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ABSTRACT

Current portfolio diversification approaches typically employ variance-covariance relationships across underlying investments. Such relationships enable the calculation of volatility, which measures the risk of a portfolio. Although volatility is a widely used metric of financial risk, it needs to be extended to capture extreme market scenarios. Since covariance provides a symmetric relationship between a pair of investments, this paper will implement an input-output-based approach to measure the unaccounted asymmetric relationships. We assume that an investment’s performance can be linked to the performance of an underlying industry (or industries, in the case of conglomerates). Using the input-output accounts published by the U.S. Bureau of Economic Analysis, this paper develops a portfolio-diversification approach to supplement covariance analysis.
INTRODUCTION

The development of metrics in assessing a portfolio’s performance has been a longstanding subject in both the fields of finance and economics. The expected return and risk are two important objectives in assessing the performance of a given portfolio. The expected portfolio return is measured based on the mean of the asset returns. Jones et al. [2002] provide insightful discussions on estimating portfolio return. Portfolio risk is typically assessed as the variance of the portfolio, which in turn is derived from the covariance of the asset returns. Comprehensive studies have analyzed the tradeoffs between return and risk, asserting that higher returns are generally obtained by investors who take more risks [Kwan 2003]. 

Volatility, which describes how a portfolio’s worth can fluctuate over time, can be obtained from a calculated variance. Results of various empirical studies suggest that volatility does not entirely capture the risk characteristics during irregular market scenarios. Bouchaud and Potters [2000] show that volatility applies only to the center of the distribution of returns and can be inaccurate for aberrant market conditions. This is attributable to the fact that volatility measures deviations from the mean of a distribution and tends to commensurate average risks with extreme risks [Jansen and de Vries 1991]. Volatility also implies symmetry in the underlying distribution, which does not accurately capture the behavior of real-world markets [Parkinson 1980]. Furthermore, Longin [1996] asserts that most empirical models (including volatility-based models) are concerned with the average properties of stock price movements.

By representing the portfolio assets as “interconnected industries,” the paper explores the use of industry-by-industry interdependencies published by the Bureau of Economic Analysis [US Department of Commerce 1998] to gain additional insights on portfolio diversification. Leontief’s input-output model enables us to identify and better understand the interconnectedness and interdependencies among critical infrastructures or industry sectors of the economy [Leontief 1951, 1986]. This knowledge base is a requisite for an effective risk assessment and management process. The 9/11 terrorist attacks and recent financial sector meltdowns adversely impacted the performance of US stock market and perhaps the entire global economy. The paper offers a linkage between the interdependencies of critical sectors of the economy and the impacts of inoperability (following terrorist attacks or other extreme and rare events) on the stock market and the general economy.
EXTREME EVENTS AND THE PARTITIONED MULTIOBJECTIVE RISK METHOD (PMRM)

A hybrid of the Markowitz mean-variance portfolio-selection technique [Markowitz 1952, 2000] and the partitioned multiobjective risk method (PMRM) [Asbeck and Haimes 1984, Haimes 2004] enables analysis of extreme market events such as the four-day suspension of the New York Stock Exchange following 9/11 and the recent financial crisis, among others. In the past, the PMRM has been deployed to a variety of applications, including dam safety, flood warning and evacuation, navigation systems, software development, and project management, among others [Haimes 2004, Haimes and Chittister 1995]. The paper explores the potential use of the PMRM to complement and supplement the mean-variance portfolio-selection technique. An important rule of thumb in portfolio selection is diversifying the portfolio assets to safeguard against average, as well as extreme, portfolio risks.
Hence, there is a need for alternative measures of risk that are more appropriate for extreme market events. The conditional expected value of extreme events developed through the Partitioned Multiobjective Risk Method (PMRM) complements and supplements the mean-variance portfolio-selection technique. A measure of extreme portfolio risk is defined as the conditional expectation for a tail region in a distribution of possible portfolio returns. The proposed multiobjective problem formulation consists of optimizing the portfolio expected return vs. conditional expectation.
A conditional expectation is defined as the expected value of a random variable, given that its value lies within some prespecified range. The conditional expectations used in the PMRM can effectively distinguish low-consequence/high-probability events from high-consequence/low-probability events (i.e., extreme events). Here, emphasis is placed on the conditional expectations associated with tails—encompassing events that have catastrophic effects, although with low likelihoods. Conditional expectations can augment the commonly used measure of central tendency—the expected value or mean. For example, an upper-tail conditional expectation for a probability distribution f(x), denoted by 
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In Eq. 1, (u is a specified upper-tail partitioning along the axis of returns (i.e., (u (x<( ), which corresponds to an exceedance probability of (u (i.e., Pr(x>(u)= (u). Exhibit 1 shows the location of the resulting upper-tail conditional expectation in a distribution of returns.

PMRM-BASED PORTFOLIO SELECTION WITH LOWER-TAIL PARTITIONING 

For a given distribution of portfolio returns, the lower tail indicates the region where negative returns (or losses) are incurred. As the choice of lower-tail partition becomes smaller, the greater the emphasis would be on avoiding extreme losses. Therefore, the use of lower-tail partitioning is appropriate for risk-averse or “play-safe” investors. The formulation of the PMRM-based portfolio optimization with lower-tail partitioning is as follows: 
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Exhibit 2 gives the definitions of the variables used in the formulation. For brevity, see Santos and Haimes [2004] for the derivation details. There are several points that need to be emphasized in the PMRM-based formulation in Eq. 2. First, as with the case of mean-variance optimization, we omit the nonnegativity [image: image4.wmf]0
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 constraint when shorting is available. Second, the optimization of 
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 is based on a Boolean expression, namely the indicator variable. For such a case, we cannot implement the model in typical optimization software packages because of the presence of Boolean constraints [see Winston 1998]. Granted a sufficiently large number of iterations, the Boolean expressions can be evaluated via a genetic algorithm to generate optimal solutions. Third, the partitioning point 
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 (i.e., the probability corresponding to the lower tail) and the indicator variable 
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 as defined in Exhibit 2. When the significance level 
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, we utilize the fact that there is a one-to-one correspondence between the two. The indicator variable is the bridge in establishing the relationship between 
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Case Study: “Bear” Market Scenarios. The DJIA is a market index based on a portfolio of “blue chip” stocks. With the exceptions of acquisitions or other major corporate business shifts in its component corporations, DJIA’s 30-stock composition rarely changes. As such, it is an ideal test bed for the PMRM-based portfolio-selection problem. For the following case study, the underlying data cover the reference period from January 2, 1986 to December 31, 1996. In Exhibit 3, the expected return for each of the 30 DJIA components are estimated using formulas for annual compounding [see Hull 2002], calculated from the daily stock prices within the reference period. Likewise, every element of the covariance matrix is estimated using the statistical definition for covariance as applied to the daily stock returns realized during the reference period. The covariance describes the degree of similarity in the trajectory of the returns of a given pair stocks. For brevity, only the annualized standard deviation values of the 30 stocks are presented in Exhibit 4, which when squared give the diagonal entries of the covariance matrix.

