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Abstract: 

This paper explores the regional disparities of ICT development in China by comparing regional specializations of ICT industry. The spatial comparisons show that regional comparative advantages of ICT industry are quite incomparable with overall economic development. The rich coastal regions only show slight advantage over central regions. The western regions, however, is far behind central and costal regions except few exceptions. Based on a series of regional input-output tables, structural decompositions techniques are adopted to explore the empirical reasons of current disparities in specializations. In the process, a methodological contribution concerning spatial structural decompositions is also achieved by introducing spanning tree, decreasing variations of outcomes derived from different decomposition forms.  

Key words: ICT, regional disparities, structural decompositions, spanning tree, China

1. Introduction
The dramatic growth and importance of information and communication technology (ICT) industry have aroused an ad hoc scholarly interest in last decades, either relating its usage or production. On the demand-side, a large amount of studies recognize the positive contributions of use of ICT on economic growth ( Daveri, 2002; Ahmad, et.al. 2004; Jorgenson, 2001; Jorgenson, et.al. 2006), productivity ( Oulton, 2001; Kim, 2002; Gretton, et.al. 2004; Tilly, et.al. 2007；Van Ark, et.al. 2008) and industrial geographic concentrations ( Fu and Hong, 2008). The supply-side, i.e. the production and provision of ICT-related goods and services, attracts even more attentions: while it is typical of emerging and fast evolving technologies, there are particularly significant spatial differences, i.e. concentrations or agglomerations in its patterns of production. A great deal of theoretical and empirical research has been done with respect to it, in both field of economics and economic geography (See, for example, Koski, et.al. 2002; Blanc, 2004; van Oort and Atzema, 2004; Globerman, et.al. 2005; Kolarova, et.al. 2006; Lasagni, et.al. 2007).
With increased involvement of the country in international fragmentation of production and high priority of ICT industry’s development given by the central government, China has dramatically developed new comparative advantage and now ranks the three top world exporters in ICT products (Vogiatzolou, 2009). Its exports are also found upgraded from mere assembly of imported inputs to the manufacturing of high-tech intermediate goods (Amighini, 2005). There are, however, comparatively limited studies of ICT in the case of China (Wang, et.al. 2008). In the line of use side, Wong (2004) reports about 30% of the economic growth in China is attributed to the ICT capital during 1984-2001. In a similar vein, a share of contribution 20% is measured by Heshmati and Yang (2006) for the period of 1978-2002. Both studies are based on a time-series data for the national economy and mentioned the main drawbacks of lack in ICT data at this level. 
With a higher lack of systematic and comparable data at the regional level, the studies on agglomeration or cluster of ICT products and its determinants for China, are even more severely hampered on the supply-side. In the arena of industrial location and geographical concentration research, two main strands of theoretical reasoning guide the attempts to disentangle the various determining forces: neoclassical trade models and new economic geography models (Brulhart, 1998, 2001). Fueled by these theoretical models, a great deal of empirical tests has been done against the Chinese manufacturing industries, including the role tests of resource endowments, scale economies, technology spillover and local protectionism ( See, for example, Fan and Scott, 2003; Bai, et.al. 2004; Batisse and Poncet, 2004; Wen, 2004; He, et.al. 2008). While the concentrations are compared across manufacturing industries, the ICT manufacturing sector
 is always noticed a top high degree of concentrations, especially after 1990s (See, for example, the Hoover coefficients comparisons of mean value between 1985-1997 by Bai, et.al. (2004); Gini coefficients comparisons at 1980, 1985 and 1990 by Wen (2004); Gini coefficients comparisons at 1980, 1990 and 2003 by He, et.al. (2008) ). Specifically, Guangdong is the most concentrated area in terms of production of electronic and communication equipment (See Fan and Scott (2003) also for a ICT manufacturing pattern of counties-level distributions). However, due to the aforementioned data limitations, the reasons behind concentration across regions especially for ICT industry following these theoretical models, as far as we know, are barely explored. As Wang et al. (2008) pointed out in their pioneer work, the changing standard of definition or classification of the ICT industry and the existence of different sources of official statistics are two main long-standing obstacles to understand the nature and regional distribution of the Chinese ICT sectors. Based on employment data of first economic census, they unprecedentedly examine the spatial distribution and its innovation and performance of China’s ICT industry at the provincial level and then use case studies of Guangdong province to explain the relationship between spatial concentrations and innovations. As a good supplementary way to data limitations, case studies are widely accepted to analyze the cluster or agglomerations of China’s ICT industry (See, for example, Wang, et al. (1998) and Liu, et al. (2007) for a case study of Zhongguancun, Beijing, Tong and Wang (2002) for a case of Dongguan, Guangdong; Chen (2008) for a case of Kunshan, Jiangsu).  It should be mentioned also, that all these aforementioned case studies focus on the manufacturing sector only, including Wang, et.al.’s work. 
In this paper, we intend to employ the most recent series of Chinese regional IO tables for 2002, to investigate the spatial pattern of regional concentrations in ICT industry. We claim that Wang, et al.’s (2008) study keeps at least two questions open that our studies aim at solving. Firstly, we are going to use structural decomposition analysis (SDA), which is commonly used in input-output literature, to disentangle the regional disparities of specializations in ICT industry into the differences of underlying sources: intermediate usage of ICT products and final demand structure of the economy. Wang, et al.’s (2008) study only investigates the relationship between spatial concentration and innovations. Secondly, our spatial comparisons cover both manufacturing and services sectors for all the regions, while Wang’s is a case study for Guangdong province and manufacturing sector only. Furthermore, we also employ the location quotient of value added data, instead of employment data, to illustrate the spatial concentrations of ICT industry in this paper. 

Except for empirical implications, the contribution of this paper maintains the methodology to conduct spatial structural decompositions as well. One of the major problems with structural decomposition techniques is that they are not unique (Dietzenbacher and Los, 1998). This problem, obviously, become more serious in spatial decomposition than that is exhibited in traditional decomposition of changes over time. The large variation in explanatory factors, such as regional industry structure, can lead to a large variation of results derived from different forms of decomposition. Meanwhile, another problem arises for multilateral comparisons how to link all the regions since SDA only supports bilateral comparisons. In this paper, we propose a framework of chaining regions to deal with both aforementioned problems, which can be seen a methodological contribution for spatial SDA.    

