
  
 

http://www.isa.org.usyd.edu.au/io_2010/ 

 

Uncertainty and sensitivity analysis in MRIO modelling 
– some empirical results with regard to the carbon 

footprint of the Netherlands 

Harry C. Wilting  
 

Netherlands Environmental Assessment Agency (PBL)  
P.O. Box 303, 3720 AH Bilthoven, The Netherlands 

Phone +31 30 274 4274. Fax +31 30 274 4435. E-mail: Harry.Wilting@pbl.nl  

 

Abstract 

Environmental multi-regional input-output (MRIO) models require huge amounts of 
economic and environmental data. Furthermore, assumptions have to be made in 
constructing the MRIO table. In order to gain an understanding of the effects of 
uncertainties in the data on the uncertainties in the outcomes, an uncertainty analysis 
seemed to be useful. Such an uncertainty analysis was carried out for an IO model for 
the calculation of the Dutch carbon footprint (CF). The model is a full MRIO model 
with feedback loops in trade between 12 world regions and the Netherlands. The 
uncertainty analysis concerned a Monte Carlo analysis based on probability 
distributions around the IO and emission coefficients in the model. The analysis showed 
a low uncertainty in the total Dutch CF; uncertainties in the emissions allocated to 
regions, sectors and chains were far higher. Furthermore, a sensitivity analysis was 
performed to investigate which of the IO coefficients were the most important in the 
calculation of the Dutch CF. Coefficients in the domestic blocks and in the Dutch 
import blocks showed the highest effects on the CF. Non-diagonal blocks concerning 
the imports of foreign regions played a minor role in the outcomes and therefore a 
partial MRIO analysis may be sufficient in certain cases. 

 

Keywords: Multi-regional input-output analysis, carbon footprint, uncertainty analysis, 
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1. Introduction 

The use of input-output (IO) analysis in industrial ecology and life-cycle applications is 

very common nowadays (Suh, 2009). IO analysis has been applied in the energy field 

since the 1970s and later on in environmental applications, e.g. in assessing 

environmental pressures or material flows. Nowadays it is used in footprint analyses, 

which include total environmental pressure over the whole supply chain of products. A 

special issue of Economic Systems Research, e.g., confirmed the role of IO analysis in 

determining the carbon footprint (CF) of countries and products (ESR, 2009). Not only 

the applications developed in time, but also the models. A long period only single-

country models were used in which it was assumed that imported goods and services 

were produced with the same technology as the domestic technology. However, there 

are differences in production technologies, efficiencies and output mixes in the same 

sector between countries. Multi-regional models were developed in order to account for 

these differences. First, the main trading partners of the country under consideration 

were included in so-called partial multi-regional input-output (MRIO) models.  After 

that full MRIO models covering the global economy were introduced including all the 

trade flows between regions (Wiedmann et al., 2007). The increasing availability of 

international data sets covering multiple countries stimulated the building of more 

detailed MRIO models.  

The advantage of an MRIO model is that information on region-specific 

technologies is included in the calculations. Furthermore, MRIO models are very useful 

in investigating where production takes place along supply chains. However, MRIO 

models have their drawbacks (Lutter et al., 2008). Since complete MRIO tables are not 

available, they are constructed from national/regional IO tables and bilateral trade data 

between countries or regions. Especially, the blocks corresponding with the trade flows 

between regions at the sectoral level are estimated then. Considering these data issues, 

an analysis of an MRIO model seems to be useful. Such a model analysis consists of an 

uncertainty analysis and a sensitivity analysis, and is needed for getting an impression 

of the plausibility and reliability of the outcomes of the model (Janssen et al., 1990). 

The uncertainty analysis investigates the uncertain aspects of the model and the effects 

of these uncertainties on the outcomes of the model. The sensitivity analysis 

investigates the influence of variations in the input parameters of the model on the 

outcomes. Quantitative model analyses are rather scarce in IO modelling. In the 1970s, 
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some uncertainty and sensitivity analyses were carried out for the single-region model 

(Sebald, 1974; Viet, 1980). Wilting and Biesiot (1993) applied the available methods in 

the field of energy analysis in models on energy intensities and household energy 

requirements. An example of an uncertainty analysis of the outcomes of a full MRIO 

model is the study by Lenzen et al. (2010) on the time series of the UK carbon footprint. 

In this paper, an uncertainty and sensitivity analysis is described for an MRIO 

model that was developed for the calculation of the CF of Dutch private and public 

consumption (Wilting, 2008). This model enables the investigation of chains from the 

consumption perspective providing insights in the role of sectors and regions all over 

the world in producing for Dutch consumption. The model analysis concerned an 

analysis of the effects of the uncertainties in the model parameters (technical 

coefficients matrix, greenhouse gas (GHG) emissions and final demand) and the 

sensitivity of the CF for changes in these model parameters. The non-diagonal foreign 

trade blocks in the full MRIO model received extra attention in the model analysis, 

since these blocks are additional compared to partial MRIO models.  

2. Carbon footprint of the Netherlands 

In this section, the model and data for calculating the Dutch CF are described and the 

outcomes are presented for the year 2001. 

2.1 Methodology 

The MRIO model for determining the CF for Dutch (private and public) consumption is 

straight-forward. The equations are analogous to the equations in common IO models 

for single-country analyses.  The following relationship between production x and final 

demand y exists for an n-region economy: 
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where xi is the vector of production in region i, A ii is the matrix of domestic input 

coefficients of region i, A ij , i≠j is the matrix of import coefficients of region j importing 

from region i, yii is the vector of domestic final demand of region i, and yij , i≠j is the 

vector of imported final demand of region j importing from region i. 
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The domestic and import coefficients depict the intermediate input requirements 

per unit output for each sector and summed up they form the technical coefficients 

matrix per region. The model in (1) is a complete multi-regional model with feedback 

loops (according to the terminology in Wiedmann et al., 2007). Setting  
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the MRIO model is: 

 x = A x + y (2) 

The standard IO model for calculating sectoral output x for a certain final 

demand y, e.g. consumption, is derived by solving this equation for x:  

 x = (I – A)-1 y (3) 

where (I – A)-1 is the Leontief inverse matrix. Matrix I  is the identity matrix. The IO 

model for calculating the total GHG intensities is: 

 e = d (I – A)-1 (4) 

with [ ]n1 ddd L= , where di is a row vector of direct GHG intensities of region i 

(depicting the emissions of one unit of production for all sectors), and [ ]n1 eee L= , 

where ei is a row vector of total GHG intensities of region i. Assuming that the row 

vector of GHG intensities e defines the supply-chain GHG emissions per unit of output 

for all industries, the IO model for calculating the CF related to domestic final demand 

in region i, Ei, is:  

 Ei = e yi + Di (5) 

with 
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yi M , and Di is the direct GHG emission of final demand in region i. 