The portfolios in the forthcoming discussions were generated using the entire sample of 30 stocks comprising the DJIA index. We assumed that shorting is not available in the case studies, for simplicity. The mean-variance (see Exhibit 5) and PMRM-based (see Exhibit 6) portfolio techniques are evaluated for eight levels of expected returns. For the PMRM portfolio-selection technique, over 1 million Evolver (genetic algorithm software) iterations were conducted to generate the portfolios for each level of desired expected return. Although genetic algorithm is computationally intensive and may be impractical for large portfolios, we used the analytically-computed mean-variance weights as “seeds” or initial solutions to the PMRM technique, which dramatically improved Evolver’s convergence time. In Exhibit 7, the portfolios generated via the mean-variance technique appear to have better variances than those of the PMRM-based portfolios using a lower-tail probability (
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 plane in Exhibit 8 shows otherwise—the same sets of PMRM-based portfolios appear to have better conditional expectations 
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 than the corresponding mean-variance portfolios.


The performances of the optimal mean-variance portfolio weights are compared with the optimal PMRM-based portfolio weights for a specific lower-tail probability of 
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 = 0.05. Two regimes are considered in the comparison: (i) the first 10 days; and (ii) the next 10 days following each designated bear period.  For each of the bear periods considered, the returns of the PMRM-based portfolios in excess of mean-variance portfolios are shown in Exhibit 9. When a return is enclosed in parentheses, it has a negative value which implies that the PMRM-based portfolio is unable to outperform the corresponding mean-variance portfolio. From Exhibit 9, it appears that the PMRM-based portfolios performed better than the mean-variance portfolios in 5 out of the 6 chosen bear market scenarios. The standard deviations of the stock returns for the 20-day period pursuant to a bear period are summarized in Exhibit 10 for both the mean-variance and PMRM portfolios.

PMRM-BASED PORTFOLIO SELECTION WITH UPPER-TAIL PARTITIONING 

The PMRM-based portfolios in the previous section were generated using lower-tail partitioning. The current section discusses the derived form of the PMRM-based portfolio optimization technique using upper-tail partitioning. The notation 
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 applies to low-likelihood scenarios with high consequences in terms of losses. Such interpretation works also with the upper-tail 
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—scenarios, where “extremely” high returns generally have low probabilities and typically are associated with riskier portfolios. Thus, the term “high consequence” in the context of upper-tail partitioning refers to high returns; when not realized, these translate to opportunity losses (especially from the point of view of a risk-taking/reward-seeking investor). An investor who is confident of a bull market, and is willing to take the risk, would naturally prefer to partition on upper-tail returns.  


The PMRM-based portfolio-selection technique customized for the case of upper-tail partitioning is shown in Eq. 3. As with the case of other portfolio optimization techniques, the nonnegativity constraint is omitted when shorting is available. Exhibit 2 summarizes the definitions of the variables appearing in Eq. 3. However, it must be pointed out that the use of the indicator variable this time is intended for filtering portfolio returns above a prespecified upper-tail partition of 
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Case Study: “Bull” Market Scenarios. Similar to the analysis made for bear periods, this section conducts comparisons for the mean-variance and PMRM-based efficient portfolios during bull market scenarios. The bull periods are identified from the largest all-time gains of the DJIA market index. The performances of the optimal mean-variance portfolio weights are compared with the optimal PMRM-based portfolio weights for a specific upper-tail probability of 
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 = 0.05. As with the previous case study we assumed no shorting. Two regimes are used for the comparison: (1) the first 10 days; and (2) the next 10 days following the designated bull period.  For each of the considered bull periods, the returns of the PMRM-based portfolios in excess of mean-variance portfolios are shown in Exhibit 11. When a return is enclosed in parentheses, it has a negative value, which implies that the PMRM-based portfolio is unable to outperform the corresponding mean-variance portfolio. Exhibit 11 suggests that for the most part, the PMRM-based portfolios appear to have performed better than the mean-variance portfolios. The standard deviations of the stock returns for the 20-day period pursuant to a bull period are summarized in Exhibit 12 for both the mean-variance and PMRM portfolios.

EQUIVALENCE OF MEAN-VARIANCE AND PMRM-BASED PORTFOLIO-SELECTION TECHNIQUES FOR NORMALLY DISTRIBUTED PORTFOLIOS

A study by Kroll, Levy, and Markowitz [1984] suggests that optimizing utility functions yields solutions consistent with the mean-variance efficient frontier. For “normal” market scenarios, wherein portfolio returns may be assumed normally distributed, the conditional expectation function derived using PMRM follows the form of a utility function, which yields solutions equivalent to the mean-variance technique (i.e., same efficient frontiers are generated). It is easy to see this equivalence by juxtaposing the mean-variance formulation with the PMRM formulation for normally-distributed returns. In Eq. 4, PMRM’s conditional expectation (
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). The detailed derivations of Eq. 4 formulations, supported by case study results, are discussed in Santos and Haimes [2004] and are not included here for brevity. 

