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Abstract

Benchmarking is formalized by a linear program that determines the

e¢ ciency of a �rm relative to its peers and is used to determine the e¢ -

ciency of an industry. The overall e¢ ciency is shown to be underestimated

by mean �rm e¢ ciency and the bias is zero if and only if the �rm shadow

prices of the inputs and outputs generated by the benchmarking programs

are equal across �rms. Otherwise the bias provides an e¢ ciency measure

for the organization of the industry.

A main contribution of this paper is the interrelation of productivity

analysis and the theory of industrial organization. A proposition proves

that an industrial organization is e¢ cient in the sense of productivity
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analysis if and only if it is supportable in the entry-proofness sense of

Sharkey and Telser (1978).

The known decomposition of performance in e¢ ciency change and

technical change is augmented with a term for the industrial organization

e¢ ciency change. The performance measure is shown to be consistent

with the Solow residual and Malmquist indices for its components are

given. An analysis of the Japanese banking industry illustrates and the

dynamic e¤ects of entry and exit can be accommodated.

JEL Classi�cation Numbers: L10, D24, O47

Keywords: Scope (dis)economies, Industrial Organization, E¢ ciency,

Aggregation, Productivity
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1 Introduction

The theory of benchmarking can be traced back to Farrell (1957) and an easy

introduction is given in Diewert�s (2005) tutorial. The present, formal devel-

opment connects benchmarking to the measurement of industrial organization

(in)e¢ ciencies and to economic performance measures. I de�ne benchmark-

ing through a function that maps two arguments, namely the object to be

benchmarked�a �rm�and the backdrop against which it is benchmarked�the

industry�into a scalar, namely the e¢ ciency of the �rm. However simplistic,

a �rm can be represented by the pair of its input vector and its output vector.

The mapping summarizes a program that determines how much more output

the �rm could produce with its inputs if it would reallocate them to the activi-

ties implicit in the other �rms. The output maximizing reallocation identi�es

the best practice technologies or benchmarks for the �rm under consideration

and the inverse of the output expansion de�nes its e¢ ciency.

The performance of a �rm will be measured by its output/input ratio or

productivity�a concept that I will connect explicitly to the aforementioned ef-

�ciency function. This performance measure may be increased by e¢ ciency

change or technical change. The �rst element re�ects a relative movement of a

�rm in the direction of the best practice frontier while the latter element rep-

resents a shift of the frontier. Aggregate performance may rise more than �rm

performance scores suggest, if resources are better allocated between �rms. The

latter component is the industrial organization e¤ect and this paper quanti�es

it.

3



Debreu (1951) recognized imperfections in economic organization as a source

of aggregate ine¢ ciency and Diewert (1983) analyzed them for open economies,

focussing on price distortions. I operationalize these ideas, without using ex-

ternal price information (such as the world prices an open economy faces). In

discrete time the operationalization will be expressed in terms of Malmquist

indices, which are discrete time variants of productivity growth measures. An-

other novelty is that my theory of benchmarking extends my interrelationship

of two value-based performance measures, namely Diewert�s (1993) price in-

dex measurement and Solow�s (1957) residual analysis, from the back-of-the-

envelope calculation for production functions (ten Raa, 2005) to the activity

framework.

If relatively productive �rms grow relatively fast, the industry will im-

prove its performance, even when no �rm exhibits technical change or e¢ ciency

change. The insight is closely related to shift-share or (de)composition analy-

sis (Denny, Fuss, Waverman ,1981 and Balk, 2003). For example, aggregating

industry productivities to total productivity growth, Wol¤�s (1985, formula 23)

decomposition analysis includes a composition e¤ect, and Jorgenson, Ho, and

Stiroh (2003, formula 53) capture allocative e¢ ciency changes. Yet there is

more to the performance of a composite such as an industry than micro or �rm

performance and composition e¤ects. While this decomposition seems clear

at the micro level and has been applied to the macro level (Färe et al., 1994),

Blackorby and Russell (1999) and Briec, Dervaux and Leleu (2003) have shown

that things do not add up except under restrictive conditions. Bartelsman
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and Doms� (2000, p. 571) understanding that "Aggregated productivity can

be computed as the share-weighted average of individual productivity" is not

exactly right. The �rst proposition of this paper will show that aggregated

performance is less. There is a bias (ten Raa, 2005) and I will show that it

re�ects the industrial organization or, more precisely, the departure from an

optimal organization. In a framework for the measurement of all performance

components�technical change, e¢ ciency change and industrial organization�I

consolidate price and non-price based approaches, combining insights of com-

position analysis (which is neutral with respect to optimality issues) and of

benchmarking (which is all about optimality but bears little on composition

e¤ects).

A main contribution of this paper is the interrelation of productivity analysis

and the theory of industrial organization. A proposition proves that an indus-

trial organization is e¢ cient (in the sense of productivity analysis) if and only

if it is supportable in Sharkey and Telser�s (1978) sense of being entry-proof.

The e¢ ciency/productivity literature boasts di¤erent econometric techniques

and many econometricians feel strong about this. Roughly speaking the trade-

o¤ is between functional form limitations and robustness. In this theoretical

paper, robustness is no issue however and it would be limiting and distracting

to establish my propositions in a functional form framework. The exercise is

one similar to Data Envelopment Analysis which is not robust�although there is

recent bootstrapping work that e¤ectively addresses the defect (Simar and Wil-

son, 2007)�but a functional form framework is less suitable for this theoretical
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paper.