The model described in equations 4 and 5 was also used for determining the 

regions and sectors in which emissions occur, and the supply-chain emissions of 

specific consumption categories (in final demand), like dairy products or cars.  
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2.2 Data sources and processing 

2.2.1 Economic data 

Economic data were derived from the GTAP database, version 6, which concerns the 

global economy in 2001 (Dimaranan, 2006). This database contains IO data (national 

and imports) and bilateral trade data of 87 regions and 57 sectors. By using the GTAP 

aggregation tool GTAPAgg (Horridge, 2006) the 87 regions were aggregated to 13 

regions, viz. 12 aggregated world regions and the Netherlands1. The sectors were not 

aggregated. In Appendix A an overview is given of the aggregation scheme from 87 

GTAP regions to the 13 world regions in the MRIO model. The sectors that were 

distinguished in the model are listed in Appendix B. 

The GTAP 2001 data for the Netherlands differ substantially from the original 

IO data for the Netherlands on which the GTAP data were based. These differences 

were caused by the adjusting and updating procedures applied by GTAP in order to 

balance import and export flows between countries (McDougall, 2008). Especially the 

volume data of Dutch imports were too high in the GTAP database. Since this led to an 

overestimation of emissions related to Dutch consumption abroad, the data for the 

Netherlands in GTAP were replaced by the original IO data (compiled by Statistics 

Netherlands and the Agricultural Economics Research Institute; Koole and Van 

Leeuwen, 2006). 

Final demand consisted of private and public consumption in 13 regions. 

Investments were moved from final demand to the intermediate matrix in order to 

account for the GHG emissions related to capital investments in the supply chains. Only 

the replacement investments should be assigned to the production chains, but since the 

GTAP database did not distinguish replacement and extension investments, all 

investments were added to the intermediate matrices. The deliveries to the investments 

were, for each sector, assigned to the inputs in the intermediate matrices (domestic and 

imports) on the basis of depreciation per sector.  

Starting from the domestic and import tables and final demand in 13 regions, a 

full MRIO table was constructed. In the construction procedure, the matrix of imports 

per region was split up over regions on the basis of the bilateral trade data of the 57 

                                                      
1 See Wilting (2008) for a further description of the aggregation procedure and the treatment of imports in 
the aggregation process. 
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sectors. The application of the procedures mentioned resulted in an MRIO table of 13 

regions and 57 sectors per region. The calculated production per region on the basis of 

the full MRIO table by using equation 3 was compared with the original data on 

production in the GTAP database. Since for more than 90% of the sector-region 

combinations, the differences in total production were less than 1%, it was assumed that 

the imports and exports were translated in bilateral trade flows between regions in a 

sound way and no further balancing procedures were applied. 

2.2.2 GHG emission data 

Data on greenhouse gas emissions (CO2, CH4, N2O and F-gases) for the 12 world 

regions were derived from the EDGAR 3.2 Fast Track 2000 dataset (Van Aardenne et 

al., 2005) and the GTAP/EPA databases (Lee, 2005; Rose and Lee, 2008). Furthermore, 

data on GHG emissions for region 13, the Netherlands, were obtained from Dutch 

NAMEA (CBS, 2007). The GTAP/EPA databases, which are compatible with the 

GTAP 6 regions and sectors, were more detailed at the sectoral level than the EDGAR 

dataset. On the other hand, the EDGAR 3.2FT dataset contains more emission sources 

than the GTAP/EPA databases. Emission sources included in the calculation of the 

Dutch footprint are fossil-fuel related CO2 emissions and process emissions, e.g. in the 

production of concrete, and emissions related to biomass burning. Emission sources that 

were not included in the calculations are e.g. the CO2 emissions allocated to non-energy 

use and chemical feedstock, which are not actually emitted, and the emissions caused by 

tropical forest fires for deforestation. CH4 and N2O emissions from forests, savannah, 

shrubs and grassland fires were also excluded. See Wilting (2008) for a description of 

the allocation of GHG emissions to sectors. Residential emissions including private 

transport were allocated as direct emissions of final demand. Methane emissions related 

to landfills were allocated to direct emissions too, since it was difficult to allocate them 

to industrial sectors or households.  

2.3 Carbon footprint outcomes 

Total CF of Dutch private and public consumption calculated with the MRIO model 

was 256 Mton of CO2-equivalents in 2001. Slightly more than 50% of GHG emissions 

related to Dutch consumption took place abroad (see Figure 1). These gases were 

mainly emitted in OECD Europe, but East Asia, the former Soviet Union and North 

America had substantial contributions too.  
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Figure 1 Contribution in CF of the Netherlands per region, in 2001. 

 

In each region, emissions related to Dutch consumption were allocated to the individual 

sectors. Figure 2 shows the emissions per sector summed up over all regions. Direct 

GHG emissions of household and government consumption and landfills contributed 

almost 20% (48 Mton CO2-eq.) in total Dutch CF. Furthermore, the production of 

electricity was a main contributor to the CF since electricity use is essential in many 

production processes. The electricity sectors in the Netherlands, OECD Europe, East 

Asia, former Soviet Union and North America, all had an important contribution (is not 

visible in the figure). Other important sectors in the Dutch CF were the food-related 

sectors and transport.   
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Figure 2 Contributions in Dutch CF per sector and per chain, in 2001. 
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Figure 2 also shows the contribution of supply chains in the Dutch CF from the 

perspective of consumption. Chains were considered until the final producing industry 

delivering to final demand. Trade and transport margins were not assigned to the 

different consumption categories (as was done in Wilting, 2008), but kept separately. 

The GHG emissions of chains are the combined effects of the volumes in consumption 

and the total emission intensities for the whole chain. Chains with an important 

contribution in the CF have a high share in consumption, like services, or have high 

emission intensities, like electricity and food products. 

 

3. Uncertainty analysis  

Starting from equations 4 and 5, an uncertainty analysis was carried out in order to 

investigate the reliability of the Dutch CF. On the basis of uncertainty intervals around 

the elements of the model parameters, viz. the direct GHG intensities d, the technical 

coefficients matrix A, consumption vector y, and direct GHG emissions D, conclusions 

were drawn on the uncertainty of the total CF and the more detailed outcomes. These 

uncertainty intervals around the parameters were based on assumptions on the 

uncertainties in the underlying data and data construction. E.g. the uncertainty intervals 

around the technical coefficients were based on the uncertainties in the original IO 

tables (domestic and imports), total production, the trade data and the assumptions in 

constructing the MRIO table from all these data. Since it was too laborious to determine 

the uncertainty interval for each coefficient, some general assumptions were made for 

groups of coefficients. In order to gain better understanding of the propagation of 

uncertainties through matrix inversion, first, only uncertainties in the technical 

coefficients matrix were considered. After that, uncertainties in all model parameters 

were considered in order to investigate the overall uncertainties in the CF results.   