The paper is organized as follows. The next section gives the spatial pattern of value added concentrations of ICT industries in China for 2002. Section 3 presents the methodology which is employed to conduct spatial decomposition analysis, both in chained bilateral comparisons and chained multilateral comparisons. In section 4 the empirical results for chained bilateral comparisons is analyzed. Subsequent section 5 explores the empirical application of chained multilateral comparisons. In section 6, we conclude the paper by some further investigations. 
2. Regional specializations of ICT industry at 2002 in China
2.1 The scope of ICT industry

As referenced by many studies in China (see, for example, Wong, 2002; Meng and Li, 2002; Heshmati and Yang, 2006), ICT industry include the following sectors: electronic equipment manufacturing, communication equipment manufacturing and the computer industry (hardware, software and services). According to the classifications of 2002 IO tables, two sectors out of 42 sectors can be seen as ICT industry: “Communications equipment, computers and other electronic equipment manufacturing” (Sec. 19, identified ICT Manufacturing sector hereafter) and “Computer and Communications Services, Software ” (Sec. 29, identified ICT services sector hereafter). 
2.2 Regional specializations of ICT industry in China   
With rapid growth of ICT industry in China, its development has inevitably been unevenly distributed. There are several measurements of industrial concentrations, such as Hoover coefficients, EG index, Gini index and so on (See Bickenbach and Bode (2008) for a recent review of measurements). However, all of them give an overall description of industrial concentration whereas location quotient (LQ) can be employed to identify the presence of industrial concentrations for a specific geographical locale, such as a region (Wolfe and Gertler, 2004). By comparing the sectoral shares of regional economy to national economy, LQ is considered to identify specializations in the local economy. The shares of sector can be based on employment, income or value added data. Compared with employment LQ in Wang, et.al.’s study, here we chose the value added
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where subscript i represents ICT industry, superscript r and n means region and nation respectively. 
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, for example, is the sum of two sectors’ value added for region r, that are ICT manufacturing and ICT services. Normally, LQi > 1.25 can be interpreted the region has comparative advantage in the industry. 
The regional specializations of LQs of ICT industry in 2002 are illustrated in Figure 1. To sketch the pattern, per capita GDP, which is often used to measure the level of regional economic development, is also depicted in figure 1. It can be found that Beijing has the highest LQ of ICT industry with 2.59, which is far higher than all the other regions. Tianjin and Guangdong follows Beijing as the second and third one with LQ about 2.20 whereas Shanghai occupied the fourth at 1.62. All of their LQs are much higher than the remaining 20 regions, which is not a surprising result. By looking at the domain name register under the .cn, for example, Beijing occupies almost 25% of whole resource, while Shanghai , Tianjin and Guangdong which together occupy another 30% of resource (CNNIC, 2009). With respect to the remaining twenty regions, however, the comparisons of regional specializations in ICT industry exhibit a quite unexpected different pattern with one of the regional economic development (measured by Per capita GDP in this paper). One of the observations is that central provinces do not show clear advantages over western provinces, whereas some of them, including Heilongjiang, Shanxi, Jiangxi and Henan, are even observed lower LQs than most western regions. Another is that the western region Shaanxi is bound as high ratios of LQs as coastal regions Zhejiang, Liaoning and Fujian
. The reasons behind it will be explored in the following, as mentioned before, by adopting structural decomposition model based on a series of input-output tables. 

          Figure 1. Regional specializations of ICT industry at 2002 in China
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Source: Calculated by the authors. The value added data are from national and corresponding regional IO tables of 2002 while the population data are from “China Statistics Yearbook 2003”.

3. The Methodology
3.1 Structural decomposition model of LQ and its problems
The input-output framework provides a reliable way to describe how the value-added of ICT industry are generated by intermediate usage of ICT products from all the sectors within the economy. With input-output framework, the value-added of one sector can be deduced from the final demand of all economic sectors and their intermediate use for the sector. Based on a 42-sector IO table of 2002, the sectoral value-added can be written as:
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with 


V   the 42*1 vector of sectoral value-added;
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A the 42*42 matrix of input coefficients 
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represents the Leontief inverse.

Y the 42*1 vector of sectoral final demand, including intraregional final 
consumption, investments and inventory increase, exports (excluding PCM re-
exports)
.

Due to the fact that regional GDP can be measured as sum of sectoral value-added and sum of sectoral final demand, If we divide the regional GDP in both sides of eq. 2, we have
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with    SV the 42*1 vector of sectoral share of value-added in regional GDP (structure of 
value-added);

SY the 42*1 vector of sectoral share of final demand in regional GDP (structure 
of final demand)
;

Considering ICT industry include both manufacturing and services sectors, the comparison of LQs for ICT industry between region r and k can be written as:
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with 
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 the 1*2 matrix of two value-added coefficients for ICT manufacturing 
and ICT services sectors.


BICT the 2*42 matrix of Leontief inverse where the first row is inverse for ICT 
manufacturing and second row is for ICT services sector. 

            SY   still the 42*1 vector of structure of final demand. 
According to eq. 4, the comparative advantage of ICT industry between region r and k can be decomposed into differences of three factor: value-added coefficients in sectors (
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). Even though the production of ICT products is generated by requirements of all the sectors within the economy, it is an obvious fact that 
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, which mainly leaded by the final demand for ICT products themselves, will play a dominant role in overall comparisons. However, we claim these decompositions are meaningful to understand the performance of each regions in ICT industry development. The value added coefficients 
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 indicate the regions require less intermediate inputs when produce same units of ICT products. The requirements for ICT products from other sectors, which denoted by 
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, is one of the important judgments of regional development level of ICT industry in usage side. As mentioned before, the usage of ICT products have been committed a favorable impact on economic growth and efficiency. Hence, the comparisons of inter-sectoral linkages 
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 can be seen to provide a spatial distribution of usage of ICT products as well.
Furthermore, there are two methodological issues arise if we apply the decomposition technique to analyze specializations of ICT industry in China. As mentioned above, one of the major problems is brought naturally by structural decomposition techniques with their non-uniqueness. Dietzenbacher and Los (1998) proved that there are n! of possible decompositions forms in case of n factors of sources. According to equation (4), the difference of LQ between region r and region k can be decomposed into three factors. For each factor, the decomposition is supposed to be listed in 3!=6 forms, which yields following formula from Eq. 5-1 to 5-6:
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Another problem how to conduct multilateral comparisons arises as well when we want to know the whole pattern of LQ’s comparisons in ICT industry for 24 regions of China. Eq.5 is obviously referred to a bilateral comparison between two objects, with one as referee and another one as object. Hence, there exist K(K-1)=24*23=552 possibilities of bilateral comparisons to be conducted when we want to know the pattern for K=24 regions of China, which seems to be too complicated. A multilateral comparison which links all the regions in a transitive way, so that K-1 bilateral comparisons can describe the whole pattern, is therefore highly required. 

