possible initial matrices. In line with the results obtained in the first 

numerical experiment on previous section, the proposed DWP technique does not offer 

clear gains from combining a priori matrices when we have such a scenario where one 

of them is clearly preferable to the other (comparing the DWP1 with the Updating1 

results).  

 

However, it could happen that we had not a recent previous regional IO table to update. 

This is relatively frequent for the case of the Spanish regions, where the lag between the 

published IO regional tables is sometimes 10 years or even more (in Catalonia, for 

example, the two most recent regional tables have been published in 1987 and 2001). 

What would happen for the case of Asturias if we did not have the table of 2000, but we 

had the 1995 IO table instead? We can observe in the table how a “pure” updating 

yields larger deviations than the regionalizing strategy. In such a case, where it is 
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possible that some industries had experienced a structural change (but some others had 

not) is where the DWP technique can be helpful. Note that in this case we can detect an 

improvement in the overall error measures (compare the DWP2 with the Updating2 

MAPE values). 

 

 

The estimates of the weighting parameters  from the DWP estimations in the two 

cases are also in line with the results obtained in the Monte Carlo simulations:   

 
Figure 3. Estimates of the weighting parameters  in the empirical application 

 

 
 
We can see how the DWP estimator discriminates more clearly between the national 

and the regional priors in the case where the national table for 2005 is combined with 

the regional table for 1995 (DWP2): the technique manages to identify some industries 

(industry 2, Extractive and mining activities; or in particular industry 25, Computer 

services) where the contemporaneous national prior is specially favored in the 

estimation process. Oppositely, there are other industries where the previous regional a 

priori matrix of 1995 is clearly preferred (industry 12, Steel; and industry 17, Energy). 

This discrimination is almost inexistent when the DWP combine the national 2005 table 

with the regional 2000 matrix.  

 

6. Concluding remarks 
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Regional input-output modelling often requires using some non-survey method for 

estimating IO tables at this scale. Traditionally, these techniques take an initial IO table, 

similar to the table to be estimated, which is somehow adjusted to fulfil the constraints 

imposed by the known information, and at the same time is the closest to the prior 

matrix according to some divergence criterion (the CE technique is a well-known 

example of such a procedure). The adjusting problem takes as point of departure either a 

regional matrix from a past period (updating) or a contemporaneous IO table from the 

same time period (regionalizing). 

 

This paper, however, suggest a new approach of dealing with this initial information. 

Based in a previous work by Golan (2001), the so-called DWP estimation strategy 

considers the possibility of including several a priori matrices in the estimation process 

of a regional IO table, instead of choosing only one of them. By means of a Monte 

Carlo simulation, the performance of the proposed DWP method is compared with other 

adjusting techniques. The findings of this experiment suggest that the proposal can be 

useful in situation where none of the available prior matrices is preferable to the other 

for all the cases (industries). The empirical application with a real-world example, 

where the IO table for Asturias (a region of Spain) is estimated, seems to confirm this 

conclusion. 
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Appendix: industry classification 

Industry number Industry description 

ind1 Agriculture 

ind2 Extractive and mining activities 

ind3 Mineral products 

ind4 Food, beverages and tobacco 

ind5 Textile manufactures 

ind6 Wood and cork 

ind7 Paper, publishing and editing industries 

ind8 Coke and fuels 

ind9 Chemistry industry 

ind10 Rubber and plastics 

ind11 Other non-metallic products 

ind12 Steel 

ind13 Machinery and mechanical equipment 

ind14 Office, optical and electronic products 

ind15 Transport equipment 

ind16 Manufacturing n.e.c. 

ind17 Energy 

ind18 Building materials and construction 

ind19 Commerce 

ind20 Hotels and restaurants 

ind21 Transport services 

ind22 Post and telecommunications 

ind23 Banking and insurance services 

ind24 Renting and real estate services 

ind25 Computer services 

ind26 Services to companies 

ind27 Public administration 

ind28 Education services 

ind29 Health  

Ind30 Social services n.e.c. 

 