The organization of the paper is as follows. The linear program is analyzed

in section 2. Exploiting duality theory, I show that benchmarking is consistent

with the price index approach to performance measurement. Much insight is

gained by benchmarking not a �rm but the entire industry. Section 3 uses

the aggregation bias to measure the ine¢ ciency of the industry. It relates this

normative e¢ ciency concept with the positive concept of supportability. Section

4 traces time changes of e¢ ciency through both the object to be benchmarked

and the reference benchmark, showing that the former transmits productivity

growth and the latter technical change. Exploiting duality theory once more, I

show that this dynamic benchmarking is consistent with the growth accounting

concept of the Solow residual. Discrete time approximations are presented

in section 5, including the industrial organization e¤ect. Section 6 applies

the theory to measure the evolution of the industrial organization of Japanese

banking. Section 7 shows how the basic model can be modi�ed to accommodate

entry and exit of �rms and other departures. Section 8 concludes.
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2 Benchmarking: price analysis

Denote �rm i�s input vector by xi and its output vector by yi, i = 1; :::; I.1

Input vectors have a common dimension, output vectors have a common dimen-

sion, and these two dimensions may di¤er. For example, inputs can be labor,

capital, and land, while outputs may be numerous goods and services. Some

commodities can be both input and output. However simplistic, an industrial

organization can be represented by the allocation (xi; yi)i=1;:::;I , which is de-

noted brie�y by (x; y). If I = 1, the industrial organization is a monopoly;

if I = 2, it is a duopoly. If y is a diagonal matrix, we have monopolistic

competition. If x is a row vector, we have an input price taking industry, for

which inputs can be aggregated to �cost.� The e¢ ciency of a �rm is determined

by benchmarking its structure (xi; yi) against the industrial organization (x; y).

This is a comparison between the actual output level and the best practice

output level achievable with the available input vector, just as Farrell�s (1957)

productive e¢ ciency measurement technique and Shephard�s (1970) output dis-

tance function. The idea is to reallocate the input, xi, over all the activities

j = 1; :::; I, and to run the latter with intensities �j , as to in�ate the output, yi,

by an expansion factor 1=":

1All I need are �rms� input and output data. This simplicity has a price: I miss perfor-

mance failures on the demand side. However, a theoretical underpinning of this supply side

approach is given in ten Raa (2008), where it is demonstrated that my supply side e¢ ciency

measure is conservative (in the sense of underestimating full ine¢ ciency) and sharp (attained

by certain demand functions).
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max
";�j�0

1=" :
X

�jx
j � xi; yi=" �

X
�jy

j (1)

Here it is assumed that activity (xi; yi) can be run with constant returns to

scale. An obvious extension of this paper will be the generalization to variable

returns to scale, but this comes with integer problems (known in the theory of

contestable markets) that obscure the relationship between the contestability

and the e¢ ciency of an industry revealed and measured in the present paper.

In other words, that generalization better be relegated to a separate paper.

Instead of expanding output, one might contract the input, but under con-

stant returns to scale output and input based benchmarking procedures are

equivalent. So stick to (1). Let "i solve primal program (1).2 The expanded

yi="i is the potential output of �rm i, using the best practice technologies. If

"i = 0:9, �rm i could produce a factor 1=0:9 = 1: 11 or 11% more. If "i = 1,

potential output is no more than actual output and �rm i is said to be fully

e¢ cient. In general, "i is a number between 0 and 1 which indicates the �rm

e¢ ciency for �rm i. The best practice �rms or benchmarks relevant to �rm i

are signalled by �j > 0 in program (1).

Denote the shadow prices of the constraints in (1) by wi and pi, for the

inputs and outputs, respectively; they solve the dual program:3

min
p;w�0

wxi : pyj � wxj ; pyi = 1; all j (2)

2Notice the program is linear in the nonnegative variables 1="; �j .
3The price normalization constraint features no slack, because the non-negativity constraint

for 1=" is non-binding (as 1=" = 1 is feasible by choice of �i = 1 and �j = 0; j 6= i).
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This dual program is essentially the original tack to Data Envelopment

Analysis, taken by Charnes, Cooper and Rhodes (1979). Under the alter-

native scheme of input contraction, the dual would maximize the value of out-

put. Either way the dual variables weigh output and input scores, which is

particularly useful in situations where weights are not readily given, as in the

assessment of EU internal market dynamics by Cherchyea, Lovell, Moesen, and

Van Puyenbroeck (2007). The connection between e¢ ciency and valuations�a

central theme in this paper�is made by the main theorem of linear program-

ming. According to this theorem the primal and dual programs have equal

solution values:

1="i = wixi (3)

Substituting the price normalization constraint of program (2) in equation

(3), the e¢ ciency of �rm i becomes:

"i = piyi=wixi (4)

This result establishes a connection between benchmarking and price index

measurement. The e¢ ciency is the ratio of the value of output to the value

of input at shadow prices. Georgescu-Roegen (1951) called it return to the

dollar in a more complicated framework, involving investment. Under constant

reurns to scale the ratio should equal unity for pro�t maximizers. The ratio

should be contrasted with the di¤erence concept of Glass, McCallion, McKillop,

and Stringer (2006), who argue that �pro�t�as the di¤erence between revenue
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and cost, provides a measure of publicly funded institutions��nancial perfor-

mance. Another perhaps surprising feature is that the ratio is evaluated at

private prices, because the potential output of �rm i has idiosyncratic commod-

ity proportions and because of the presence of multiple inputs. If the output

mix of a �rm is relatively intensive in terms of some input, the shadow price of

that input will be high. If there were essentially one input, as for an industry

that is input price taking, then the shadow prices of the outputs can be shown to

be independent of the �rm�s output mix (the Samuelson substitution theorem,

ten Raa, 1995), ensuring perfect agreement between private and social values.