3.2 PLS measure for variations of outcomes in decompositions techniques
Even though developing quite independently, structural decomposition techniques and index number theory possess high similarities (See Hoekstra and van der Bergh (2003) for a detailed proof how index approaches can be transferred to SDA both in additive and multiplicative forms). Ever since the seminal articles of Dietzenbacher and Los (1998), a lot of literature emerge to deal with non-uniqueness issue by proposing new decomposition forms transferred from index indicators (See, for example, Zhang and Ang (2001) for an usage of Divisia index indicator, Alcantara and Duarte (2004) for an usage of Geary-Khamis indicator, de Boer (2008) for an usage of Montgomery indicator). As Fernandez-Vazquez, et.al. (2008) described for a basic decomposition of 
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 is completely attributed to the change of x with one ‘polar’ decomposition whereas the interaction is completely suggested to the change of y with another ‘polar’ decomposition. The introduction of new index indicator, therefore, can be seen as a new way to provide the weight of interaction effect attributed to the determinants. 

Instead of presenting a new index indicator referring to weighting, we want to pay attention to a more basic perspective in this paper, that is variations of outcomes in decompositions. Considering the fact that both polar decompositions of Eq (5-1) and (5-6) are exhibited in a similar way of Paasche and Laspeyres index, the Paache-Laspeyres spread (PLS), which measures the sensitivity of the results to the choice of index number formula, is employed to measure the variations of two polar decompositions formula. Nevertheless, as Dietzenbacher and Bart (1998) proved, the range of the two polar decompositions might diverse the range of all the decompositions, when the number of determinants n>2. The PLS in this paper is redesigned as the spread between the maximum and minimum results for each factor, as Eq. 6 shows:
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For each factor, an individual PLS  provide a reasonable measurement of variations for the outcomes to the choice of all decompositions formula since it gives the deviations between the upper and lower bounds of decompositions results. All the results of decompositions hence lie between the bounds described in PLS. It can be easily proved that each individual PLS has the following properties:
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 might be generated in different forms of Eq.5, the overall variations of decompositions of Eq. 5 in this paper, is measured as the sum of three individual PLS for three factors, which yields the following formula:
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Due to the fact that individual PLS is defined in logarithm form, all the properties mentioned above still hold for overall PLS. Generally speaking, the bilateral comparisons with small overall PLS, can be seen less sensitive to the choice of decompositions formula. In addition, the pair of regions with smaller PLS also tend to approximate more closely the underlying determinants concerning specialization of ICT industry. 
3.3 Using spanning tree to link multilateral decompositions

Not only the decompositions forms, but also the ways to accomplish decompositions for multi-regions can be transferred from index number theory. A large number of index number methods have been proposed for making multilateral comparisons across countries. Hill (2001) argued that all methods of linking together intransitive bilateral indexes to product transitive multilateral indexes have an underlying spanning tree. In context of price index, for example, a spanning tree links together the vertices (the time periods in this context) in such a way that there is exactly one path between any pair of vertices. An edge connecting two vertices here denotes a bilateral index number comparison between those two periods. The comparison could be made using any bilateral formula, such as Paasche, Laspeyres or Fisher. The spanning tree underlying the fixed-base and chain method connects the vertices in a star and string formation, respectively (See figure 2). By a fixed-base-price index is meant a price index constructed using the star spanning tree with the base time period placed at the center of the star. Conversely, by a chronologically chained price index is meant a price index instructed using the string spanning tree with the time period linked chronologically. Moreover, a spanning tree defined on K vertices has always K-1 edges so that all the vertices will be connected.
[image: image51.emf]
Figure 2. The star and string spanning trees
With respect to spatial context of multilateral comparisons, the variant forms of star spanning tree is firstly encouraged (See Kravis, Heston and Summers (1982) for the initial suggestions). The Geary-Khamis index, for example, is an application of star spanning tree with average treated as the center. Its idea has been widely employed in empirical analysis of spatial comparisons, which take the overall average as the fix reference (See Alcantara and Duarte (2004) for a comparison of energy intensities in European Union countries, Jiang, et.al. (2008) for a comparison of regional labor productivities in China). 

However, the idea to compare regions with the average might not be an optimal one concerning specializations of ICT industry, especially for ICT services sector. This is caused by the independent component of final demand structure in Eq.5. There exist substantial exports of ICT services between regions within China, but not abroad. For example, over 40% of final demand for ICT services of Beijing is attributed from exports to other regions. However, only less 10% of final demand can be accounted by exports since the part of intra-national exports have been interacted in the summation. The comparison of final demand structure of a region to the average referee, therefore, might be less suitable as the comparisons at the regional level. Not only in aspect of data, the idea of chaining across regions is also encouraged in literature (See Kravis, et al. (1982) and Szulc (1996) for two notable references). Szulc (1996) agues that, under certain conditions, a chained bilateral comparison is preferable to a direct bilateral comparison. More specifically, Hill (1999a) shows chained two countries indirectly via one or more other countries might have smaller Paache-Laspeyres spread than direct comparison for price index. Recalling the non-uniqueness issues of decomposition forms, we will adopt the chained idea to analyze LQ’s pattern of regional ICT industry for both bilateral and multilateral comparisons. 

4. The chained bilateral comparisons through shortest Path (SP) method 
The individual PLS measure between two regions in Eq.6 provides an indication of the variations of outcomes of a direct bilateral decomposition to the choice of decomposition formula. It will be proved following that the upper limit of variations of chained bilateral decompositions is the sum of individual PLS for undergoing direct bilateral comparisons. Suppose the most simple chained case which links regions r and m via region k and only concerns the variations of EV, the contribution of value-added coefficients can be achieved in corresponding forms of Eq.7:
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where superscript C denotes the chained decompositions. The relevant Paasche-Laspeyres spread between r and k of Eq.7 is not the direct Paasche-Laspeyres spread
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The SP method selects the path between two regions with the smallest summed 
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, then the shortest path is a chained comparison between r and k via m. Otherwise, the shortest path is selected as a direct comparison
. Concerning this simplest case, the shortest path is the path between two regions with the smallest chained 
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. Hence, it minimizes the variations of a bilateral comparison for 
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 to the choice of decomposition formula. 