3.1 Uncertainties in the technical coefficients matrix 

Due to lack of information on the uncertainties in the technical coefficients, uniform 

distributions were assumed for all coefficients. Given boundaries for the uncertainty 

intervals for all technical coefficients, both the theoretical maximum uncertainties in the 

CF were determined as well as more realistic uncertainties in a Monte Carlo approach.  
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3.1.1 Maximum uncertainties 

Starting from certain uncertainty intervals around the elements of the technical 

coefficients matrix, Sebald (1974) determined analytically upper and lower bounds for 

the uncertainties in the Leontief inverse matrix. He assumed that each element of the 

technical coefficients matrix, A ij , lies in a specific interval [αij , βij ] around the nominal 

value (with αij <= 0, βij  >= 0). The selection of values from these intervals leads to an 

unlimited number of technical coefficients matrices An. For each matrix An, the 

Leontief inverse matrix, Bn = (I-An)-1, can be calculated2. For each element of the 

original Leontief inverse matrix, Bij , there exists an interval [γij , δij ], γij  <= 0, δij  >= 0, 

that contains all possible values of the corresponding element in Bn. Sebald (1974) 

raised the question what the intervals for the elements of B should be, so that for all 

possible matrices Bn, all elements lie in these intervals3. He demonstrated that for each 

A there exists one specific An, so that for each element of B the difference with the 

corresponding element of Bn has its maximum value. This 'bad' case arises when all 

technical coefficients have their extreme deviations in the same direction. The elements 

of Bn have their maximum value, δij , if for all elements of An the value βij  is chosen. 

The elements of Bn have their minimum value, γij , if for all elements of An the value αij  

is chosen.  

Wilting and Biesiot (1993) carried out empirical investigations for a Dutch 1987 

IO table in which the same deviation was assumed for all elements of A. For all 

elements of Bn the maximum positive and negative relative deviations according to the 

elements in B were calculated. The results of these investigations were: 

- the relative deviations in the elements of Bn were much higher than the original 

deviations in the elements of An; 

- elements of B with a high value showed low values in the matrix of relative 

deviations between B and Bn; 

- the absolute values of the negative deviations were smaller than those of the 

positive deviations (Bullard and Sebald (1977) concluded the same); 

                                                      
2 In case the newly derived technical coefficients matrix still suffices certain conditions. 
3 Sebald called this problem the tolerance problem. 
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- a comparison of the outcomes of the calculations for different values of βij , viz. 

1%, 5%, and 10%, showed that the deviations in the elements of Bn, δij , grew 

more than proportionally with higher deviations βij  in An.  

These investigations showed that the elements of the Leontief inverse matrix were not 

equally influenced by the same deviations in the technical coefficients.  

As a first exercise for determining the uncertainties in the Dutch CF we assumed 

an uncertainty of 10% for all technical coefficients. After calculation of the Leontief 

inverse matrices with the maximum deviations, the effect of the changes in these 

matrices on the CF was calculated. The boundaries of the uncertainty interval for the CF 

were -20% and +34%. So, the matrix inversion enlarged the boundaries of the 

outcomes. For the emissions allocated to regions, the maximum boundaries on the basis 

of uncertainties of 10% in all technical coefficients were more extreme. Especially the 

GHG emissions allocated to the Chinese region and the former Soviet Union showed 

large intervals with positive boundaries of more than 80%. The boundaries of the 

interval for the contribution of the domestic emissions in the Netherlands were -7% and 

+9%. These values are low, since the direct emissions of consumption, which were not 

affected by changes in the technical coefficients matrix, were included in the CF. For 

emissions allocated to sectors, the average maximum boundary in GHG emissions was 

37% with maximum values over 80%. For the GHG emissions allocated to chains, the 

average maximum boundary was 32% with for no chain boundaries higher than 67%. 

Emissions allocated to sectors and regions are based on production which is 

based on the technical coefficients in rows. The emissions allocated to chains are based 

on total GHG intensities which are based on technical coefficients in columns. All the 

calculations demonstrated the amplifying effect of the Leontief multipliers to the 

uncertainties.  

3.1.2 Uncertainties based on Monte Carlo analysis 

Above, upper and lower bounds were determined for the Dutch CF given boundaries for 

the technical coefficients. It is emphasized that these maximum boundaries occur in the 

most unfavourable case, in which all technical coefficients had a maximum deviation in 

the same direction. However, in practice, not all deviations in the technical coefficients 

matrix lie in the same direction. Since the sum and column totals of the intermediate 
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matrix are determined on the basis of other data too, the uncertainties in these totals will 

be low. So, the probability that all technical coefficients deviate in the same direction is 

low too (Bullard and Sebald, 1977). Therefore, a stochastic approach was 

recommended, which assumes random uncertainties around the coefficients, expecting 

much lower uncertainties in the Leontief inverse matrix. Bullard and Sebald (1988) 

confirmed this expectancy. For the Dutch CF, a stochastic analysis was carried out via a 

Monte Carlo simulation in which the CF and related outcomes were calculated many 

times. 

Similar to the maximum approach in the previous section an uncertainty interval 

with a uniform distribution was assumed around each element of the technical 

coefficients matrix, A. The random draw of a value in that interval for all elements of A 

generated a new matrix An for which the Leontief inverse matrix was determined. 

Subsequently, by using this new Leontief inverse matrix and the other parameters in 

equation 5, the CF was calculated. By repeating this procedure several times a number 

of CF’s was generated. In this research, the described computation was carried out 

10000 times4. At the end, the mean and the standard deviations around these values 

were calculated. The standard deviation of the outcomes of the simulation gives insights 

in the uncertainties of the CF. 
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Figure 3 Distribution around total CF (10000 simulations) with 95% (line) and maximum (triangle) 
confidence intervals. 

                                                      
4 A disadvantage of a stochastic approach is the large number of matrix inversions that has to be carried 
out. Computer time at a standard laptop was almost seven hours for 10000 iterations (2.5 second per 
iteration). 
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Figure 3 shows the results for all outcomes (10000) of the calculations of the CF. For all 

outcomes, the calculated values were much smaller than the maximum boundaries 

calculated in the previous section. The 95% confidence interval based on the 

distribution of the outcomes of the Monte Carlo analysis was between 252.6 and 260.0 

Mton (-1.4% and 1.5%). In case of a normal distribution, the 95% confidence interval 

can be calculated with the so-called Student's t distribution (the t-value is 1.96) and the 

standard deviation. The 95% confidence interval based on the standard deviation was 

1.5% too. 

Table 1 shows for the five supply chains with the highest uncertainties the 

outcomes of the Monte Carlo simulation. The table shows the mean value of the 

emissions (based on the iterations), the theoretical minimum and maximum deviations 

and the 95% confidence intervals based on the distributions around the mean values. 