Shadow input prices are high.4 Indeed, by the dual constraints in program

(2), no �rm makes positive pro�t at shadow prices. Benchmarks break even

(by the phenomenon of complementary slackness) and ine¢ cient �rms incur a

loss. This observation con�rms that e¢ ciency measure (4) is a number between

0 and 1.

We now apply the apparatus to the e¢ ciency of the industry. Farrell (1957)

and Førsund and Hjalmarsson (1979) call it structural e¢ ciency and Johansen

(1972) de�nes potential industry output as a function of total input. Following

Färe and Grosskopf�s (2004) extension, the idea is to reallocate the combined

inputs of all �rms, industry input x =
P
xi, as to in�ate the aggregate output

vector, y =
P
yi, by an expansion factor 1=". Under constant returns to scale

the industry technology is the cone spanned by the �rm technologies, which is

4This is paradoxal, since the dual program minimizes the value of the inputs. The con-

straint, however, lifts the value of the inputs over the value of the outputs, in fact to the level

of potential output. And the latter is maximized by the primal program.
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the same technology as the reference technology in the �rm e¢ ciency program

(1). The only modi�cation to the latter is, therefore, the replacement of �rm

resources and output target by industry resources x and output target y:

max
";�j�0

1=" :
X

�jx
j � x; y=" �

X
�jy

j (5)

Let " solve program (5). It is a number between 0 and 1 which indicates

the industry e¢ ciency. The best practice �rms or benchmarks relevant to the

industry are signalled by �j > 0 in program (5). Denote the shadow prices of the

constraints in program (5) by w and p, for the inputs and outputs, respectively;

these industry prices solve the dual program:

min
p;w�0

wx : pyj � wxj ; py = 1; all j (6)

Analogous to equation (3), potential output increases by the following factor:

1=" = wx (7)

Analogous to equation (4), industry e¢ ciency becomes:5

" = py=wx (8)

Again, the e¢ ciency is the ratio of the value of output to the value of input.

5Since prices are in the numerator and the denominator of formula (8), the price normal-

ization in (6) is a wash.
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3 Industrial organization: an e¢ ciency measure

Proposition 1 establishes a one-sided relationship between the e¢ ciencies of the

�rms and the e¢ ciency of the industry. The gap in the relationship will be

used to quantify the e¢ ciency of the industrial organization.

Proposition 1. Industry e¢ ciency is less than the market share weighted

harmonic mean of the �rm e¢ ciencies: " � 1=
P

si

"i , where s
i = pyi=py are the

market shares evaluated at the prices determined by dual program (6).

Proof. In the dual program (2), consider the socially optimal prices p=pyi

and w=pyi (which need not be privately optimal). The denominator has been

chosen as to ful�l the price normalization constraint in program (2) and the

inequality constraint carries over from program (6). In short, these prices are

feasible with respect to program (2). But by their suboptimality (in this pri-

vate minimization program), (w=pyi)xi � wixi or wxi � pyiwixi = pyi="i,

using equation (3). Summing and invoking equation (7) and the price normal-

ization constraint of (6), we obtain 1=" = wx = w
P
xi �

P
pyi="i =

P
si="i.

Inverting, industry e¢ ciency becomes " � 1=
P

si

"i . Q.E.D.

The next proposition shows that the gap is zero if and only if the private

prices of the �rms coincide. The su¢ ciency part is reminiscent of Koopmans

(1957) result that the industry pro�t function equals the sum of the �rm pro�t
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functions.6 Proposition 2 will be used later to show that an industrial organi-

zation is e¢ cient if and only if it features price competition and free entry.

Proposition 2. The industry e¢ ciency equals the market share weighted

harmonic mean of the �rm e¢ ciencies if and only if all relative private price

vectors match.

Proof. The private prices pi and wi solve program (2). Rescale them by

letting them solve min
p;w�0

wxi : pyj � wxj ; py = 1; all j (normalizing against y

instead of yi). If the relative price vectors are equal, i.e. (pi; wi) are collinear,

then, by the now common normalization constraint, (pi; wi) are equal, say (p; w).

I claim these prices solve program (6). Feasibility carries over from any of the

rescaled linear programs. Suppose the prices are not optimal. Then there

would be a superior (p�; w�) with p�yj � w�xj ; p�y = 1 and w�x < wx. Hence

w�xi < wxi for some i. This contradicts that (p; w) solves the rescaled dual

program of that �rm i. Since (p; w) are also privately optimal, the inequalities

in the Proof of Proposition 1 are binding. The bindingness of the last of

these inequalities equates industry e¢ ciency with the harmonic mean of the

�rm e¢ ciencies. Conversely, if this equality holds, the inequalities in the Proof

of Proposition 1 are binding. Hence p=pyi and w=pyi are privately optimal.

These private prices are collinear. Q.E.D.

6Summation of pro�t functions presumes price equality across �rms.
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The reason that industry e¢ ciency is less than mean �rm e¢ ciency is that

the industrial organization is suboptimal. It is a form of allocative ine¢ ciency.

Firms better be split or merged, specialize or diversify. The optimal industrial

organization is determined by the benchmarks in program (5). Suboptimality

is signalled by a distortion between private and social prices (Proposition 2).

The e¢ ciency of the industrial organization can thus be measured by the ratio

of the industry e¢ ciency to the mean �rm e¢ ciency, or, using Proposition 1:

De�nition 1. The e¢ ciency of an industrial organization, (x; y), equals

"IO = "
P
si="i, where si are the market shares evaluated at the prices deter-

mined by dual program (6).