Due to the fact that PLS is defined in a logarithm form, the selection of shortest path can be extended into the situation when overall PLS is taken into account. Define contributions of
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 for a chained decomposition in a similar way with Eq. 7, we have Eq. 9 and Eq. 10:
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The overall CPLS then can be generated as:
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It can be easily proved that shortest path remains in a same way for overall PLS with the case of individual
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. Moreover, the shortest path concerning overall variations (PLS) can be identified for any bilateral comparisons as well when four or more regions exist. In that case, the shortest path is the path between two regions with the smallest PLS. Hence, it is seen to minimize the overall variations of a bilateral comparison to the choice of decomposition formula. 

The shortest path can be used to produce a star spanning tree for overall multilateral comparisons. When a union of K-1 bilateral comparisons is taken with one specific region through shortest path, a variant of star spanning tree is generated. Figure 3 depicts the shortest path spanning tree of Guangdong concerning PLS. For only 6 of 23 regions is a direct comparison the shortest path to Guangdong, all of them belong to coastal region: Fujian(3), Jiangsu(13), Liaoning(15), Shanghai(21), Tianjin(22) and Zhejiang(24). The variations of decomposition form (i.e. PLS) can be decreased by chaining via few intermediate regions for the remaining 17 regions. For example, the shortest path between Guangdong and Beijing(2) is via Zhejiang(24). Similarly, the shortest path between Guangdong(5) and Ningxia(17) is via Zhejiang(24), Hunan(11) and Heilongjiang(9). Each K-1 region has a unique path to Guangdong according to figure 3. Generally speaking, costal provinces with higher LQ incline to have shorter path to Guangdong while poor provinces with lower LQ are often via more intermediate regions.
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Note: The region codes are as follows: 1=Anhui, 2=Beijing, 3=Fujian, 4=Gansu, 5=Guangdong, 6=Guangxi, 7=Hebei, 8=Henan, 9=Heilongjiang, 10=Hubei, 11=Hunan, 12=Jilin, 13=Jiangsu, 14=Jiangxi, 15=Liaoning, 16=Neimeng, 17=Ningxia, 18=Qinghai, 19=Shaanxi, 20=Shanxi, 21= Shanghai, 22=Tianjin, 23=Yunnan, 24=Zhejiang. 
Figure 3. Shortest Path Spanning Tree for Guangdong

Table 1 compares the direct variations (i.e. PLS in Eq. 7) with the chained variations (i.e. CPLS in Eq. 11) which are obtained based on the shortest paths in figure 3 for the bilateral comparisons between Guangdong and all the other regions. For those 5 regions connected directly with Guangdong in Fig.3, which imply their shortest paths are direct ones, the chained variations equal to direct ones. For the remaining 18 regions, their chained comparison based on figure 3 clearly produces much lower variations of PLS than direct comparisons, although both objectives for the bilateral comparisons remain same. It should be mentioned that the individual variations for each factor can also be reduced in most cases since their sum of overall variations PLS is achieved as the lowest for the bilateral comparisons in figure 3 (Please see Appendix B for detailed information).
Table 1. Overall PLS of direct and chained comparisons based on SP
	Region
	Direct comparison
	Chained Comparison 
	Region
	Direct comparison
	Chained Comparison 

	Anhui
	0.5766
	0.1133
	Jiangsu
	0.0515
	0.0515

	Beijing
	0.0829
	0.0206
	Jiangxi
	0.9569
	0.1441

	Fujian
	0.1408
	0.1408
	Liaoning
	0.0657
	0.0657

	Gansu
	0.6288
	0.1712
	Neimeng
	0.8710
	0.0887

	Guangdong
	0.0000
	0.0000
	Ningxia
	1.7282
	0.1371

	Guangxi
	1.2472
	0.0688
	Qinghai
	0.8416
	0.1374

	Hebei
	1.2487
	0.1174
	Shaanxi
	0.5652
	0.1246

	Henan
	0.7508
	0.1364
	Shanxi
	1.4009
	0.1001

	Heilongjiang
	0.6455
	0.1188
	Shanghai
	0.0658
	0.0658

	Hubei
	0.7374
	0.0575
	Tianjin
	0.0419
	0.0419

	Hunan
	0.4040
	0.0743
	Yunnan
	0.3337
	0.0248

	Jilin
	2.2856
	0.0801
	Zhejiang
	0.0388
	0.0388


5. The chained multilateral comparisons through minimum spanning tree (MST) method

5.1 The Minimum Spanning Tree (MST) 
The overall pattern of China can be discerned by the K-1 bilateral comparisons between Guangdong and all the other regions. However, the forms of star spanning tree are highly dependent on the selection of referred region. When referred region changed, for example, into Beijing, another star spanning tree will be generated by searching the shortest path between Beijing and all the other K-1 regions. Furthermore, it only minimizes the variations of bilateral comparisons for these K-1 bilateral comparisons. For multilateral comparisons, Hill(1999b, 2001) suggested the form of minimum spanning tree to decrease PLS in context of price index, which can be also adopted to our context of LQs.
In general, there are Kk-2 different spanning trees are defined on the set of K vertices, with K-1 edges respectively. In our context, the observation of PLS index between two regions can be defined as the weight of edges for a spanning tree whereas regions are seen as the vertices. The minimum spanning tree is the spanning tree with the smallest sum of PLS indexes among all the Kk-2 possibilities. More specifically, a K*K matrix of PLS indexes hold for all the bilateral comparison between K regions. The matrix is symmetric (Property 2) with zeros on the lead diagonal (property 1). Hence, the matrix has K(K-1)/2 distinct PLS indexes. The minimum spanning tree is the one minimizes a union of K-1 PLS  indexed out of  all the K(K-1)/2 distinct PLS indexes. It is a natural extension of  the shortest path to multilateral comparisons.

A number of equivalent algorithms exist in the graph theory literature for computing the minimum spanning tree of a graph. In this paper, we adopt Kruskal’s algorithm to build the minimum spanning tree for China. It proceeds as follows. Firstly, the edges are ranked according to the size of their weights (PLS indexes); secondly, the edge with the smallest weight is selected, subject to the constraint that it does not create a cycle: if selecting this edge creates a cycle, then the algorithm skips it and moves on to the edge with the next smallest weight; Then this procedure for selecting edges is repeating until it is no longer possible to select any more edges without creating a cycle, at which point the algorithm always selects exactly K-1 edges. The set of vertices and selected edges constitute the minimum spanning tree. Hence, the minimum spanning tree is constructed from edges connecting pairs of regions with the smallest PLS. A proof that Kruskal’s algorithm finds the spanning tree with the smallest sum of weights can be found in Wilson (1985, P55).