The 95% confidence intervals around the GHG emissions allocated to chains were about 

7% at the most and until a factor 50 smaller than the maximum intervals. The last 

column shows the 95% boundary of the GHG emissions calculated on the basis of the t-

value and the standard deviation (assuming a normal distribution). In case of normal 

distributions, the confidence intervals calculated in this way are quite similar to the 

intervals based on the Monte Carlo simulation. In case of more uniform distributions, 

the confidence intervals based on the distribution are smaller than the confidence 

intervals based on the standard deviation. In general, confidence intervals calculated 

with the t-value seem to be good upper estimations of the uncertainties in the GHG 

emissions. 

Table 1 GHG emissions of 5 supply chains based on 10000 draws (with uncertainties in the technical 
coefficients). Mean emissions (from model and iterations), maximum positive (max) and negative 
deviations (min) and 95% confidence intervals based on distribution (95-dis) and standard deviation 
(95-std). 

 model 

Mton 

MC 

Mton 

min 

% 

max 

% 

95-dis 

% 

95-dis 

% 

95-std 

% 

43 ely 18.97 19.00 -9.5 13.3 -5.8 6.3 7.2 

22 mil 4.57 4.57 -19.0 28.5 -6.1 6.2 7.0 

44 gdt 1.49 1.49 -26.9 46.0 -5.6 5.7 6.1 

57 dwe 14.58 14.58 -33.3 61.3 -4.8 5.1 5.3 

23 pcr 0.04 0.04 -14.4 18.6 -4.7 4.7 5.2 
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In the previous section, the same uncertainties were assumed for all technical 

coefficients. In practice, not all elements of an IO table have the same reliability. In 

general, the deliveries to industrial sectors are better known than the deliveries to 

service sectors. Further, IO data are more precise for those economic sectors that consist 

of only a few companies. These sectors are fully investigated, while the investigations 

of sectors with many companies are based on samples. Due to these differences in input 

characteristics, two groups of sectors were distinguished with different uncertainties in 

their inputs from other sectors: 

A. manufacturing, construction and energy sectors (sectors 15-46); 

B. agriculture, trade and services (sectors 1-14; 47-57). 

Furthermore, the imports are more uncertain than the domestic inputs of sectors, since 

the import blocks were constructed in the compilation of the technical coefficients 

matrix on the basis of bilateral trade data. The considerations stated above led to a 

division in uncertainties in the technical coefficients matrix (Table 2). Since there was 

no information available about the probability distribution function, uniform 

distributions were assumed for the technical coefficients again. 

Table 2 Assumptions on uncertainties (%) in technical coefficients (columns) for two groups of 
sectors in the Monte Carlo analysis. 

 Group A Group B 

Domestic inputs from A 5 10 

Domestic inputs from B 10 20 

Imports from A 10 20 

Imports from B 20 40 

 

The Monte Carlo simulation based on the uncertainties in table 2 resulted in a 95% 

confidence interval for the Dutch CF of only 1.2%. Despite of the higher uncertainties 

in the imports, the uncertainties in the emissions allocated to chains are lower or in the 

same order as in the previous case in which no groups of sectors were distinguished. So, 

the import blocks are of less importance in the calculation of the CF. 
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3.2 Uncertainties in all model parameters 

The other parameters of the MRIO model, viz. GHG intensities, final demand and direct 

emissions from consumption and landfills, will have uncertainties too. In a complete 

uncertainty analysis, the effects of uncertainties in all model parameters were 

investigated. Uncertainties in direct GHG intensities per sector were based on the 

uncertainties in GHG emissions and production per sector. Uncertainties in emissions 

are different for the specific greenhouse gases. Monitoring data on CO2 emissions, e.g., 

are far more reliable than data on the other GHG emissions. Detailed information was 

available on uncertainties at the level of processes for the emissions in the Netherlands 

(Olivier et al., 2009). This information was not available for the data on emissions 

abroad (in the EDGAR database), but it was expected that the emissions reported in the 

EDGAR database were more uncertain than the emissions reported for the Netherlands. 

Furthermore, the foreign emissions were reported at a higher aggregation level, so that 

emissions had to be distributed over sectors. Therefore, we distinguished uncertainties 

in Dutch emissions and uncertainties in emissions in other regions. For each greenhouse 

gas, the same uncertainty was assumed for all sectors and direct emissions of 

(household and government) consumption and landfills (see Table 3).  The probability 

distribution functions were based on normal distributions (Olivier et al., 2009). By 

using assumptions on uncertainties in production per sector and error propagation rules 

for normal distributions, uncertainty intervals for GHG intensities were calculated. The 

uncertainties for production and final demand of economic sectors are listed in Table 4.  

Table 3 Assumed uncertainties (%) in GHG emissions per gas in the Netherlands (NL) and abroad 
(95% confidence intervals). 

 CO2 CH4 N2O F-gases 

NL 3 25 50 50 

Other regions 6 50 75 75 

 

The uncertainties in the direct GHG intensities, the technical coefficients matrix, the 

final demand vector and direct GHG emissions were combined in a Monte Carlo 

simulation of 10000 runs in which in each run values were drawn randomly from the 

confidence intervals around the values given the probability distributions. The 95%-

confidence interval (based on distribution and standard deviation around the mean) for 
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the Dutch CF was about 3.5% (9 Mton CO2 eq.) which is remarkably higher than in the 

previous simulations based on uncertainties in technical coefficients only.  

Table 4 Assumed uncertainties (%) in production and final demand for 2 groups of sectors in the 
Netherlands (NL) and abroad (95% confidence intervals). 

 Production Final demand 

NL - group A 3 5 

NL - group B 6 10 

Other regions - group A 6 10 

Other regions - group B 12 20 

 

Uncertainties were higher for emissions allocated to specific regions, sectors and chains. 

Table 5 shows for the contributions of all regions in Dutch CF the uncertainties as 95% 

confidence intervals. Regions with a high share in non-CO2 GHG emissions show the 

highest uncertainties. These regions contributed to the Dutch footprint mainly through 

agriculture. The minimum and maximum values in the table concern the minimum and 

maximum values that appeared in the Monte Carlo analysis (and are different from the 

minimum and maximum values in the previous section). 