Notice that by Proposition 1 the e¢ ciency of an industrial organization is

a number between 0 and 1, with the latter value representing full e¢ ciency

according to Proposition 2.

Examples. 1. Consider an industry with equally e¢ cient �rms: "i = ".

Then by Proposition 1, " � 1=
P

si

"i = ". Hence industry e¢ ciency is less than

�rm e¢ ciency. The e¢ ciency of the industrial organization is "IO = "=".

2. Consider an industry that produces a single good from labor and capital.

Three �rms each produce one unit of output. Firm 1 uses just one unit of labor,

�rm 2 uses just one unit of capital, and �rm 3 uses 1/3 units of both inputs.

Since �rm 1 has labor only, the technologies of �rms 2 and 3 (which employ
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capital) are of no use. There is no potential increase of its output. The same

conclusion holds for �rm 2. Firm 3 could reallocate its labor and capital to the

technologies employed by �rms 1 and 2, respectively, but its output would go

down from 1 to 2/3. Hence no �rm has scope for an increase in output. All

potential outputs are equal to the observed outputs and, therefore, all �rms are

100% e¢ cient. The industry, however, is not e¢ cient. If �rms 1 and 2 would

merge and adopt the technology of �rm 3, the new �rm would be three times as

big as �rm 3, hence produce three units of output, which is one more than they

produce using their own technologies. Potential output is four units (instead of

three), so that the expansion factor is 4/3 and, therefore, the industry e¢ ciency

is 3/4 or only 75%. The e¢ ciency of the industrial organization is 75/100 =

0.75 or 75%. The industry would do better if the two specialized �rms would

merge.

3. It is straightforward to construct an example where the industry would

do better if a �rm were split: Simply substitute diseconomies of scope for the

economies of scope in Example 2, by letting �rm 3 use 2/3 units of both inputs

(instead of the 1/3 in Example 2).

4. Add a fourth �rm to Example 2, with the same inputs as �rm 3, but

only 1/2 a unit of output. Clearly, �rm 4 could produce a full unit of output

(adopting the technology of �rm 3). Its e¢ ciency is 50%. In the present

example, the outputs are 1, 1, 1, 0.5. The market shares are 2/7, 2/7, 2/7,

1/7. The �rm e¢ ciencies are 100%, 100%, 100%, 50%. The harmonic mean is

1=
P
si="i = 1=( 2=71:00 +

2=7
1:00 +

2=7
1:00 +

1=7
0:50 ) or 87.5% . For the industry potential
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output is three for �rms 1 and 2 jointly (see Example 2) and one for �rms 3 and

4 each, hence �ve in total (instead of three and a half), so that the expansion

factor is 5/3.5 and, therefore, the industry e¢ ciency is 3.5/5 or only 70%. The

e¢ ciency of the industrial organization is 70/87.5 = 0.8 or 80%.

An immediate consequence of De�nition 1 is the following.

Proposition 3. Industry e¢ ciency is the product of (market share weighted

harmonic) mean �rm e¢ ciency and the e¢ ciency of the industrial organization.

Proposition 3 will enable us to re�ne the decomposition of productivity

growth in technical change and e¢ ciency change in the next section, but �rst I

make an observation on the connection between the e¢ ciency and the support-

ability of an industrial organization in a contestable market.

In a contestable market, a potential entrant can tap the incumbents�technol-

ogy and the entry costs are zero; see Baumol, Panzar and Willig (1982). Their

solution concept is that of a sustainable industrial organization. The de�nition

of sustainability involves demand conditions, but a simple, necessary condition

is Sharkey and Telser�s (1978) supportability, and that is all I need.7

7Students of the history of economic thought recognize this as another instance where

the returns to scale (which are implicitly constant in benchmarking) determine if values are

determined by the supply side or in interaction with the demand side: the classical and

neo-classical points of view.
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De�nition 2. An industrial organization (xi; yi)i=1;:::;I is supportable by

price vector (p; w) if the latter renders every incumbent �rm pro�table (wxi �

pyi), but any potential entrant unpro�table (
P
�jx

j � xe; ye �
P
�jy

j ; �j �

0) wxe � pye).

The next result connects the benchmark industrial organization involving

price competition plus free entry with e¢ cient outcomes. In fact, Proposition

4 articulates the Baumol and Fischer (1978, p. 461) intuition that "it would

be highly surprising if there were not a rough correspondence between the most

economical market form and what actually occurs" and extends Baumol, Panzar

and Willig�s (1982) proposition that in a sustainable industry con�guration total

industry cost must be minimized.

Proposition 4. An industrial organization is supportable if and only if it

is fully e¢ cient and comprises fully e¢ cient �rms.

Proof. Let me �rst prove the only if part, which is known, at least for given

input prices. So let the industrial organization be supportable by (p; w). I claim

that the normalized supporting prices p=pyi and w=pyisolve the dual program

of an incumbent �rm, (2). For this purpose, take �j = 1 and �k = 0; k 6= j in

De�nition 2. Then xj � xe; ye � yj ) wxe � pye. In particular, wxj � pyj .

(In fact, the inequality is binding by the �rst condition in De�nition 2.) This

shows that the �rst constraint in (2) is met. The second constraint is met by
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the normalization by pyi. The value of the objective function in (2) must be

at least wxi � pyi according to the �rst constraint in (2) with j = i. By the

�rst condition in De�nition 2 this lower bound pyi is not exceeded by wxi of

De�nition 2, which renders the latter optimal in (2).