	Mean-Variance Formulation: 
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LEONTIEF-TYPE DIVERSIFICATION

Wassily Leontief developed what would become known as the “Input-Output Model for Economy”, which is capable of describing the degree of interconnectedness among various sectors of the economy. Miller and Blair [1985] provide a comprehensive introduction of the model and its applications. Leontief’s input-output model describes the equilibrium and dynamic behavior of both regional and national economies [Liew 2000]. Recent frontiers in input-output analysis are compiled by Lahr and Dietzenbacher [2001].

The relevance of interdependency analysis to the area of portfolio selection is implied in the covariance of the portfolio assets. Covariance measurement and analysis enable diversification, which can reduce a portfolio’s exposure to market risks. De Vassal [2001] discusses the results of a Monte Carlo simulation to relate diversification with the number of component assets in a portfolio. A common diversification approach—diversifying by industries—is made possible by choosing the assets whose underlying industries have small correlations. For example, a portfolio consisting of Dell (computer industry) and Abbott (drug industry) stocks can be considered more diversified than a portfolio consisting of Dell (computer industry) and Microsoft (software industry) stocks. This section explores the potential use of input-output interdependency matrices for portfolio diversification.

Industry diversification is explored in the domain of regional analysis. Various works such as Attaran [1986], Bahl et al. [1971], and Wasylenko and Erickson [1978] suggest that industry diversity is an indicator of economic stability. Diversity is often described in the literature as a positive economic factor that contributes to a region’s achievement of stability, and hence economic growth. Regional diversity is often assessed in terms of the number of industries present in a given region, as well as the degree of linkage among them.

Two types of portfolio diversification are (1) country diversification, and (2) industry diversification. In country diversification, the portfolio consists of a mix of assets in companies based in different countries (e.g., US, UK, Japan, etc.). In industry diversification, the portfolio consists of a mix of assets issued by various industry sectors (e.g., banking, realty, communications, etc.). L’Her et al. [2002] assert that industry effects are growing in significance relative to country effects. This paper focuses on industry diversification, which can be achieved by choosing a mix of assets in industries with low correlations among them. It is worth mentioning that portfolio diversification models have later been extended to the assessment of regional economic diversity. Examples of such works include Brown and Pheasant [1985] and Conroy [1974]. Utilizing Leontief technical coefficient matrices for developing a measure of portfolio diversification has been inspired by these attempts to relate portfolio diversification to the study of economic diversity.

LEONTIEF TECHNICAL COEFFICIENT MATRIX AND PORTFOLIO DIVERSIFICATION

The original Leontief input-output model follows the form of a balance equation 

	x = Ax + c
	5


In Eq. 5, x is the industry production vector, c is the final demand vector, and A is the industry-by-industry technical coefficient matrix. The A matrix in Leontief’s model indicates the interdependencies of the industry sectors, and hence it furnishes information on economic diversity. Normalization of Eq. 5 is performed by dividing every row of the system of equations by the sum of the production vector x. This transformation will yield:
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In Eq. 6, 
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 consists of ratios representing the size of the industry sectors relative to the general economy. By the same token, 
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 represents the ratio of industry final demands relative to the general economy. 

A regional balance equation in terms of relative industry sizes (i.e., a subset of Eq. 6) can be derived in the same manner. The resulting balance equation for Region R is as follows:
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We now establish the connection between Leontief model and portfolio diversification. In Eq. 6, we know by definition that the elements of the vector 
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 add up to 1. Thus, an economy can be thought of as a portfolio of industries, where each element 
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 corresponds to the weight of industry i in the “portfolio.” By the same token, a regional economy whose balance equation is shown in Eq. 7 can be thought of as a portfolio of regional industries with a “portfolio weight” of 
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Now, consider a portfolio of several assets, where each asset has a weight of 
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. This portfolio can be assumed to be a region in a baseline portfolio. Therefore, a specific portfolio of assets can assume the form of a balance equation analogous to Eq. 7. Invoking the concept of regional decomposition in input-output literature (see, for example, Miller and Blair [1985]), a location quotient (li) for portfolio R can be defined as follows:
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The numerator 
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 in Eq. 8 represents the weight of asset i in R, while the denominator 
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 is the weight asset i in the baseline portfolio. As the location quotient tends to a value of 1, the asset weight is said to be more concentrated in the portfolio being considered than it is in the baseline portfolio. Varying the weights will result in different portfolio alternatives, each with different location quotient values. 

A unique characteristic of each portfolio alternative is the interdependency matrix 
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 (see Eq. 7), which can describe the inter-industry linkages underlying the selected assets. To populate 
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, we customize the interdependency matrix of a baseline portfolio using the location quotients. 

A portfolio diversification index can be established from three factors characterizing the interdependency matrix. First, the size of portfolio (i.e. the number of component assets) can be directly obtained from the matrix order of 
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. Increasing the number of portfolio assets will result in better portfolio diversification. Second, the density can be calculated by taking the proportion of the elements with significant values (i.e., non-zero or “far from 0”) relative to the total number of matrix elements. As the value of the density increases, the number of linkages in the assets’ underlying industries increases as well, which suggests better spread of risk. Hence, a higher matrix density is desired for portfolio diversification. Third, the condition number can be calculated by taking the product of 
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, where the notation 
[image: image45.wmf] represents a two-norm operator. The condition number measures linear independence. Typically, it is used to test the uniqueness of a solution to a given system of linear equations. An identity matrix has a condition number of 1, and divergence from an identity matrix tends to increase the value of the condition number (Note that an identity matrix will only be realized under the extreme case where 
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 is a null matrix). Hence, a higher condition number is an indicator of a diversified portfolio. A portfolio diversification index can be calculated by adapting the regional economic diversity metric developed by Wagner and Deller [1993]. 