Table 5 Outcomes of Monte Carlo analysis concerning GHG emissions per region. Mean, 
minimum, maximum and 95% confidence interval based on 10000 simulations.  

 mean 

Mton 

min 

% 

max 

% 

95-std 

% 

N America 13.3 -13.5 14.1 6.8 

M-S America 6.8 -27.9 29.6 15.5 

Oceania 2.0 -18.1 17.5 9.3 

JapanNIE 6.9 -12.8 11.4 6.0 

SE Asia 5.1 -13.4 14.0 7.1 

China EAsia 22.1 -12.0 15.3 6.6 

India SAsia 4.4 -13.3 14.0 7.1 

Mid East 6.3 -11.9 13.8 6.8 

form SU 19.5 -12.9 12.7 7.0 

E Europa 6.5 -10.2 10.5 5.4 

OECD Europe 31.1 -10.4 11.4 5.8 

Africa 6.1 -20.7 21.0 10.4 

Netherlands 126.1 -9.2 9.4 4.9 
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Table 6 shows the uncertainties at the sectoral and chain level. Uncertainties allocated to 

sectors varied from 4% to 50%. Sectors with the highest uncertainties were sectors like 

agricultural sectors with a high contribution of non-CO2 GHG emissions. Uncertainties 

allocated to chains varied from 4% to slightly more than 30%. Chains with high 

uncertainties were agricultural and food products.  

Table 6 Outcomes of Monte Carlo analysis concerning GHG emissions per sector and chain. Mean, 
minimum, maximum and 95% confidence interval based on 10000 simulations. 

sector chain  

mean 

Mton 

min 

% 

max 

% 

95-std 

% 

mean 

Mton 

min 

% 

max 

% 

95-std 

% 

1 pdr 0.9 -44.5 53.0 26.3 0.0 0.0 0.0 0.0 

2 wht 1.1 -93.4 96.5 47.1 0.0 0.0 0.0 0.0 

3 gro 1.1 -81.1 98.1 44.2 0.0 0.0 0.0 0.0 

4 v_f 2.9 -44.8 50.9 23.0 2.2 -39.1 41.6 19.8 

5 osd 1.8 -91.2 102.2 50.1 0.0 0.0 0.0 0.0 

6 c_b 0.3 -74.8 77.9 34.9 0.0 0.0 0.0 0.0 

7 pfb 0.5 -75.9 75.9 39.5 0.0 0.0 0.0 0.0 

8 ocr 1.9 -62.5 59.6 32.3 0.8 -39.7 42.4 20.4 

9 ctl 6.1 -35.1 37.4 17.8 0.0 0.0 0.0 0.0 

10 oap 2.5 -48.2 49.8 25.0 0.2 -48.5 48.3 25.2 

11 rmk 4.4 -48.6 59.0 27.6 0.1 -53.6 68.0 31.6 

12 wol 0.0 -21.7 25.7 13.2 0.0 0.0 0.0 0.0 

13 frs 0.3 -41.2 51.3 23.0 0.3 -22.3 23.8 12.7 

14 fsh 0.3 -14.6 16.0 8.2 0.4 -14.9 17.3 10.7 

15 coa 2.1 -43.3 46.0 21.7 0.0 0.0 0.0 0.0 

16 oil 2.4 -37.7 36.1 19.9 0.0 0.0 0.0 0.0 

17 gas 3.7 -31.7 40.5 17.7 0.0 -16.3 18.0 9.5 

18 omn 0.4 -10.3 10.2 5.1 0.1 -6.9 7.1 4.0 

19 cmt 0.1 -9.8 10.7 5.7 1.2 -35.7 38.0 17.6 

20 omt 0.1 -9.4 11.5 5.3 3.6 -21.8 27.3 12.4 

21 vol 0.1 -11.4 12.2 6.2 0.6 -26.6 24.4 13.7 

22 mil 0.4 -12.3 12.6 6.2 4.6 -34.2 46.4 19.8 

23 pcr 0.0 -9.4 12.2 5.0 0.0 -41.9 56.3 23.8 

24 sgr 0.1 -8.0 9.7 4.4 0.1 -51.0 51.9 24.5 

25 ofd 1.4 -10.8 11.1 5.9 10.0 -15.6 17.1 9.2 

26 b_t 0.3 -10.0 11.2 5.6 2.3 -13.2 14.3 7.4 

27 tex 0.9 -8.2 8.1 4.3 2.2 -8.1 8.6 4.9 

28 wap 0.2 -7.6 8.1 4.6 3.9 -9.7 10.1 5.3 

29 lea 0.1 -8.3 8.3 4.8 2.1 -18.6 22.5 11.2 

30 lum 0.3 -10.5 11.0 5.6 0.7 -8.1 8.4 4.9 

31 ppp 2.4 -9.0 12.5 5.4 3.0 -8.6 9.4 5.6 

32 p_c 20.4 -8.9 10.3 5.1 5.9 -10.5 12.0 6.4 

33 crp 11.9 -15.6 18.3 8.1 6.7 -14.0 12.1 6.2 

34 nmm 12.1 -10.3 13.6 5.3 1.2 -8.0 8.3 5.3 
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35 i_s 6.8 -9.5 10.1 5.2 0.0 -11.0 11.0 7.0 

36 nfm 2.3 -21.5 21.5 10.6 0.0 -44.8 43.8 22.7 

37 fmp 0.9 -10.8 11.2 5.6 0.7 -9.0 9.2 5.4 

38 mvh 0.4 -13.2 13.9 7.0 2.2 -11.0 12.1 9.3 

39 otn 0.2 -11.8 11.3 5.7 0.9 -6.8 7.6 4.1 

40 ele 1.8 -50.6 56.2 25.6 2.9 -10.3 12.2 5.7 

41 ome 1.0 -10.4 10.5 5.4 0.9 -7.4 7.3 4.5 

42 omf 0.8 -10.2 10.5 5.7 8.0 -11.0 10.5 6.1 

43 ely 64.6 -8.9 10.1 5.3 19.0 -14.6 16.8 8.7 

44 gdt 0.4 -7.9 9.2 4.7 1.5 -11.3 12.5 7.6 

45 wtr 0.2 -20.7 22.9 11.2 0.7 -10.9 11.3 6.8 

46 cns 1.5 -13.7 18.1 8.5 0.8 -9.8 10.4 6.5 

47 trd 3.3 -17.7 19.6 10.6 22.1 -15.1 16.4 11.9 

48 otp 13.3 -10.7 12.6 6.1 7.7 -14.4 16.9 11.0 

49 wtp 4.5 -12.5 11.6 6.4 1.9 -13.1 13.8 8.5 

50 atp 6.4 -16.3 16.9 8.8 3.8 -16.3 14.9 8.8 

51 cmn 0.2 -16.7 18.4 8.9 3.2 -18.0 22.6 12.9 

52 ofi 0.4 -18.5 19.9 9.5 2.2 -21.2 20.9 13.5 

53 isr 0.2 -16.7 19.7 10.2 3.6 -18.1 21.2 13.6 

54 obs 3.9 -19.8 22.9 11.4 9.6 -12.4 14.4 8.0 

55 ros 1.1 -17.4 18.8 11.2 10.7 -17.8 21.5 13.2 

56 osg 8.5 -21.8 22.9 13.7 38.8 -15.7 16.7 12.1 

57 dwe 1.7 -20.4 23.6 13.2 14.6 -17.1 18.6 12.8 

 