By equation (4), �rm i is fully e¢ cient. Moreover, since the relative prices

solving dual program (2) are common to all incumbent �rms, Proposition 2

applies and the industry e¢ ciency is also 1. Substituting these �ndings in

De�nition 1, it follows that the industrial organization must be fully e¢ cient.

To prove the converse, consider a fully e¢ cient industrial organization com-

prising fully e¢ cient �rms. By Proposition 2, there is a common price vector

(p; w) such that p=pyi and w=pyi are privately optimal. I claim that (p; w) sup-

ports the industrial organization. By equation (4), wxi = pyi. Let
P
�jx

j � xe

and ye �
P
�jy

j ; �j � 0. Then wxe � w
P
�jx

j � p
P
�jy

j � pye, where the

middle inequality holds term by term in view of the constraints in program (2)

that characterizes the privately optimal prices. Q.E.D.

4 Productivity growth: the recovery of the Solow

residual

Extending ten Raa�s (2005) back-of-the-envelope calculation for production func-

tions, I will now connect the present activity framework with neoclassical growth

accounting, particularly the Solow (1957) residual. This residual is the di¤er-
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ence between the output and input growth rates and measures technical change

in a competitive environment. Both growth rates are share-weighted expres-

sions, using competitive valuations. In a noncompetitive environment the resid-

ual also captures e¢ ciency change. Since the latter concept is de�ned by the

benchmarking program (1), which features no prices, a little work has to be done

to make the connection. Introduce time by subscripting inputs and outputs,

as well as the derived constructs, using the symbol t. Firm i has input and

output vectors xit and y
i
t, i = 1; :::; I. By benchmarking, yit="

i
t is derived, the

potential output of �rm i. Its e¢ ciency is indicated by "it, a number between

0 and 1. As a percentage, e¢ ciency change is:

ECit =
d

dt
"it="

i
t (9)

To bring in the technical change component of productivity growth, con-

sider two polar cases. First, if the production possibilities of the industry

remain constant, but �rm i improves its output/input ratio (or productivity),

approaching the production possibility frontier, the better internal organization

yields positive e¢ ciency change, while technical change is zero. Second, if �rm i

has a constant output/input ratio, but the production possibility frontier of the

industry shifts out, the better external organization implies negative e¢ ciency

change for the �rm. In this case e¢ ciency change and technical change cancel

and the �rm has zero productivity growth. In either case, e¢ ciency change and

technical change sum to the �rm�s productivity growth:
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PGit = EC
i
t + TC

i
t (10)

At this junction equation (10) is intuitive. E¢ ciency change has been

de�ned, in equation (9), but technical change and productivity growth not yet

and the equation must be demonstrated. Technical change manifests itself as a

shift of the production possibility frontier. At each point of time, the frontier

is determined by the industrial organization (xt; yt). The e¢ ciency of �rm i

is determined by program (1). Its input-output pair, (xit; y
i
t), is benchmarked

against (xt; yt). Formally, program (1) determines the e¢ ciency of �rm i as a

function of (xit; y
i
t) and (xt; yt). Hence we may write "it = e((xit; y

i
t); (xt; yt)),

where mapping e summarizes the e¢ ciency program. Now the program that

determines the e¢ ciency of the industry, (5), has precisely the same structure as

that for the �rms (the only di¤erence is that the pair of total input and output

vectors replace the role of a �rm�s pair), hence the same mapping e governs

the relationship between the data and industry e¢ ciency. The only di¤erence

is that it benchmarks the industry input-output pair, (xt; yt). Consequently,

program (5) may be written as "t = e((xt; yt); (xt; yt)), with the same mapping

e. Mapping e has two arguments, the input-output pair that is benchmarked,

(xit; y
i
t) in case of the �rm, and the industry constellation that determines the

frontier, (xt; yt). The structure of program (1) or (5) is independent of time,

so that time does not enter the function as a separate argument. Denote the
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two partial derivatives of the mapping by e1 and e2.8 By total di¤erentiation,

the e¢ ciency change of �rm i is:

de
dt ((x

i
t; y

i
t); (xt; yt))=e((x

i
t; y

i
t); (xt; yt))

= e1((x
i
t; y

i
t); (xt; yt))

d
dt (x

i
t; y

i
t)=e((x

i
t; y

i
t); (xt; yt))

+ e2((xit; y
i
t); (xt; yt))

d
dt (xt; yt)=e((x

i
t; y

i
t); (xt; yt))

(11)

The measurement of technical change is subtle. If �rm i stays put�(xit; y
i
t) =

constant�but potential output increases, there must be technical progress. Now

an increase in potential output, 1="it, is equivalent to a decrease in e¢ ciency, "
i
t.

Hence a negative second partial derivative�which captures the external e¤ect�

indicates technical progress. Indeed, if a �rm is �xed, but it becomes less

e¢ cient, it must be that the benchmarks have moved out. In short, technical

change is measured by:

TCit = �e2((xit; yit); (xt; yt))
d

dt
(xt; yt)=e((x

i
t; y

i
t); (xt; yt)) (12)

Finally, productivity growth of �rm i ought to be de�ned irrespective the

shift of the production possibility frontier. Productivity growth is de�ned by

the e¤ect of its own inputs and outputs on the e¢ ciency performance of the

�rm:

PGit = e1((x
i
t; y

i
t); (xt; yt))

d

dt
(xit; y

i
t)=e((x

i
t; y

i
t); (xt; yt)) (13)

8Both are row vectors, because either argument has a number of components: the number

of commodities and the I-fold of the number of commodities, respectively. The partial

derivatives capture the shadow prices, as revealed by the ensuing analysis.