	Portfolio Diversification Index (PDI) =

Size of Portfolio ( Density ( Condition Number
	9


PORTFOLIO DIVERSIFICATION EXAMPLE

Consider the two portfolios with expected annual returns of 20% and 21% in Exhibit 6. These portfolios have nonzero weight assignments to 12 stocks only. A baseline portfolio is formed using the actual DJIA component weights (as of 7-22-2004), which are then rescaled to include only the 12 stocks. The location quotients for the two portfolio alternatives are then calculated using Eq. 8. A summary of the data to be used for portfolio diversification analysis, as well as the most related sector categories from the North American Industry Classification System (NAICS), are shown in Exhibit 13. 

The interdependency matrix for each of the portfolio alternatives are generated from the input-output transactions matrix published by the Bureau of Economic Analysis (see www.bea.gov for NAICS-based input-output matrices). The matrix shown in Exhibit 14 represents a subset of the input-output matrix consisting of nearly 500 sectors. To customize this matrix for the two portfolio alternatives, we multiply each row by the corresponding portfolio location quotients specified in Exhibit 13. The resulting diversification factors are itemized in Exhibit 15, which are used to calculate the PDI in Eq. 9. It is worth noting that for this example the first two factors, namely portfolio size and density do not differ across the portfolios because the 12 stock picks are the same. Alternative 1 has a higher PDI; hence, it is more diversified than alternative 2. This result is intuitive because alternative 1 is a relatively less risky portfolio than alternative 2 (i.e., alternative 1 has a lower return, thus lower variance, than alternative 2). A normalized PDI can also be calculated with respect to the baseline portfolio’s PDI as shown in Exhibit 15.

The interdependency matrix gives additional insights in portfolio diversification that can promise robustness in the event of extreme market perturbations (Note that variations in the term 
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 of Eq. 7 can represent demand shock scenarios). The covariance matrix typically used in portfolio selection models can be complemented by the interdependency matrix. The interdependency matrix, being asymmetric in contrast to the covariance matrix, has some advantages. For example, we could distinguish the impact of a market shock to the petroleum sector on the automobile manufacturing sector or vice versa, which have asymmetric influences. A multiplier matrix (
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) can be established from the interdependency matrix using the following formula (see Miller and Blair [1985] for discussion of input-output multipliers). Recall that AR is the interdependency matrix for portfolio R = 1 and 2.
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The impact of market shock to a sector can be determined using the column sums of Eq. 10. Denoting the vector of column sums by 
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 and i as a unity row vector, we have:
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For the 12-stock example, the resulting multiplier vectors 
[image: image52.wmf])
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 for the two alternative portfolios are summarized in Exhibit 16. In input-output literature, the multipliers estimate how much the change in sector production will be given a $1 change in demand. For our purposes, we interpret each element of 
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 as a measure of how sensitive a portfolio will be to a sector-based shock. Alternative 1, being the more diversified of the two portfolios appears to be less susceptible to shocks as depicted in Exhibit 16. 

INTEGRATED FRAMEWORK FOR PORTFOLIO SELECTION WITH INTERDEPENDENCY ANALYSIS

The previous sections established a linkage between interdependency analysis and portfolio diversification. The next step is to address how the portfolio optimization models (i.e., mean-variance and PMRM-based methods) integrate into a framework encompassing interdependency analysis. The following discussion develops a framework with features that capture portfolio optimization methods and interdependency analysis. The first phase in this framework addresses portfolio generation, while the second phase addresses portfolio diversification. Exhibit 17 depicts a schematic of such a framework.


The first phase covers preliminary considerations such as identifying the portfolio components and collecting data to estimate the parameters needed for portfolio optimization. The process of generating efficient portfolio weights depends upon the investor’s perception of the market state for the horizon of interest. For a bear market scenario, the PMRM-based method with lower-partitioning is deemed appropriate. The mean-variance method is considered appropriate for normal market scenarios, while the PMRM-based method with upper-tail partitioning is suitable for bull markets. Using the appropriate portfolio optimization method, efficient portfolios are then generated and filtered according to investor-specified risk threshold levels.

The second phase commences upon the identification of the investor’s band of indifference—a set of equally preferred portfolios. After such a band of indifference is identified, interdependency analysis enters the picture. An industry-by-industry matrix corresponding to the portfolio components’ underlying industries is derived from available input-output accounts. For each portfolio within the band of indifference, a customized industry-by-industry matrix is generated via portfolio location quotients as explained in the previous section. A ranking of the portfolios is generated using a portfolio diversification index, which consequently helps the investor identify which portfolio to choose. The loop in the framework suggests that the process is iterative, which makes possible the reevaluation of the current portfolio from time to time or as need arises. 

SUMMARY AND CONCLUSIONS 

The mean-variance portfolio selection technique is enhanced using the PMRM to safeguard portfolios against both average and extreme market risks. Through a PMRM-based portfolio-selection technique, investors can make their portfolios more resilient to extreme market fluctuations. It employs a filtering algorithm to capture a specified partition of the distribution of portfolio returns. In addition to applying the PMRM, this paper offers a linkage between portfolio diversification (to further reduce risks) and the published input-output accounts.

The case studies conducted for the PMRM-based portfolio-selection technique demonstrate its strength in responding to extreme events. Hence, it is worthwhile to further test its potential for actual use by investors and financial institutions. There are countless “paths” (i.e., portfolio strategies) from the time portfolios are created to a period of interest (e.g., bear, normal, or bull market periods) where their profitability outcomes are to be analyzed and compared. The case studies discussed here are only a few realizations of such infinite possibilities. For example, these studies employ only the “no shorting” case, which can be improved by the shorting strategy (allowing negative asset weights), especially during bear markets. Future enhancements that are envisioned to the current scope of our portfolio framework include: (i) improving the convergence time to reach optimal portfolio solutions in the genetic algorithm-based engine supporting the computations; (ii) further investigating the relationship of input-output matrices to portfolio diversification (e.g., creating a customized sector for conglomerates through a “product mix” weighting approach to the NAICS sectors); (iii) incorporating dynamic features of portfolio selection via expansion of the current formulation to embrace the dynamic mean-variance portfolio selection proposed by Li and Ng [2000]; (iv) integrating time-series analysis techniques for dynamic quantification of conditional expectations, analogous to the generalized autoregressive conditional heteroscedasticity (GARCH) used to estimate volatility; and (v) extending the use of the current portfolio-selection technique to encompass other financial instruments such as currencies and derivatives.
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Exhibit 1
Upper-Tail Partitioning of: (a) Probability Distribution Function f(x); and (b) Exceedance Function 1-F(x)
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Exhibit 2
Definition of Terms in the PMRM-Based Formulation 
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	Weight of portfolio to allocate to asset i = 1, 2, …, n
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	Indicator variable used to filter a desired partition of portfolio returns
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	Specified lower-tail partitioning point for portfolio returns
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	Specified upper-tail partitioning point for portfolio returns