4. Sensitivity analysis 

Generally, sensitivity analysis is used to investigate for the parameters of a specific 

model the effect of a variation in those parameters on the model outcomes. In this way, 

the most important elements of the model parameters, which have the largest effects on 

the model outcomes, can be determined. Sensitivity analyses have been performed 

before in economic IO analysis (Sebald, 1974; Viet, 1980). These analyses concerned 

the effect of variations in one element of the technical coefficients matrix on the 

Leontief inverse matrix.  Van der Linden and Oosterhaven (1995) investigated changes 

in columns of the technical coefficients matrix corresponding with technological 

change. Sonis and Hewings (1992) presented a general approach to investigate 

coefficient changes in single elements, all element in a row or column, or all elements in 

the technical coefficients matrix. Viet (1980) compared two methods of sensitivity 

analysis: the Sebald method and the Sekulic method. Both methods differ in the way in 

which they identify the most important elements (see below). Sekulic (described by 
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Viet, 1980) also investigated the effects on sectoral production. Wilting and Biesiot 

(1993) extended the methods presented by Sebald and Viet to energy analysis. In the 

research described in this paper, sensitivity analysis was applied to CF analysis by 

considering the effects of changes in the technical coefficients matrix on the Dutch CF. 

Both effects of changing whole blocks as individual coefficients were considered. 

Effects of changes in the direct GHG intensities and final demand were not investigated. 

Equation 4 was the basis for the investigations of the effect on the GHG intensities. The 

effect on the CF was analysed with equation 5.   

4.1 Changes in regional blocks of technical coefficients 

As a variation of the uncertainty analysis in which for all elements an uncertainty of 10 

was assumed (section 3.1), a sensitivity analysis was carried out in which all 3249 (= 57 

* 57) elements per (domestic or trade) block were given a 10% change. This gives 

insights in the sensitivity of the model outcomes per block of coefficients. Figure 4 

shows for each of the 169 (= 13 * 13) blocks in the technical coefficients matrix the 

effects on total CF. 

 

Figure 4  Effect on Dutch CF (%) as a result of a 10% change in all elements per block. 

 

Most important blocks were the domestic blocks concerning the Netherlands (7.9%), the 

Chinese region (4.3%) and OECD Europe (3.4%). Furthermore, most of the import 

blocks of the Netherlands and some of OECD Europe were important. The effect on CF 

summed up over all blocks was 29%. Due to combined effects, this value is lower than 

the maximum effect of 34% which was calculated as the effect of a 10% change in all 

technical coefficients together (in section 3).  
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For individual chains, the pattern may be different. Figure 5, as an example, 

shows the important blocks in the CF of motor vehicles and parts (chain 38). High 

effects on the outcomes have the domestic blocks of those regions that produce cars for 

the Dutch market and some of their main import blocks. Another example of a chain 

with high contributions of import blocks in other regions is the clothes chain (sector 28 

wearing apparel). 

 

Figure 5 Effect on the CF of cars (chain 38) consumed in the Netherlands as a result of a 10% 
change in all elements per block. 

 

4.2 Changes in single technical coefficients 

This section investigates the effects of a change in one element of the technical 

coefficients matrix on GHG intensities and CF. For technical coefficient A ij , a deviation 

φ is assumed5. The other technical coefficients remain unchanged. The matrix An is 

defined as: 

 An = A + F (6) 

All elements of F are zero except Fij  is equal to φ. Based on the new technical 

coefficients matrix An, the changes in the GHG intensity vector are determined under 

the assumption that the direct GHG intensities remain unchanged. The notation for the 

change in the intensities as a result of the change in A ij  is hij . So, hij  is defined as: 

 hij  = en - e (7) 

Viet (1980) gives a derivation for the change in total production as a result of 

the change in the technical coefficients matrix. Similarly, Wilting and Biesiot (1993) 

                                                      
5 Oositive changes in the coefficients are assumed; equations for negative values are derived analogously. 
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derived an equation for the change in energy intensities (see Appendix C). This 

equation was used for the change in the GHG intensity vector h: 

 n .., 1,k,
BF1

BFe
h

jiij

jkijiij
k =∀

−
=  (8) 

where ij
kh is the change in the GHG intensity of sector k as a result of a change in 

technical coefficient A ij . The calculation of the changes in the GHG intensities only 

requires the GHG intensity vector, e, and the Leontief inverse matrix, B. The equation is 

very practical, since only one matrix has to be inverted to calculate the effects for all 

individual coefficients. Given the effects of a change in a single technical coefficient on 

the GHG intensities, the effect on the Dutch CF can be determined as follows: 

 ∑ =
=∆ n

1k k
ij
k

ij yh  (9) 

with ∆ij  the total change in CF as a result of the change φ in technical coefficient A ij  of 

the s matrix. In this way the effect of a change on CF can be calculated for all technical 

coefficients in order to determine the importance per technical coefficient. 

Equations 8 and 9 were applied to investigate the sensitivity of the CF for 

changes in single technical coefficients. Totally, there are 549081 (= 13*57*13*57) 

technical coefficients in the MRIO model of which 126500 are zero. For the remaining 

422581 coefficients the effect of a 10% change on total CF was calculated. The average 

effect was about 0.12 kton CO2-eq. which is very small compared to the total footprint 

of 256 Mton. Slightly more than 20000 coefficients showed an effect higher than the 

average. The coefficient corresponding with the intra-sectoral deliveries in the Dutch 

electricity sector showed the highest effect (about 1% of the CF). Some other 

coefficients in the Dutch domestic part of the technical coefficients matrix showed high 

effects too. 

All effects of the changes were ordered with the elements with the highest 

changes on top and the top 5000 of the ordered list were considered. More than 70 of 

these 5000 elements belonged to the diagonal blocks of the technical coefficients 

matrix, which were based on the domestic IO tables of the 13 regions. Figure 6 shows 

for all regions the number of important elements in the domestic block and in the import 

blocks. Only the import blocks of the Netherlands and in some extent those of OECD 

Europe consist of a considerable number of important coefficients. The trade blocks 
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related to Dutch imports with the highest number of important coefficients concern the 

imports from OECD Europe, Japan and the new industrializing economies, and North 

America. For most regions, only the coefficients in the domestic block were important 

for the Dutch CF. 
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Figure 6 Number of important coefficients in domestic blocks and trade blocks per region (for the 
5000 most important coefficients). 

 

4.3 Identification of important coefficients for chains 

In the previous section, the most important parameters were defined as the coefficients 

that cause the largest change in the CF. An additional investigation concerned the 

determination of important coefficients in relation to the GHG emissions of chains. The 

investigation is based on the method that Sebald applied in investigating the effect of 

changes in the technical coefficients matrix on the Leontief inverse matrix (Sebald 

called this the ‘Most Important Parameter’ problem). He calculated for a specific 

change in technical coefficient A ij  all changes in the Leontief inverse matrix B. He 

defined A ij  as important compared to element Bkl  of B in case the change in A ij  effects 

at least a certain percentage change in Bkl. The importance of coefficient A ij  was 

determined by counting the elements of B for which A ij  was important. Most important 

wee those technical coefficients which were most often important compared to the 

elements of B6.  