21



The internal versus external approaches to the concepts of productivity

growth and technical change, respectively, is consistent with Solow�s (1957)

residual of �rm i, which is de�ned by pit
d
dty

i
t=p

i
ty
i
t � wit ddtx

i
t=w

i
tx
i
t. The reason

is that our partial derivatives of the e¢ ciency function involves the pricing of

input and output changes according to the marginal products of the �rm. More

precisely, Proposition 5 proves that expression (13) equals the Solow residual.

It completes the connect between the benchmarking and neoclassical approaches

to productivity.

Proposition 5. Productivity growth is measured by the Solow residual:

PGit = p
i
t
d
dty

i
t=p

i
ty
i
t � wit ddtx

i
t=w

i
tx
i
t.

Proof. The proof is by duality analysis. Mapping e�s �rst (sub)argument,

xit, lists the bound in program (1). The partial derivative of the objective value,

1="it, with respect to this bound is the shadow price wit. By the chain rule,

�1
"i2t

@"it
@xit

= wit. Mapping e�s next (sub)argument, yit, is a coe¢ cient in program

(1). Setting up the Lagrangian function and application of the envelop theorem

yields that the partial derivative of the objective value, 1="it, with respect to

coe¢ cient yit is �pit(1="it) . By the chain rule, �1
"i2t

@"it
@yit

= �pit(1="it). Substi-

tuting these in expression (13), we obtain PGit = (�wit"i2t ; pit"it) ddt (x
i
t; y

i
t)="

i
t =

(pit
d
dty

i
t� "itw

i
t
d
dtx

i
t)=p

i
ty
i
t = p

i
t
d
dty

i
t=p

i
ty
i
t � wit ddtx

i
t=w

i
tx
i
t, by the price normaliza-

tion constraint of program (2) and equation (4). Q.E.D.
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Summarizing, e¢ ciency change is de�ned by (9), technical change by (12),

productivity growth by (13), and the former two sum to the latter by equation

(11), which con�rms our intuitive equation (10).

Things look only slightly di¤erent at the level of the industry. Now in-

dustry input and output, (xt; yt), are benchmarked against the frontier. The

productivity growth of the industry is:

PGt = e1((xt; yt); (xt; yt))
d

dt
(xt; yt)=e((xt; yt); (xt; yt)) (14)

This expression is basically a summation of the �rm productivity growth

rates, (13), with the modi�cation that private shadow prices have been replaced

by social values. This di¤erence constitutes precisely the aggregation bias un-

covered by ten Raa (2005). The same di¤erence between private and social

valuations causes a bias in the aggregation of technical change, (12), but here it

is a minor phenomenon, speci�c to the nonparametric approach. Consequently,

the productivity aggregation bias is basically equal to the e¢ ciency aggregation

bias, or, invoking Proposition 3, the industrial organization e¤ect. The next sec-

tion will explain the role of industrial organization in the performance measure

of productivity.
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5 Malmquist indices

In discrete time a fascinating thought construct is to benchmark a �rm against

the industry at a di¤erent period. One may hope that the e¢ ciency of a �rm

benchmarked against the industry in the next period, e((xit; y
i
t); (xt+1; yt+1)),

is low. The basic idea of the Malmquist productivity index is to trace �rm i

from period t to t+1 and to measure the change in e¢ ciency relative to a �xed

benchmark. For example, benchmarking against the second period yields

e((xit+1; y
i
t+1); (xt+1; yt+1))�e((xit; yit); (xt+1; yt+1)). This di¤erence expres-

sion is a discrete time version of the numerator of productivity growth expression

(13). E¢ ciency change contributes to the �rst term and technical change to

the second term. The discrete time frame prompts two minor modi�cations.

First, Malmquist indices are ratios instead of level changes, so that the dif-

ference expression turns
e((xit+1;y

i
t+1);(xt+1;yt+1))

e((xit;y
i
t);(xt+1;yt+1))

.9 Second, Caves, Christensen,

and Diewert (1982) point out that one could just as well benchmark against

the previous period, which would yield
e((xit+1;y

i
t+1);(xt;yt))

e((xit;y
i
t);(xt;yt))

. Färe et al. (1989)

resolve this multiplicity by taking the geometric average of the two possibilities

is taken. In short, the Malmquist productivity index is de�ned by:

M i
t =

s
e((xit+1; y

i
t+1); (xt; yt))

e((xit; y
i
t); (xt; yt))

�
e((xit+1; y

i
t+1); (xt+1; yt+1))

e((xit; y
i
t); (xt+1; yt+1))

(15)

Färe et al. (1989) decompose the index (15) in e¢ ciency change and technical

9At a �rst order Taylor approximation this is equivalent to a change of variable, to the

exponential function. For example, a growth rate of 1% will yield an index of 1.01. It is

customary though to stick to the percentage format in reporting Malmquist indices.
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change as follows:

M i
t =

e((xit+1;y
i
t+1);(xt+1;yt+1))

e((xit;y
i
t);(xt;yt))

�
r

e((xit;y
i
t);(xt;yt))

e((xit;y
i
t);(xt+1;yt+1))

� e((xit+1;y
i
t+1);(xt;yt))

e((xit+1;y
i
t+1);(xt+1;yt+1))

(16)

The �rst quotient in decomposition (16) measures the increase in e¢ ciency

from time t to time t + 1. The remainder (the square root) contains two

quotients in which the �rm is �xed (at time t, respectively t + 1), but the

benchmark moves; this measures technical change.