	
[image: image63.wmf]u

a


	Specified upper-tail probability

	
[image: image64.wmf])

(

4

×

l

f


	Lower-tail conditional expectation of portfolio returns

	
[image: image65.wmf])

(

4

×

u

f
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Exhibit 3
Expected Returns of 30 DJIA Stock Components Using Annual Compounding (Based on January 2, 1986 to December 31, 1996 Stock Price Data)

	Stock Ticker
	MMM
	AA
	AXP
	T
	BA
	CAT
	C
	KO
	DD
	EK
	XOM
	GE
	GM
	HPQ
	HD

	Expected Return
	0.1384
	0.1459
	0.1063
	0.0543
	0.1281
	0.1191
	0.1672
	0.2392
	0.1575
	0.1337
	0.1124
	0.1561
	0.0817
	0.1503
	0.3123

	 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Stock Ticker
	HON
	INTC
	IBM
	IP
	JPM
	JNJ
	MCD
	MRK
	MSFT
	MO
	PG
	SBC
	UTX
	WMT
	DIS

	Expected Return
	0.1458
	0.3426
	0.0047
	0.1104
	0.1121
	0.1898
	0.1276
	0.2112
	0.4457
	0.2144
	0.1642
	0.1509
	0.1340
	0.1252
	0.1691


Exhibit 4
Annualized Standard Deviations of 30 DJIA Stock Components (Based on January 2, 1986 to December 31, 1996 Stock Price Data)

	Stock Ticker
	MMM
	AA
	AXP
	T
	BA
	CAT
	C
	KO
	DD
	EK
	XOM
	GE
	GM
	HPQ
	HD

	Standard Deviation
	0.2212
	0.2882
	0.3289
	0.2664
	0.2581
	0.2930
	0.3415
	0.2657
	0.2424
	0.2950
	0.2261
	0.2349
	0.2916
	0.3624
	0.3427

	 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Stock Ticker
	HON
	INTC
	IBM
	IP
	JPM
	JNJ
	MCD
	MRK
	MSFT
	MO
	PG
	SBC
	UTX
	WMT
	DIS

	Standard Deviation
	0.2990
	0.4242
	0.2722
	0.2735
	0.3354
	0.2547
	0.2548
	0.2493
	0.3973
	0.2630
	0.2498
	0.2141
	0.2464
	0.2934
	0.2935


Exhibit 5
Portfolio Weight Allocations Generated Using Mean-Variance Technique (Based on January 2, 1986 to December 31, 1996 Stock Price Data)

	Ticker

Return
	MMM
	AA
	AXP
	T
	BA
	CAT
	C
	KO
	DD
	EK
	XOM
	GE
	GM
	HPQ
	HD

	0.18
	0.06
	0.03
	0.00
	0.02
	0.08
	0.00
	0.00
	0.00
	0.01
	0.00
	0.14
	0.00
	0.02
	0.00
	0.00

	0.19
	0.06
	0.04
	0.00
	0.00
	0.08
	0.00
	0.00
	0.00
	0.02
	0.00
	0.14
	0.00
	0.02
	0.00
	0.00

	0.20
	0.06
	0.04
	0.00
	0.00
	0.08
	0.00
	0.00
	0.00
	0.02
	0.00
	0.13
	0.00
	0.01
	0.00
	0.00

	0.21
	0.06
	0.04
	0.00
	0.00
	0.08
	0.00
	0.00
	0.00
	0.02
	0.00
	0.13
	0.00
	0.01
	0.00
	0.00

	0.22
	0.05
	0.03
	0.00
	0.00
	0.07
	0.00
	0.00
	0.00
	0.02
	0.00
	0.12
	0.00
	0.00
	0.00
	0.01

	0.23
	0.04
	0.03
	0.00
	0.00
	0.07
	0.00
	0.00
	0.01
	0.02
	0.00
	0.11
	0.00
	0.00
	0.00
	0.02

	0.24
	0.03
	0.03
	0.00
	0.00
	0.06
	0.00
	0.00
	0.03
	0.02
	0.00
	0.10
	0.00
	0.00
	0.00
	0.03

	0.25
	0.02
	0.03
	0.00
	0.00
	0.05
	0.00
	0.00
	0.04
	0.02
	0.00
	0.09
	0.00
	0.00
	0.00
	0.04

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Ticker

Return
	HON
	INTC
	IBM
	IP
	JPM
	JNJ
	MCD
	MRK
	MSFT
	MO
	PG
	SBC
	UTX
	WMT
	DIS

	0.18
	0.00
	0.00
	0.06
	0.00
	0.00
	0.00
	0.02
	0.06
	0.00
	0.26
	0.00
	0.16
	0.07
	0.00
	0.00

	0.19
	0.00
	0.00
	0.03
	0.00
	0.00
	0.00
	0.02
	0.08
	0.01
	0.27
	0.00
	0.16
	0.07
	0.00
	0.00

	0.20
	0.00
	0.01
	0.02
	0.00
	0.00
	0.00
	0.01
	0.08
	0.02
	0.27
	0.00
	0.16
	0.07
	0.00
	0.00

	0.21
	0.00
	0.01
	0.00
	0.00
	0.00
	0.00
	0.01
	0.09
	0.03
	0.28
	0.00
	0.16
	0.07
	0.00
	0.00