5.2 MST for ICT industry in China

Using Matlab software, the minimum spanning tree relating to the pattern of ICT industry in China can be built instantly out of 2422 spanning trees with the smallest PLS, as figure 4 shows. The minimum spanning tree itself provides a pattern to analyze all the regions relating their LQs and their structures. As aforementioned, the linked regions in figure 4 will tend to have similar pattern in both final demand structure and development level of ICT industry, which is exhibited in the intermediate ICT products usage pattern of IO tables. Combining with the star spanning tree of Guangdong (figure 3), some similar clusters of regions can be recognized if they are linked commonly. For example, Beijing (2), Guangdong (5), Jiangsu (13), Tianjin (22) and Zhejiang (24) resemble together in both figures. This cluster seem to have similar pattern in both final demand structure (all of them belong to well-developed coastal regions) and development level of ICT industry (all of them have higher LQs of ICT industry). Another cluster is composed by Guangxi(6), Hunan(11) and Ningxia(17), which generally have lower LQs of ICT industry.
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Note: See note of figure 3. 

Figure 4. Minimum spanning tree for China

Another interesting inspection for figure 4 is that the links between regions also feature quite geographically. The paths between westerns regions and coastal regions are always though central regions. For example, the western regions, Gansu (4), Guangxi (6), Ningxia (17), Qinghai (18) and Yunnan (23) are either being or close to the ends of paths and their connections with coastal regions can only be achieved through central provinces. It is quite reasonable since they are far more different with coastal regions in underlying economic structure.
Based on MST, all bilateral decompositions can be accomplished with the smallest overall variations. To compare with star spanning tree in figure 3, Guangdong is also selected as the benchmark for calculations. Table 2 gives the PLS variations of direct and chained decompositions between Guangdong and all the remaining regions to the choice of decompositions formula
. It remains that the chained comparisons based on MST reduce the variations of all bilateral comparisons with Guangdong, except for Jiangsu. Its connection with Guangdong are finished via Zhejiang in figure 4, in stead of direct links in figure 3, which is a better choice and hence lower variations for bilateral comparisons. A clear pattern also emerge from the comparison between table 1 and 2 that SP specially built for Guangdong  generate smaller variations than overall MST. It should be noticed two exceptions, Liaoning and Shanghai, however. Their PLS based on MST in table 2 is larger than one of SP. Recalling the fact that summed PLS is upper boundary of chained comparisons, which implies that chained comparisons still possibly have lower variations when 
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, it is not hard to understand the chained path based on MST of figure 4 generate lower variations than SP of figure 3 concerning bilateral comparison between these three regions and Guangdong. 
    Table 2. PLS of direct and chained comparisons based on MST

	Region
	Direct comparison
	chained comparison based on MST
	Region
	Direct comparison
	chained comparison based on MST

	Anhui
	0.5766
	0.1133
	Jiangsu
	0.0515
	0.0543

	Beijing
	0.0829
	0.0206
	Jiangxi
	0.9569
	0.1441

	Fujian
	0.1408
	0.1408
	Liaoning
	0.0657
	0.0642

	Gansu
	0.6288
	0.2039
	Neimeng
	0.8710
	0.0887

	Guangdong
	0.0000
	0.0000
	Ningxia
	1.7282
	0.2786

	Guangxi
	1.2472
	0.2293
	Qinghai
	0.8416
	0.1492

	Hebei
	1.2487
	0.1541
	Shaanxi
	0.5652
	0.2108

	Henan
	0.7508
	0.1364
	Shanxi
	1.4009
	0.1440

	Heilongjiang
	0.6455
	0.2529
	Shanghai
	0.0658
	0.0589

	Hubei
	0.7374
	0.1673
	Tianjin
	0.0419
	0.0419

	Hunan
	0.4040
	0.1971
	Yunnan
	0.3337
	0.1971

	Jilin
	2.2856
	0.0801
	Zhejiang
	0.0388
	0.0388


5.3 Spatial comparisons of ICT industry’s specializations in China

Based on the MST in figure 4, a transitive way to conduct multilateral decompositions by only K-1 edges is generated. Even though the current decompositions are not transitive, the unique underlying paths between any pair of the regions produce the transition. For example,  the comparisons between Shanghai(21) and Tianjin(22) can always be achieved by comparisons of two pairs: Shanghai(21) and Jiangsu(13), Jiangsu(13) and tianjin (22). Recalling the fact that pairs are edges in a spanning tree, K-1 edges provide all the necessary information for the multilateral comparisons of  K vertices. 

There are, however, 6 forms of decompositions for each factor
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 according to Eq.7, 9, 10 respectively. In this paper, the geometric mean of all the forms is reported as well as the share of contributions
. Table 3 shows these decompositions results when Guangdong is taken as a reference. It should be mentioned that the selection of referred region can not influence the results of comparisons for K regions since all the K(K-1) bilateral comparisons can be generated by the K-1 edges in transitive MST. For example, the comparisons between Beijing and Shanghai which are calculated based on table 3 will be as same as the results when either Shanghai or another region are taken as the reference directly. The regional transitivity is produced by the same underlying paths, instead of weighting interaction part of decompositions. This is also why minimum spanning tree is seen as a way to conduct ‘multilateral comparisons’ while star spanning tree based on shortest path only generate instruction for bilateral comparisons. In this section, Guangdong is considered due to its high development level of ICT industry.
Table 3. Decompositions of regional specializations in ICT industry
 (Guandong as the reference)

	
	
[image: image85.wmf]r

k

LQ

LQ

/


( k=1,..,n-1)
	
[image: image86.wmf]v

E


	
[image: image87.wmf]B

E


	
[image: image88.wmf]S

E



	
	