                                                      
6 Sekulic determined the most important elements differently. He started from the opposite: how much 
may an element change at most, so that no element of the total production vector changes with more than 
a fixed percentage. 
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Now, the effect of a change in each single coefficient on the GHG emissions of 

47 chains was calculated7.  A coefficient was defined as important for a specific chain 

when the change in the coefficient resulted in a certain effect in the chain (in our case 

0.005% of the GHG emissions of the chain). So, a change in a coefficient may be 

important for some of the 47 chains. For each coefficient, it was counted for how many 

chains the coefficient was important. By repeating this procedure for all coefficients, 21 

coefficients were found that were important for all 47 chains (Figure 7). All of these 

coefficients belonged to the domestic coefficients of other regions: 9 in the Chinese 

region, 6 in the former Soviet Union and 6 in OECD Europe. The energy sectors and 

basic industries (chemicals, minerals, metals) were some of the sectors that played a 

role in all chains. None of the coefficients in the Dutch domestic part of the table was 

important for all chains. On the other hand, 5657 coefficients were important for the 

emissions of only one chain and more than half a million coefficients were important 

for no chain at all (in case of a effect of 0.005% in the chain emissions).  
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Figure 7 Number of times that coefficients are important for chains.  

 

Figure 7 also shows that most important coefficients for chains belonged to the diagonal 

blocks, which correspond to the domestic IO tables of the 13 regions. Most non-

                                                      
7 For 10 chains, emissions were zero, since consumption was zero. 
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diagonal block coefficients that were important belonged to the import blocks of the 

Netherlands. 

5. Partial MRIO versus full MRIO 

It can be concluded from the sensitivity analysis and in some sense of the uncertainty 

analysis that the import blocks of the foreign regions (exclusive the Netherlands) in the 

MRIO table were of less importance for the total Dutch CF. Therefore, it may be 

conceivable that a partial MRIO analysis will be sufficient for calculating the CF. So, a 

partial MRIO analysis was carried out starting from the full MRIO table. A partial 

MRIO table was constructed by adding the import blocks of the foreign region to the 

domestic blocks per region. The import blocks of the foreign regions were set to zero. In 

this way, the supply chains are truncated in the regions that export to the Netherlands 

and for the imports of these regions it was assumed that they were produced in those 

regions (with the region-specific technologies). Only the import blocks of the 

Netherlands remained unchanged.   

 The total Dutch CF calculated with the partial MRIO model was 258.4 Mton, 

which was less than 1% higher than the CF based on the full MRIO. The calculated 

value even lies in the 95% uncertainty interval of the CF calculated in section 3.  

Differences between the outcomes of the partial and full MRIO analysis were small too 

for most GHG emissions allocated to sectors and chains. At the sectoral level, the 

sectors concerning extraction of energy sources like coal, oil and natural gas showed the 

largest differences since the use of specific energy sources is region-specific. Since, 

chains were truncated in the partial model and the region-specific information was lost. 

The partial model overestimated the GHG emissions of clothes (with 22%) and electric 

equipment (with 11%) and underestimated the CF of motor vehicles (with 21%). The 

differences in GHG emissions were much smaller for other chains. A partial MRIO 

analysis is less appropriate for allocating emissions to regions of course, since chains 

are truncated. E.g. the emissions allocated to Eastern Europe were more than 75% 

higher and emissions allocated to Oceania were more than 30% lower in the partial 

analysis compared to the full MRIO analysis due to truncation. 

In practice, differences in outcomes based on both MRIO methods may be 

larger. In this study, the partial MRIO table was based on the full MRIO table, which 
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was not re-balanced after allocating the trade flows to regions. The re-balancing process 

may cause larger differences between both approaches. Furthermore, in partial MRIO 

modeling, data may be collected that was not made consistent at the global level. 

6. Conclusions and recommendations  

In this paper, some empirical results were described of an uncertainty and sensitivity 

analysis of an MRIO model for calculating the Dutch CF. Some conclusions and 

recommendations are: 

• The Monte Carlo simulation concerning the uncertainties in the technical 

coefficients showed low uncertainties in the model outcomes. The inclusion of 

uncertainties in final demand and GHG emissions in the analysis resulted in 

higher uncertainties, but these uncertainties were still at an acceptable level. 

Especially sectors and chains with high shares in non-CO2 GHG emissions 

showed high uncertainties in emissions. The technical coefficients in the non-

diagonal blocks were assigned higher uncertainties, but this seemed to have little 

influence on the overall uncertainties.  

• Due to lack of information the uncertainty analysis started from the technical 

coefficients with uncertainty intervals estimated by the author. The availability 

of insights in uncertainties in ‘raw’ IO and trade data might enable a more 

complete uncertainty analysis including the uncertainties in the construction of 

the technical coefficients matrix.  

• Both the sensitivity analysis per block of coefficients as the sensitivity analysis 

per coefficient showed the importance of the diagonal blocks in the technical 

coefficients matrix. Changes in these coefficients had the largest effects on total 

carbon footprint and emissions of chains. Furthermore the import blocs of the 

Netherlands showed a considerable effect in the Dutch CF. For specific chains, 

import blocs of regions with high exports to the Netherlands were recognized as 

important. So, it may be concluded that in improving IO tables and data, the 

coefficients in the domestic tables and the imports to the region under 

consideration should require most attention. 
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• The differences between the Dutch CF based on a partial and full MRIO analysis 

were small. Therefore, for some applications, e.g. the trend in the CF of a nation, 

as carried out by Lenzen et al. (2010) for the UK, a partial analysis may be 

sufficient. For specific purposes, like a regional distribution of the GHG 

emissions or a detailed supply-chain analysis, a full MRIO analysis is still 

recommended.  