	0.22
	0.00
	0.02
	0.00
	0.00
	0.00
	0.00
	0.00
	0.09
	0.05
	0.28
	0.00
	0.16
	0.07
	0.00
	0.00

	0.23
	0.00
	0.03
	0.00
	0.00
	0.00
	0.00
	0.00
	0.09
	0.06
	0.29
	0.00
	0.16
	0.06
	0.00
	0.00

	0.24
	0.00
	0.03
	0.00
	0.00
	0.00
	0.00
	0.00
	0.10
	0.07
	0.29
	0.00
	0.15
	0.06
	0.00
	0.00

	0.25
	0.00
	0.04
	0.00
	0.00
	0.00
	0.00
	0.00
	0.10
	0.09
	0.30
	0.00
	0.15
	0.05
	0.00
	0.00


Exhibit 6
Portfolio Weight Allocations Generated Using PMRM Technique with Tail Partitioning of ( = 0.05 (Based on January 2, 1986 to December 31, 1996 Stock Price Data)

	Ticker

Return
	MMM
	AA
	AXP
	T
	BA
	CAT
	C
	KO
	DD
	EK
	XOM
	GE
	GM
	HPQ
	HD

	0.18
	0.00
	0.06
	0.00
	0.03
	0.11
	0.04
	0.00
	0.00
	0.00
	0.00
	0.21
	0.00
	0.02
	0.00
	0.00

	0.19
	0.00
	0.06
	0.00
	0.02
	0.11
	0.04
	0.00
	0.00
	0.00
	0.00
	0.21
	0.00
	0.01
	0.00
	0.00

	0.20
	0.00
	0.06
	0.00
	0.00
	0.11
	0.04
	0.00
	0.00
	0.00
	0.00
	0.20
	0.00
	0.01
	0.00
	0.00

	0.21
	0.00
	0.06
	0.00
	0.00
	0.09
	0.03
	0.00
	0.00
	0.00
	0.00
	0.20
	0.00
	0.01
	0.00
	0.00

	0.22
	0.00
	0.07
	0.00
	0.00
	0.09
	0.01
	0.00
	0.01
	0.00
	0.00
	0.18
	0.00
	0.00
	0.00
	0.00

	0.23
	0.00
	0.07
	0.00
	0.00
	0.09
	0.01
	0.00
	0.01
	0.00
	0.00
	0.18
	0.00
	0.00
	0.00
	0.02

	0.24
	0.00
	0.06
	0.00
	0.00
	0.08
	0.00
	0.00
	0.02
	0.00
	0.00
	0.15
	0.00
	0.00
	0.00
	0.05

	0.25
	0.00
	0.06
	0.00
	0.00
	0.06
	0.00
	0.00
	0.04
	0.00
	0.00
	0.13
	0.00
	0.00
	0.00
	0.05

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Ticker

Return
	HON
	INTC
	IBM
	IP
	JPM
	JNJ
	MCD
	MRK
	MSFT
	MO
	PG
	SBC
	UTX
	WMT
	DIS

	0.18
	0.00
	0.00
	0.05
	0.01
	0.00
	0.00
	0.01
	0.04
	0.01
	0.25
	0.00
	0.15
	0.02
	0.00
	0.00

	0.19
	0.00
	0.00
	0.04
	0.01
	0.00
	0.00
	0.01
	0.05
	0.03
	0.26
	0.00
	0.13
	0.02
	0.00
	0.00

	0.20
	0.00
	0.00
	0.03
	0.00
	0.00
	0.00
	0.01
	0.06
	0.05
	0.26
	0.00
	0.14
	0.03
	0.00
	0.00

	0.21
	0.00
	0.00
	0.01
	0.00
	0.00
	0.00
	0.02
	0.07
	0.06
	0.27
	0.00
	0.16
	0.02
	0.00
	0.00

	0.22
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.02
	0.07
	0.08
	0.28
	0.00
	0.16
	0.02
	0.00
	0.00

	0.23
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.01
	0.07
	0.09
	0.30
	0.01
	0.14
	0.01
	0.00
	0.00

	0.24
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.01
	0.07
	0.09
	0.30
	0.01
	0.13
	0.02
	0.00
	0.00

	0.25
	0.00
	0.03
	0.00
	0.00
	0.00
	0.00
	0.00
	0.07
	0.09
	0.31
	0.02
	0.12
	0.02
	0.00
	0.00


Exhibit 7
Variance Plane: Efficient Frontiers of Portfolios Generated Using Mean-Variance and PMRM Techniques
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Exhibit 8
Conditional Expectation Plane: Efficient Frontiers of Portfolios Generated Using Mean-Variance and PMRM Techniques
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Exhibit 9
Returns of PMRM Portfolios in Excess of Mean-Variance (Bear Market Scenarios) 

	(a) 9/17/2001-10/12/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	(0.0026)
	(0.0009)
	0.0038
	0.0048
	0.0041
	0.0056
	0.0050
	0.0029

	Day 20
	(0.0023)
	(0.0002)
	0.0040
	0.0045
	0.0034
	0.0055
	0.0051
	0.0035

	(b) 4/14/2000-5/12/2000

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	(0.0016)
	0.0015
	0.0092
	0.0013
	(0.0012)
	0.0002
	0.0002
	(0.0001)

	Day 20
	(0.0020)
	0.0005
	0.0082
	0.0018
	(0.0000)
	0.0006
	0.0003
	0.0002

	(c) 10/27/1997-11/21/1997

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	0.0078
	0.0141
	0.0173
	0.0169
	0.0082
	0.0112
	0.0127
	0.0098

	Day 20
	0.0047
	0.0092
	0.0130
	0.0111
	0.0048
	0.0057
	0.0059
	0.0029

	(d) 8/31/1998-9/28/1998

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	0.0041
	0.0082
	0.0158
	0.0151
	0.0108
	0.0087
	0.0051
	(0.0017)

	Day 20
	0.0019
	0.0056
	0.0126
	0.0123
	0.0080
	0.0065
	0.0031
	(0.0025)