	Value
	Share
	Value
	Share
	Value
	Share

	Gansu
	0.14
	1.02
	-1.02%
	0.82
	10.18%
	0.17
	90.87%

	Jiangxi
	0.19
	1.24
	-12.78%
	0.80
	13.23%
	0.19
	99.55%

	Henan
	0.20
	1.35
	-18.73%
	0.76
	17.09%
	0.20
	101.63%

	Yunnan
	0.21
	1.04
	-2.49%
	0.98
	1.51%
	0.20
	100.98%

	Neimeng
	0.21
	1.49
	-25.32%
	0.70
	22.46%
	0.20
	102.86%

	Shanxi
	0.21
	1.17
	-10.22%
	0.82
	12.48%
	0.22
	97.73%

	Guangxi
	0.21
	1.18
	-10.86%
	0.96
	2.89%
	0.19
	107.98%

	Hebei
	0.24
	1.28
	-17.09%
	0.82
	13.92%
	0.23
	103.17%

	Heilongjiang
	0.24
	1.12
	-8.01%
	1.26
	-16.25%
	0.17
	124.26%

	Ningxia
	0.24
	1.20
	-12.56%
	0.68
	26.82%
	0.29
	85.75%

	Anhui
	0.25
	1.32
	-19.79%
	0.82
	14.34%
	0.23
	105.44%

	Qinghai
	0.25
	1.25
	-16.09%
	0.70
	25.99%
	0.29
	90.10%

	Jilin
	0.27
	1.23
	-16.04%
	0.67
	30.73%
	0.33
	85.31%

	Hubei
	0.28
	1.05
	-3.44%
	1.22
	-15.61%
	0.22
	119.04%

	Hunan
	0.29
	1.04
	-3.56%
	1.29
	-21.00%
	0.22
	124.57%

	Shaanxi
	0.40
	0.79
	25.85%
	0.98
	1.71%
	0.52
	72.45%

	Liaoning
	0.41
	1.11
	-11.35%
	0.96
	4.82%
	0.38
	106.53%

	Zhejiang
	0.42
	1.12
	-12.85%
	0.84
	20.89%
	0.45
	91.96%

	Fujian
	0.50
	1.32
	-40.05%
	0.86
	20.90%
	0.44
	119.15%

	Jiangsu
	0.61
	1.15
	-28.22%
	0.90
	21.57%
	0.59
	106.65%

	Shanghai
	0.74
	1.09
	-29.57%
	0.87
	47.51%
	0.78
	82.05%

	Tianjin
	1.02
	1.18
	1063.14%
	0.70
	-2264.70%
	1.23
	1301.56%

	Beijing
	1.17
	0.90
	-66.69%
	0.88
	-77.77%
	1.48
	244.46%


The overriding finding derived from table 3 is that only two regions Beijing and Tianjin exhibit comparative advantage over Guangdong in terms of ICT industry, with ratios of 
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larger than 1. The remaining coastal regions follows immediately, including Liaoning, Zhejiang, Fujian, Jiangsu and Shanghai, by showing ratios of LQs from 0.41 to 0.74. Meanwhile, Shaanxi, one of the western developing regions, also show quite high level of ICT development by ratio at 0.40. For the remaining central and western regions, the ratios are ranged from 0.19-0.29, except for Gansu at 0.14 of LQ.
According to table 3, the regional comparative advantage or disadvantage of ICT industry over Guangdong is broke down into contributions of three effects: value-added share in output of ICT industry (
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, it means the value added coefficient bring negative effect on regional LQ, implying the regional ICT industry consumes more inputs than Guangdong when produces one unit of ICT products. 
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 reflects to what extend the ICT products are required by all the sectors within the economy as intermediate consumptions. The higher the value of
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 is, the more ICT product as inputs across all the sectors regional economy consumes, the higher development level of ICT industry has the regions.
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, therefore, describes the effect of final demand structure for all the sectors within the regional economy, including ICT industry itself.
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 reveals the region has favorable final demand structure for producing ICT products over Guangdong. It is clear, however, the share of final demand for ICT products in whole economy play the most important role on value of
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 are reported in table 3. Their contributions are measured by taking the logarithm forms, that is:
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For those two regions with higher LQs than Guangdong, Beijing and Tianjin, their advantages are obviously attributed from favorable final demand structure: they are the only two exceptional regions with
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 significantly larger than 1. As far as  their values of 
[image: image106.wmf]B

E

, both of them is less than 1, indicating their economy consumes less ICT products across sectors than Guangdong. The values of 
[image: image107.wmf]V

E

, however, are observed different performances. Beijing is pronounced a negative share of 
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 while Tianjin enjoys a positive one. Closer inspections show that this unusual value of 
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 in Beijing is brought by its high share of ICT services in ICT industry. Its value-added share of ICT services in whole economy is two times over Guangdong and more than four times over national mean. Considering the fact that services sector requires less intermediate material than all the other sectors, it is not hard to understand why ICT industry of Beijing consumes less input than Guangdong. 

For the remaining regions, their backwards from Guangdong show quite similar pattern, no matter which district they belong. They are mostly attributed negatively from 
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and positively from 
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 and 
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. It is a quite reasonable result in term of 
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 and 
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 less than 1, since Guangdong has a high level of development in ICT industry and it exhibit priority over other regions. With respect to value added coefficients, Jiang, et.al (2009) found that poor western regions often have higher value added coefficients and lower inputs level than rich coastal regions during 1997-2002 due to the industrialization progress. It then can be understood that most regions consumes less inputs per unit of ICT products, although their development of ICT industry is far behind Guangdong. Furthermore, among three factors, the main contributions are derived from 
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 since its contributions are around 72%-124%; the second positive shares are attributed from
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 with a main range of 2%-48% while
[image: image117.wmf]V

E

 remains a negative share from -40% to -1%.

There exist few exceptions, however, concerning the values and contributions of 
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 and 
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. Shaanxi is one of the exceptions to deserve attention. As aforementioned, its LQ is quite close to coastal regions although it belongs to poor west as a whole. Compared with coastal regions, it is found that the main priority is from
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. The further exploration for final demand structure shows that Shaanxi has substantial exports in terms of ICT products, especially ICT services. The high development level is also supported by 
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, which is brought by as high share of ICT services sector as Beijing. Furthermore, it can be explained by high-qualified labor force and supportive research centers and specialized universities (such as Xi’an Jiaotong University) in Xi’an (the capital of Shaanxi), which also noted by Walcott (2002).

A further observations is with respect to the values of 
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. As mentioned before, due to the fact of industrialization progress, higher value of 
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 implies that more ICT products are consumed as intermediate inputs for the regional economy, which can be also seen as an alternative indicator of higher level of ICT industry’s development. It can be found firstly three regions, Heilongjiang, Hunan and Hubei reveal unusual values of 
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>1, implies that they have favorable intermediate consumptions of ICT products across the regional economy than Guangdong. On the contrast, all the coastal regions, including Beijing and Tianjin, do not enjoy the priority over Guangdong, by showing a 
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<1. This is mainly caused by the pattern of ICT manufacturing sector. Closer inspections show that Leontief inverse show that the ICT manufacturing sector are highly dependent on trade in coastal provinces, with an import ratios in final consumptions around 50%-60% and a higher ratios of exports. On the contrast, the aforementioned three provinces hold a lower ratios of interregional trade in final consumptions. The consumption of ICT products, therefore, induce less regional GDP through intraregional usages (exhibited by Leontief inverse
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) in coastal regions than these three central regions. 
A final observation is relating to the comparisons between coastal, western and central provinces. By comparing the values of 
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between coastal regions and remaining central regions, it can be found that coastal regions do not show clear priority over central regions. The comparative advantage of coastal regions over central regions, are mainly attributed from final demand, especially the exports. Meanwhile, western regions are still far behind coastal and central regions, either in LQs or 
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, except Shaanxi. By a comparative advantage in ICT services sector, Shaanxi enjoy as high ratio of LQ in ICT industry as coastal regions.
5.4 Implications for further development in ICT industry of China