Turning from �rm i to the industry, benchmark industry input and output

against the frontier. Comparison with the �rm index (15) shows that the

inudstry Malmquist productivity index becomes:

M t =

s
e((xt+1; yt+1); (xt; yt))

e((xt; yt); (xt; yt))
�
e((xt+1; yt+1); (xt+1; yt+1))

e((xt; yt); (xt+1; yt+1))
(17)

Proposition 6. The Malmquist productivity index aggregates the change

in the e¢ ciency of the industrial organization, �rm e¢ ciency changes, and tech-

nical change:

M t =
"IOt+1
"IOt

�
P
sit=e((x

i
t;y

i
t);(xt;yt))P

sit+1=e((x
i
t+1;y

i
t+1);(xt+1;yt+1))

�

�
r

e((xt;yt);(xt;yt))
e((xt;yt);(xt+1;yt+1))

� e((xt+1;yt+1);(xt;yt))

e((xt+1;yt+1);(xt+1;yt+1))

The �rst quotient measures the change in the e¢ ciency of the industrial

organization. Firm e¢ ciencies are aggregated in the second quotient by the

market share weighted harmonic mean and market shares are evaluated at the
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shadow prices of the industry e¢ ciency program (5). The square root measures

technical change.10

Proof. Apply formula (16) to the industry and substitute, using De�nition

1, for e((xt; yt); (xt; yt)) = "
IO
t =

P
sit=e((x

i
t; y

i
t); (xt; yt)) and similar for

e((xt+1; yt+1); (xt; yt)). Q.E.D.

6 Illustration

Consider the Japanese banks (i = 1; :::; I = 136) over a �ve year period (t =

1992; :::; 1996).11 There are three inputs (labor, capital, and funds from cus-

tomers) and two outputs (loans and other investments). Formally we have a

panel of inputs and outputs, (xit; y
i
t). For the four transitions between periods

Thanh Le Phuoc has computed the dynamic performance measure of produc-

tivity growth, and, applying Proposition 3, its decomposition in the industrial

organization e¤ect, �rms e¢ ciency change and technical change. The results

are in Table 1.12

10 In view of the previous note, we essentially have the sum of the three e¤ects.
11Fukuyama and Weber (2002) kindly made available their data. The data were obtained

by extracting Nikkei�s data tape of bank �nancial statements. Six banks had missing data

and were excluded. These were Akita Akebono, Bank of Tokyo, Hanwa, Hyogo, Midori, and

Taiheiyo.
12When Malmquist indices and its components are properly reported as fractions of the

order 1, the product of the components equals total productivity growth. When reported

as percentages, the components sum to total factor productivity growth, up to a �rst order
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Table 1.

The three contributions to the performance of the Japanese banking industry

Period Industrial Firms Technical Total

Organization E¢ ciency Change Productivity

1992-1993 0.07% -0.51% 0.52% 0.08%

1993-1994 0.57% 0.31% -0.58% 0.29%

1994-1995 -0.45% 0.35% 1.28% 1.18%

1995-1996 0.23% 0.70% 2.19% 3.15%

Total, annualized 0.11% 0.21% 0.85% 1.17%

The results permit a diagnosis of the Japanese banking industry. In the

mid 1990s Japanese banking showed a solid performance of 1.17% productivity

growth per year, much due to a �nal sprint. The bulk was due to technical

change, think of advances in electronic banking. The second biggest chunk was

due to e¢ ciency change at the bank level, think of the spread of ATMs. Last

and least, the industrial reorganization contributed to the Japanese banking

productivity growth. Various explanations can be advanced to understand

these di¤erent contributions, such as R&D, competitive pressure, and changes

Taylor approximation. This and rounding errors explain why not all row �gures add.
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in bankruptcy procedures. Many observers feel that there is scope for a bigger

role of the industrial reorganization of Japanese banking. True or not, the �rst

task seems to be the measurement of its share in productivity growth and that

can now be ticked o¤ the research agenda.

7 Entry and exit and other departures of the

model

An important source of productivity growth is the entry and exit of relatively

productive and relatively unproductive �rms (Bartelsman and Doms, 2000).

Diewert and Fox (2005) discuss and illustrate the decomposition problems. My

approach resolves some of their issues, since prices are endogenous. However,

the aggregation bias issue must be handled.

An analysis of entry and exit requires the consideration of di¤erent numbers

of �rms at the beginning and end of a period. Thus, denote the number of �rms

at time t by It. Moreover, we must consider entrants and exitors. There is a

slight time asymmetry. The novelty of entrants�technologies means they were

not available in the past, but the oldness of exitors�technologies does not mean

they are no longer available in the future. Old technologies become obsolete

economically (unpro�table). Tulkens and Vanden Eeckaut (1995) model this

asymmetry by means of sequential Malmquist indices. While entrants are

modelled as new �rms, exitors continue to exist, but become dormant�with

zero output and input levels.
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Denote the number of entrants by Et. Then It+1 = It + Et and the

partition of �rms at time t + 1 in incumbents and entrants reads It+1 =

It [ Et = f1; :::; It; It + 1; :::; It + Etg. Denote the total input-output com-

binations of incumbents by (xt+1; yt+1)
I = (xIt+1; y

I
t+1) and similar for the

entrants. Similarly, the industrial organization at time t + 1 can be writ-

ten (xt+1; yt+1) = ((xt+1; yt+1)
I ; (xt+1; yt+1)

E). Industry e¢ ciency becomes

"t+1 = e((xt+1; yt+1)
I + (xt+1; yt+1)

E ; (xt+1; yt+1)
I ; (xt+1; yt+1)

E), where the

�rst argument is equal to (xt+1; yt+1).