	(e) 3/12/2001-4/6/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	(0.0048)
	(0.0029)
	0.0022
	0.0009
	0.0007
	0.0034
	0.0042
	0.0021

	Day 20
	(0.0053)
	(0.0034)
	0.0019
	0.0012
	0.0013
	0.0040
	0.0046
	0.0014

	(f) 7/19/2002-8/15/2002

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	(0.0083)
	(0.0068)
	(0.0037)
	(0.0027)
	(0.0026)
	0.0002
	0.0028
	0.0031

	Day 20
	(0.0072)
	(0.0054)
	(0.0025)
	(0.0014)
	(0.0012)
	0.0011
	0.0027
	0.0034


Exhibit 10
Standard Deviations of Returns for Mean-Variance (M-V) and PMRM Portfolios 20 Days after a Bear Market Scenario 

	(a) 9/17/2001-10/12/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0067
	0.0067
	0.0068
	0.0069
	0.0069
	0.0067
	0.0065
	0.0064

	PMRM
	0.0070
	0.0071
	0.0070
	0.0068
	0.0068
	0.0070
	0.0069
	0.0066

	(b) 4/14/2000-5/12/2000

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0058
	0.0061
	0.0060
	0.0058
	0.0054
	0.0050
	0.0047
	0.0045

	PMRM
	0.0056
	0.0057
	0.0056
	0.0061
	0.0059
	0.0053
	0.0046
	0.0042

	(c) 10/27/1997-11/21/1997

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0225
	0.0226
	0.0229
	0.0231
	0.0234
	0.0237
	0.0240
	0.0242

	PMRM
	0.0215
	0.0210
	0.0215
	0.0211
	0.0223
	0.0220
	0.0218
	0.0223

	(d) 8/31/1998-9/28/1998

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0173
	0.0176
	0.0180
	0.0183
	0.0185
	0.0183
	0.0180
	0.0177

	PMRM
	0.0178
	0.0178
	0.0180
	0.0178
	0.0186
	0.0181
	0.0165
	0.0163

	(e) 3/12/2001-4/6/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0076
	0.0074
	0.0073
	0.0071
	0.0070
	0.0069
	0.0067
	0.0066

	PMRM
	0.0075
	0.0073
	0.0071
	0.0070
	0.0069
	0.0067
	0.0066
	0.0065

	(f) 7/19/2002-8/15/2002

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0065
	0.0068
	0.0069
	0.0070
	0.0070
	0.0070
	0.0069
	0.0069

	PMRM
	0.0062
	0.0065
	0.0065
	0.0067
	0.0067
	0.0065
	0.0063
	0.0064


Exhibit 11
Returns of PMRM Portfolios in Excess of Mean-Variance (Bull Market Scenarios)

	(a) 3/16/2000-4/12/2000

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	0.0035 
	0.0085 
	0.0171 
	0.0063 
	0.0036 
	0.0050 
	0.0039 
	0.0018 

	Day 20
	(0.0022)
	0.0009 
	0.0087 
	0.0001 
	(0.0028)
	(0.0014)
	(0.0010)
	(0.0008)

	(b) 7/24/2002-8/20/2002

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	(0.0082)
	(0.0065)
	(0.0036)
	(0.0023)
	(0.0021)
	0.0008 
	0.0033 
	0.0037 

	Day 20
	(0.0075)
	(0.0053)
	(0.0022)
	(0.0014)
	(0.0014)
	0.0013 
	0.0033 
	0.0038 

	(c) 4/5/2001-5/3/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	(0.0050)
	(0.0024)
	0.0023 
	0.0003 
	0.0002 
	0.0027 
	0.0029 
	0.0006 

	Day 20
	(0.0041)
	(0.0010)
	0.0038 
	0.0019 
	0.0014 
	0.0048 
	0.0057 
	0.0030 

	(d) 9/8/1998-10/5/1998

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	0.0011 
	0.0051 
	0.0129 
	0.0114 
	0.0083 
	0.0068 
	0.0036 
	(0.0030)

	Day 20
	0.0045 
	0.0071 
	0.0152 
	0.0166 
	0.0134 
	0.0110 
	0.0062 
	(0.0006)

	(e) 9/24/2001-10/19/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	(0.0021)
	0.0001 
	0.0047 
	0.0056 
	0.0046 
	0.0067 
	0.0064 
	0.0039 

	Day 20
	(0.0031)
	(0.0010)
	0.0037 
	0.0043 
	0.0034 
	0.0053 
	0.0052 
	0.0034 

	(f) 5/16/2001-6/13/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	Day 10
	(0.0036)
	(0.0007)
	0.0042 
	0.0031 
	0.0026 
	0.0062 
	0.0073 
	0.0037 

	Day 20
	(0.0036)
	(0.0007)
	0.0041 
	0.0028 
	0.0021 
	0.0056 
	0.0064 
	0.0033 


Exhibit 12
Standard Deviations of Returns for Mean-Variance (M-V) and PMRM Portfolios 20 Days after a Bull Market Scenario 

	(a) 3/16/2000-4/12/2000

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0102
	0.0102
	0.0097
	0.0092
	0.0087
	0.0082
	0.0077
	0.0072

	PMRM
	0.0092
	0.0089
	0.0081
	0.0081
	0.0076
	0.0074
	0.0075
	0.0071

	(b) 7/24/2002-8/20/2002

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0050
	0.0050
	0.0051
	0.0051
	0.0052
	0.0053
	0.0054
	0.0055

	PMRM
	0.0052
	0.0053
	0.0054
	0.0053
	0.0054
	0.0054
	0.0052
	0.0054

	(c) 4/5/2001-5/3/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0057
	0.0054
	0.0053
	0.0053
	0.0054
	0.0056
	0.0057
	0.0058

	PMRM
	0.0063
	0.0063
	0.0061
	0.0057
	0.0058
	0.0061
	0.0062
	0.0064

	(d) 9/8/1998-10/5/1998

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0118
	0.0119
	0.0120
	0.0122
	0.0124
	0.0124
	0.0122
	0.0121