The empirical evidence provided by this analysis raises some implications of potential importance to development of ICT industry, or more general, the regional economic development. One of the observations is that intermediate usage of ICT products (
[image: image130.wmf]B

E

) play positive role in regional backward from Guangdong. The fact of positive role of ICT on economic growth seems to suggest the need to focus on polices to encourage usage of ICT products across China, even for most coastal regions. Another implication is derived from the “success” of Shaanxi, which is located in the poor western regions but quite well developed in ICT services. The sectoral advantage can be generated in line with its characteristics (i.e. high-qualified labor force and specialized universities here), instead of overall economic development, as Shaanxi does in development of ICT services. The policies designed to promote regional advantage according its resources and characteristics hence seem highly recommended for the regional development. 
6. Further extensions
In this paper, we introduce spanning tree to tackle with non-uniqueness problem of structural decomposition techniques. It is exemplifies based on a decomposition with 6 forms, either in bilateral comparisons of SP or multilateral comparisons of MST. In the context of structural decompositions, it is often the case that n! possibility of decompositions forms exist for n determinants. Although the empirical analysis in this paper is concerning 3!=6 different decompositions, it should be mentioned that the measurement of PLS and constructed SP or MST can be extended into this general sense. Due to logarithm form, all the properties remain when n individual PLS is summed into an overall PLS. For the case with n determinants, PLS can be used as weights such as the case with 3 determinants. Furthermore, the SP or MST can be also built for one special individual PLS  if the focus is especially for one factor. The weights of edges can be changed depending on the selection of objections when building the spanning tree.
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Appendix A.
The proportional method of estimating intraregional production structure for China
The structure of current Chinese regional IO table is represented by Figure 1. The n×n matrix Z describes the intermediate deliveries including imports from other regions and from abroad. The row vector 
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 gives the domestic gross output of each sector i (= 1, ..., n). The n×k matrix F are final demands, categorized by final consumption and investments. In a similar vain with intermediate deliveries 
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Figure A.1  Structure of current IO table in China’s official statistics

The proportional method has been widely used to estimate intraregional and imported inputs and final demands separately based on these tables (See Dervis et.al. (1982) for an introduction and Lahr (2001) for an overview). The idea is to assume a same proportional usage of product i to all the intermediate deliveries 
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, final consumption and investments. However, as Pei, et.al. (2009) indicated in a recent study for China, the data of processing trade with customer’s materials (PCM) should be subtracted from the imports and exports columns. The reason behind it is relating Chinese IO survey system: the imported intermediate inputs of PCM are not included in the transaction survey but included in the trade columns for the Chinese IO tables. As an additional step, they proposed to subtract PCM imports when applying proportional method to China. Figure A.2 describes the results of estimated intraregional tables. 
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Figure A.2. Structure of estimated IO table, separating intraregional flows from imports, excluding PCM     

As figure A.2 shows, the total imports which exclude PCM is proportionally distributed into intermediate deliveries, final consumptions and investments while increased inventory and statistical errors keep “produced” internally. The import coefficients 
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The inputs and final demand (including final consumption and investments only) can be divided into intraregional and imported separately:
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Hence, the equilibrium for intraregional production yields:
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As far as the equilibrium for imports, it is given by:
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where 
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represents the re-exports of PCM.
It should be mentioned that the total outputs in figure A.2 are exactly as same as the ones in figure A.1. Define the technical input coefficients as 
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The revised proportional method is especially required by the costal regions. For example, in Guangdong province, one of well-known ‘world factory’, the share of PCM in total trade even reaches 50% at 2002, two times of national share. It arises another problem at empirical study, however, that is data availability. The sectoral PCM trade data at regional level are not available in current Customs Statistics. 
Given the fact the regional total imports of PCM and sectoral imports of PCM for the national economy are available, we adapt a bi-proportional method to estimate the necessary data. Let 
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 represents the imports of PCM trade of sector i in region j, table A.1 shows that its row sums and column sums compose the regional and national sectoral imports of PCM separately. The shaded cells are unavailable information in current statistics whereas non-shaded sums are available. 

      Table A.1 the estimation of sectoral imports of PCM at regional level 
	
	Region 1
	Region 2
	…
	Region R
	Sectoral PCM

	Sector 1
	
[image: image174.wmf]11

m


	
[image: image175.wmf]12

m


	…
	
[image: image176.wmf]R

m

1


	
[image: image177.wmf]å

j

j

m

1



	Sector 2
	
[image: image178.wmf]21

m


	
[image: image179.wmf]22

m


	…
	
[image: image180.wmf]R

m

2


	
[image: image181.wmf]å

j

j

m

2



	…
	…
	…
	…
	…
	…

	Sector N
	
[image: image182.wmf]1

N

m


	
[image: image183.wmf]2

N

m


	…
	
[image: image184.wmf]NR

m


	
[image: image185.wmf]å

j

Nj

m



	Reg. PCM
	
[image: image186.wmf]å

i

i

m

1


	
[image: image187.wmf]å

i

i

m

2


	…
	
[image: image188.wmf]å

i

iR

m


	


Setting a starting point of the regional imports, for example, as same as the structure of national economy 
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 in this section, the bi-proportional method, which is called RAS (proposed by Stone and Brown, 1962), can be employed to estimate 
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Appendix B. 