By Proposition 1, industry e¢ ciency is less than the market share weighted

harmonic mean of the �rm e¢ ciencies. It is straightforward to extend this

aggregation result to groups of �rms. In other words, industry e¢ ciency is less

than the market share weighted harmonic mean of the group of incumbent �rms

and the group of entrants. The di¤erence is the ine¢ ciency involved with the

suboptimal balance between entrants and incumbents. Incumbents�e¢ ciency

is "It+1 = e((xt+1; yt+1)
I ; (xt+1; yt+1)

I ; (xt+1; yt+1)
E) and entrants�e¢ ciency is

similar. Denote the market share for incumbents by sIt+1 = pt+1y
I
t+1=pt+1yt+1,

where the prices are determined by the year t+ 1 version of dual program (6),

and similar for the entrants. Then "t+1 � 1=(
sIt+1
"It+1

+
sEt+1
"Et+1

). This extension of

Proposition 1 from �rms to subclasses of �rms suggests the following variations

of De�nition 1 and Proposition 6.

De�nition 3. The e¢ ciency of entry, ((x; y)I ; (x; y)E), equals "E =

"( s
I

"I
+ sE

"E
), where sI and sE are the market shares of incumbents and entrants,
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respectively, evaluated at the prices determined by dual program (6).

Proposition 7. The Malmquist productivity index aggregates the e¢ -

ciency of entry, incumbent and entrant e¢ ciency changes, and technical change:

M t = "
E
t+1 �

1
"t

sI
t+1

"I
t+1

+
sE
t+1

"E
t+1

�
r

e((xt;yt);(xt;yt))
e((xt;yt);(xt+1;yt+1))

� e((xt+1;yt+1);(xt;yt))

e((xt+1;yt+1);(xt+1;yt+1))

The �rst factor measures the dynamic industrial organization e¤ect. In-

cumbent and entrant e¢ ciency changes are aggregated in the second quotient

by the market share weighted harmonic mean and market shares are evaluated

at the shadow prices of the industry e¢ ciency program (5). The square root

measures technical change.

The middle factor accounts for the e¢ ciency change of incumbent and en-

trants at an aggregated level, including not only �rm e¢ ciency changes but

also the (static) industrial organization e¤ect. This detail can be inserted as

follows. Application of Proposition 3, 1=" =
P
si="i

"IO
, to the incumbents and

entrants transforms the middle factor in Proposition 7 to

1
"t

sI
t+1

"I
t+1

+
sE
t+1

"E
t+1

=
P
sit="

i
t

"IOt
=
�
sIt+1

P
I s

i
t+1="

i
t+1

"IOIt+1
+ sEt+1

P
E s

i
t+1="

i
t+1

"IOEt+1

�
.

This expression is a combination of �rm e¢ ciency changes, "it+1="
i
t, entrants

e¢ ciencies, "it+1, and industrial organization e¤ects, "
IOI
t+1 ="

IOI
t and "IOEt+1 .

Entry and exit is not the only departure from the basic model. The next

one is markups. I de�ned an industrial organization by an allocation of in-

puts and outputs between the �rms. All prices encountered in the analysis
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were endogenous, competitive prices. Even if the observed market prices are

di¤erent, the competitive prices remain the right ones for the measurement of

performance, just as in macroeconomics the Solow (1957) residual measures

productivity growth if the value shares are based on competitive prices. To

investigate the role of markups the observed prices must be included in the

de�nition of an industrial organization and comparison with the shadow prices

generated by the model yields the markups. Are markups good or bad for

our performance indicator? The neoclassical answer is �bad,� since they fa-

cilitate slack, and the Schumpeterian argument is �good,� since they facilitate

Research & Development funding. Not surprisingly, the evidence is not signi�-

cant, but ten Raa and Mohnen (2008) have scratched the surface, decomposing

the markups in capital and labor components. The �rst one is �good�and the

second not, suggesting that both the neoclassicals and the Schumpeterians have

a point, but that the mechanisms di¤er (di¤erent factor markets).

Another, related departure of the basic model is to bring in increasing, de-

creasing or variable returns to scale. The latter is the counterpart of the

U-shaped average cost curves and encompasses the former two. This variation

drives a wedge between the technologies used in the �rm and the industry ef-

�ciency programs, (1) and (5), which has to be speci�ed (Färe and Grosskopf,

2004). Following Koopmans (1957) and Johansen (1972) variable returns to

scale can be modeled by letting intensities sum to unity in the �rm e¢ ciency

program and to the number of �rms in the industry e¢ ciency program. The

number of �rms in the industry e¢ ciency program can be allowed to vary. The
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program becomes a mixed integer-linear program and, perhaps surprisingly, du-

ality analysis can still be exploited to modify the results (ten Raa, 2009). While

the relationship with the theory of contestable markets becomes less clean, the

application to performance decomposition in �rm terms and an industrial or-

ganization e¤ect remains equally simple. The latter e¤ect remains given by

the ratio of De�nition 1; the only modi�cation remaining the inclusion of the

adding-up constraints in the e¢ ciency programs.

8 Conclusion

An industry may perform better, in the sense of productivity growth, by tech-

nical progress or by e¢ ciency change. Both sources of growth have been de-

composed in �rm contributions, but the aggregation is known to be imperfect.

The bias in the aggregation of the e¢ ciencies of the �rm re�ects the allocative

ine¢ ciency in an industry. This industrial organization e¤ect can be measured

by the change in the ratio of the industry e¢ ciency to the market share weighted

harmonic mean of the �rm e¢ ciencies. The measure can be extended to capture

the dynamic industrial organization e¤ect of entry and exit.
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