	PMRM
	0.0119
	0.0115
	0.0117
	0.0119
	0.0125
	0.0124
	0.0117
	0.0115

	(e) 9/24/2001-10/19/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0058
	0.0058
	0.0059
	0.0060
	0.0060
	0.0059
	0.0057
	0.0056

	PMRM
	0.0061
	0.0062
	0.0061
	0.0059
	0.0059
	0.0061
	0.0061
	0.0059

	(f) 5/16/2001-6/13/2001

	Return
	0.18
	0.19
	0.20
	0.21
	0.22
	0.23
	0.24
	0.25

	M-V
	0.0033
	0.0035
	0.0035
	0.0035
	0.0036
	0.0035
	0.0035
	0.0034

	PMRM
	0.0029
	0.0030
	0.0030
	0.0031
	0.0031
	0.0030
	0.0030
	0.0030


Exhibit 13
Data for the 12-Stock Portfolio Diversification Example

	Ticker
	Sector
	Weights
	Location Quotients

	
	
	Baseline
	Alternative 1
	Alternative 2
	Alternative 1
	Alternative 2

	AA
	Aluminum Production
	0.05
	0.06
	0.06
	1.00
	1.00

	BA
	Aircraft Manufacturing
	0.08
	0.11
	0.09
	1.00
	1.00

	CAT
	Construction Machinery
	0.13
	0.04
	0.03
	0.31
	0.23

	XOM
	Petroleum Refineries
	0.08
	0.20
	0.20
	1.00
	1.00

	GM
	Automobile and Truck 
	0.07
	0.01
	0.01
	0.14
	0.14

	IBM
	Office Machines
	0.14
	0.03
	0.01
	0.21
	0.07

	MCD
	Eating and Drinking Places
	0.05
	0.01
	0.02
	0.21
	0.43

	MRK
	Pharmaceuticals 
	0.07
	0.06
	0.07
	0.80
	0.93

	MSFT
	Software Production
	0.05
	0.05
	0.06
	1.00
	1.00

	MO
	Cigarette Manufacturing
	0.08
	0.26
	0.27
	1.00
	1.00

	SBC
	Telecommunications
	0.04
	0.14
	0.16
	1.00
	1.00

	UTX
	AC, Refrigeration, and Heating*
	0.16
	0.03
	0.02
	0.19
	0.13


* Since UTX is a “conglomerates” sector, we considered only the “Carrier” portion. The summary and conclusions section of the paper suggests how to relax this assumption.
Exhibit 14
Interdependency Matrix of the 12-Stock Baseline Portfolio

	 
	AA
	BA
	CAT
	XOM
	GM
	IBM
	MCD
	MRK
	MSFT
	MO
	SBC
	UTX

	AA
	0.0639
	0.0020
	0.0000
	0.0000
	0.0000
	0.0002
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0024

	BA
	0.0000
	0.0376
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	CAT
	0.0000
	0.0000
	0.0187
	0.0000
	0.0028
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0001
	0.0017

	XOM
	0.0001
	0.0004
	0.0013
	0.0722
	0.0003
	0.0000
	0.0023
	0.0005
	0.0000
	0.0000
	0.0002
	0.0000

	GM
	0.0000
	0.0000
	0.0000
	0.0000
	0.0066
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	IBM
	0.0000
	0.0005
	0.0001
	0.0000
	0.0004
	0.0087
	0.0000
	0.0000
	0.0000
	0.0000
	0.0005
	0.0001

	MCD
	0.0000
	0.0004
	0.0001
	0.0011
	0.0011
	0.0000
	0.0068
	0.0006
	0.0000
	0.0002
	0.0007
	0.0002

	MRK
	0.0000
	0.0000
	0.0000
	0.0001
	0.0000
	0.0000
	0.0000
	0.1845
	0.0000
	0.0000
	0.0000
	0.0000

	MSFT
	0.0001
	0.0017
	0.0007
	0.0007
	0.0007
	0.0047
	0.0059
	0.0016
	0.0000
	0.0002
	0.0344
	0.0007

	MO
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0053
	0.0000
	0.0000

	SBC
	0.0000
	0.0005
	0.0002
	0.0004
	0.0004
	0.0001
	0.0058
	0.0009
	0.0000
	0.0001
	0.1613
	0.0006

	UTX
	0.0000
	0.0001
	0.0001
	0.0001
	0.0270
	0.0000
	0.0026
	0.0002
	0.0000
	0.0003
	0.0012
	0.0910


Exhibit 15
Portfolio Diversification Factors for the 12-Stock Example

	Diversification Factors
	Baseline Portfolio
	Alternative 1
	Alternative 2

	Portfolio Size
	12.00
	12.00
	12.00

	Density
	0.77
	0.77
	0.77

	Condition Number
	1.23
	1.21
	1.19

	Portfolio Diversification Index (PDI)
	11.35
	11.19
	11.04

	Normalized PDI
	1.00
	0.99
	0.97


Exhibit 16
Multiplier Vectors for the 12-Stock Example

	Ticker
	Alternative 1

(a)
	Alternative 1

(b)
	Difference

(a) – (b)

	AA
	1.0727
	1.0733
	0.0006 

	BA
	1.0441
	1.0447
	0.0006 

	CAT
	1.0198
	1.0189
	(0.0009)

	XOM
	1.0793
	1.0799
	0.0006 

	GM
	1.0028
	1.0030
	0.0002 

	IBM
	1.0127
	1.0120
	(0.0008)

	MCD
	1.0082
	1.0097
	0.0015 

	MRK
	1.1791
	1.2148
	0.0357 

	MSFT
	1.0008
	1.0010
	0.0002 

	MO
	1.0069
	1.0073
	0.0004 

	SBC
	1.1928
	1.1930
	0.0002 

	UTX
	1.0301
	1.0246
	(0.0056)


Exhibit 17
Integrated Framework for Portfolio Selection with Interdependency Analysis
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