As mentioned before, there are 3!=6 forms for current decompositions. It might be argued that PLS is only one of the descriptions of variations to the choice of decompositions forms. Table B.1 adopts an alternative description of variations for each factors 
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 when showing the comparisons between direct and chained bilateral decompositions of SP spanning tree. The chained path is taken from SP in figure 3 and the variations are measured as the ratio of the standard deviation  to the mean for each factor, that is 
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Table B.1 CV of direct and chained comparisons for each factor based on SP
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	Direct comparison
	Chained Comparison 
	Direct comparison
	Chained Comparison 
	Direct comparison
	Chained Comparison 

	Anhui
	1.23%
	0.90%
	14.42%
	1.94%
	14.89%
	1.72%

	Gansu
	4.64%
	1.36%
	12.34%
	3.15%
	11.67%
	3.03%

	Guangxi
	19.42%
	1.42%
	14.19%
	0.41%
	25.39%
	1.36%

	Hebei
	19.57%
	0.71%
	14.09%
	2.42%
	26.90%
	2.31%

	Henan
	7.01%
	1.16%
	13.13%
	2.42%
	16.69%
	2.26%

	Heilongjiang
	13.90%
	2.35%
	3.60%
	0.66%
	15.08%
	2.34%

	Hubei
	17.12%
	0.77%
	3.70%
	0.71%
	16.36%
	0.85%

	Hunan
	6.60%
	1.05%
	3.50%
	0.91%
	5.94%
	1.14%

	Jilin
	42.30%
	1.47%
	16.07%
	0.50%
	48.72%
	1.44%

	Jiangxi
	11.44%
	1.33%
	14.13%
	2.37%
	20.91%
	2.21%

	Neimeng
	3.45%
	0.74%
	19.71%
	1.49%
	21.22%
	1.33%

	Ningxia
	28.24%
	2.88%
	16.86%
	0.67%
	35.58%
	2.63%

	Qinghai
	12.74%
	2.19%
	9.87%
	1.33%
	18.11%
	2.08%

	Shaanxi
	12.80%
	1.18%
	1.50%
	1.91%
	13.65%
	1.92%

	Shanxi
	30.00%
	0.63%
	7.19%
	2.00%
	31.87%
	1.93%

	Yunnan
	5.79%
	0.35%
	3.28%
	0.26%
	7.40%
	0.34%


* Five regions which are linked to Guangdong directly in figure 3 are not listed since their variations are totally same.
According to table B.1, all the variations are reduced for each factor, except for the case of Fujian. The distance of direct and chained comparisons between Guangdong and Fujian, however, is comparatively small. It is then confirmed that SP generates less variations for each factor.
In table B.2, the chained path is taken from path of MST in figure 4. A similar conclusion can be drawn that MST reduces the variations of each factor in most cases. 

Table B.2 CV of direct and chained comparisons for each factor based on MST
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	Direct comparison
	Chained Comparison 
	Direct comparison
	Chained Comparison 
	Direct comparison
	Chained Comparison 

	Anhui
	1.23%
	0.90%
	14.42%
	1.94%
	14.89%
	1.72%

	Gansu
	4.64%
	2.13%
	12.34%
	3.24%
	11.67%
	3.24%

	Guangxi
	19.42%
	3.34%
	14.19%
	3.25%
	25.39%
	3.70%

	Hebei
	19.57%
	1.48%
	14.09%
	2.51%
	26.90%
	2.46%

	Henan
	7.01%
	1.16%
	13.13%
	2.42%
	16.69%
	2.26%

	Heilongjiang
	13.90%
	4.04%
	3.60%
	2.97%
	15.08%
	4.53%

	Hubei
	17.12%
	3.41%
	3.70%
	1.30%
	16.36%
	3.29%

	Hunan
	6.60%
	3.01%
	3.50%
	2.82%
	5.94%
	3.01%

	Jilin
	42.30%
	1.47%
	16.07%
	0.50%
	48.72%
	1.44%

	Jiangsu
	0.23%
	0.28%
	1.03%
	1.13%
	1.11%
	1.11%

	Jiangxi
	11.44%
	1.33%
	14.13%
	2.37%
	20.91%
	2.21%

	Liaoning
	0.32%
	0.31%
	1.48%
	1.47%
	1.61%
	1.58%

	Neimeng
	3.45%
	0.74%
	19.71%
	1.49%
	21.22%
	1.33%

	Ningxia
	28.24%
	4.77%
	16.86%
	3.25%
	35.58%
	4.64%

	Qinghai
	12.74%
	3.43%
	9.87%
	0.51%
	18.11%
	3.33%

	Shaanxi
	12.80%
	4.21%
	1.50%
	0.94%
	13.65%
	4.56%

	Shanxi
	30.00%
	2.80%
	7.19%
	2.23%
	31.87%
	1.70%

	Shanghai
	1.45%
	1.21%
	0.25%
	0.19%
	1.47%
	1.16%

	Tianjin
	0.59%
	0.59%
	0.45%
	0.45%
	0.49%
	0.49%

	Yunnan
	5.79%
	2.51%
	3.28%
	3.48%
	7.40%
	2.99%


* Three regions which are linked to Guangdong directly in figure 4 are not listed, neither.



















� Denoted by the sector ‘Electronics and telecommunications’ at the two-digit level.


� We do not calculate LQs separately for ICT manufacturing or services sectors, since our focus is overall development level of ICT industry. For detailed information of LQs for two subsectors, please see Wang’s study (2008). Even though their data base is employment of year 2004 and ours is value added of 2002, generally speaking, the findings do not significantly deviate from each other.   


� The mainland of China is administratively divided into 31 regions. We only compare the pattern for 24 regions due to data limitation. Two provinces (Tibet and Hainan) are missed since they do not survey input-output tables yet, whereas remaining four regions (Guizhou, Sichuan, Chonqing, Shandong and Xinjiang) are omitted since their tables do not separate imports and exports for each sector, which are necessary for our study of value-added decompositions. Please see following section 3.1 and appendix A for further explanations.


� The Chinese IO tables provide the intermediate deliveries which include imports from abroad (for the national table) or even from the other regions (for regional tables). For our study, the imported products (including intermediate input and final demands) should be separated from intraregional products. Hence, a proportional method, which is adopted and revised by Pei, et al. (2009) for a recent study on China’s import growth, is employed to estimate the intraregional intermediate deliveries. Please see appendix A for a detail description of the method.


� See appendix A for a further explanation as well.


� Due to the existence of proportional adjust in appendix A, the sum of final demand here does not equal to 1.


� There is still a tiny possibility that � EMBED Equation.3  ��� when � EMBED Equation.3  ��� since sum of � EMBED Equation.3  ���only provides an upper limit with � EMBED Equation.3  ���. However, it is a general case that shortest path is a direct one when � EMBED Equation.3  ���.


� For detailed information for each factor, please see appendix table B.2. 


� See also Dietzenbacher and Los (1998) for a recommendation.


� Based on imports data of 16 products for EU-15 countries during 2000-2007 (WTO statistics), the estimations of imports are simulated using bi-proportional data: errors for each cells are mainly around 20%-70%. For the Chinese regional economy whose sectoral data are unavailable, the bi-proportional method is assumed an effective way to estimate data. 
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