• All outcomes apply for the Dutch CF based on the Dutch situation, i.e. 

production structure, trade structure and emissions. Since it is not clear in 

advance if the conclusions hold for other regions or environmental pressures 

further empirical analyses will be useful.  
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Appendix A World regions based on the GTAP 6 regions 

 
World region GTAP 6 region 
No. Code Description No. Code Description 

21 can Canada 
22 usa United States 

1 NAm North America 

24 xna Rest of North America 
23 mex Mexico 
25 col Colombia 
26 per Peru 
27 ven Venezuela 
28 xap Rest of Andean Pact 
29 arg Argentina 
30 bra Brazil 
31 chl Chile 
32 ury Uruguay 
33 xsm Rest of South America 
34 xca Central America 
35 xfa Rest of FTAA 

2 CSAm Central and South 
America 

36 xcb Rest of the Caribbean 
1 aus Australia 
2 nzl New Zealand 

3 Oc Oceania 

3 xoc Rest of Oceania 
5 hkg Hong Kong 
6 jpn Japan 
7 kor Korea 
8 twn Taiwan 

4 JNIE Japan and New 
Industrializing 
Economies 

13 sgp Singapore 
10 idn Indonesia 
11 mys Malaysia 
12 phl Philippines 
14 tha Thailand 
15 vnm Vietnam 

5 SEA Southeast Asia 

16 xse Rest of Southeast Asia 
4 chn China 6 EA East Asia 
9 xea Rest of East Asia 

17 bgd Bangladesh 
18 ind India 
19 lka Sri Lanka 

7 SA South Asia 

20 xsa Rest of South Asia 
71 tur Turkey 8 ME Middle East 
72 xme Rest of Middle East 
69 rus Russian Federation 9 FSU Former Soviet 

Union 70 xsu Rest of Former Soviet Union 
54 xer Rest of Europe 
55 alb Albania 
56 bgr Bulgaria 
57 hrv Croatia 
58 cyp Cyprus 
59 cze Czech Republic 
60 hun Hungary 
61 mlt Malta 

10 EEU Eastern Europe 

62 pol Poland 
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63 rom Romania 
64 svk Slovakia 
65 svn Slovenia 
66 est Estonia 
67 lva Latvia 

   

68 ltu Lithuania 
37 aut Austria 
38 bel Belgium 
39 dnk Denmark 
40 fin Finland 
41 fra France 
42 deu Germany 
43 gbr United Kingdom 
44 grc Greece 
45 irl Ireland 
46 ita Italy 
47 lux Luxembourg 
49 prt Portugal 
50 esp Spain 
51 swe Sweden 
52 che Switzerland 

11 OEU OECD Europe 

53 xef Rest of EFTA 
73 mar Morocco 
74 tun Tunisia 
75 xnf Rest of North Africa 
76 bwa Botswana 
77 zaf South Africa 
78 xsc Rest of South African CU 
79 mwi Malawi 
80 moz Mozambique 
81 tza Tanzania 
82 zmb Zambia 
83 zwe Zimbabwe 
84 xsd Rest of SADC 
85 mdg Madagascar 
86 uga Uganda 

12 Af Africa 

87 xss Rest of Sub-Saharan Africa 
13 Nld Netherlands 48 nld Netherlands 
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Appendix B Sectors/commodities in GTAP 6 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

PDR 
WHT 
GRO 
V_F 
OSD 
C_B 
PFB 
OCR 
CTL 
OAP 
RMK 
WOL 
FRS 
FSH 
COA 
OIL 
GAS 
OMN 
CMT 
OMT 
VOL 
MIL 
PCR 
SGR 
OFD 
B_T 
TEX 
WAP 
LEA 
LUM 
PPP 
P_C 
CRP 
NMM 
I_S 

NFM 
FMP 
MVH 
OTN 
ELE 
OME 
OMF 
ELY 
GDT 
WTR 
CNS 
TRD 
OTP 
WTP 
ATP 
CMN 
OFI 
ISR 
OBS 
ROS 
OSG 
DWE 

Paddy rice 
Wheat 
Cereal grains nec 
Vegetables, fruit, nuts 
Oil seeds 
Sugar cane, sugar beet 
Plant-based fibers 
Crops nec 
Bovine cattle, sheep and goats, horses 
Animal products nec 
Raw milk 
Wool, silk-worm cocoons 
Forestry 
Fishing 
Coal 
Oil 
Gas 
Minerals nec 
Bovine meat products 
Meat products nec 
Vegetable oils and fats 
Dairy products 
Processed rice 
Sugar 
Food products nec 
Beverages and tobacco products 
Textiles 
Wearing apparel 
Leather products 
Wood products 
Paper products, publishing 
Petroleum, coal products 
Chemical, rubber, plastic products 
Mineral products nec 
Ferrous metals 
Metals nec 
Metal products 
Motor vehicles and parts 
Transport equipment nec 
Electronic equipment 
Machinery and equipment nec 
Manufactures nec 
Electricity 
Gas manufacture, distribution 
Water 
Construction 
Trade 
Transport nec 
Water transport 
Air transport 
Communication 
Financial services nec 
Insurance 
Business services nec 
Recreational and other services 
Public Administration, Defense, Education, Health 
Dwellings 
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Appendix C 

This appendix describes the derivation of the model of the determination of the effect of 

a change in one technical coefficient on the total GHG intensities (equation 8). The 

equations were obtained from Wilting and Biesiot (1993) and are in line with the 

equation that expresses the changes in the inverse of a matrix as a result of the change 

of one element in that matrix (Sherman and Morrison, 1950). 

Starting from the model: 

e' = e' A + d' (C.1) 

with e' is the row vector of total GHG intensities and d'  is the row vector of direct GHG 

intensities. Assuming a new technical coefficients matrix, An: 

An = A + F (C.2) 

with all coefficients of F are zero, except coefficient Fij  = φ. The vector with changes in 

the GHG intensities is h: 

en = e + h (C.3) 

Model C.1 also holds for the changed total intensities: 

(en)' – (en)' A n = d' (C.4) 

The derivation of h starts as follows: 

(en)' – (en)' (A + F) = d' (C.5) 

(en)' (I – A) = d' + (en)' F (C.6) 

(en)' (I – A) – d' = (e + h)' F (C.7) 

Multiplication of C.7 both sides with (I – A)-1 gives: 

(en)' – d' (I – A) -1 = (e + h)' F (I – A)-1 (C.8) 

e' + h' – d' (I – A)-1 = (e + h)' F (I – A)-1 (C.9) 

Since e' – d' (I - A)-1 = 0: 



Uncertainty and sensitivity analysis in MRIO modelling 33  

18th Int. IO Conference  Sydney - June, 20-25 2010 

h' = (e + h)' F (I – A)-1 = (e + h)' F B (C.10) 

with B = (I – A)-1. The k-th element of vector h, hk, is now: 

hk = (ei + hi) Fij  Bjk (C.11) 

In case k=i  then: 

hi = (ei + hi) Fij  Bji (C.12) 

Solving for hi gives (under the condition that 1 – Fij  Bji  ≠ 0): 

jiij

jiiji
i BF1

BFe
h

−−−−
====  (C.13) 

Entering of C.13 in C.11 gives: 

jkij
jiij

jiiji
ik BF 

BF1

BFe
eh













−−−−
++++====  (C.14) 

Further elaboration of this equation gives the final result: 

n .., 1,k,
BF1

BFe
h

jiij

jkijiij
k ====∀∀∀∀

−−−−
====  (C.15) 

This result holds for all elements in the total GHG intensity vector.  

 


