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ABSTRACT 

When survey input-output tables are not available, some non-survey 

technique is applied to estimate the target matrix. From known information 

about the row and column margins, the cells of the matrix are estimated 

using as a priori information other table supposedly similar to the target 

matrix. The adjustment process, however, usually lies on the assumptions 

that we have perfect knowledge on the row and column margins of the 

target matrix, which could be considered as a non-realistic supposition. This 

paper explores the possibilities of changing this assumption and proposes 

alternatives matrix adjustments that can base on non-reliable margins.  
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1. Introduction  

The process of adjusting an IO table bases on an a priori matrix and some 

piece of information of the target matrix. The solution of the estimation 

process is a matrix that diverges least with respect to the prior and is 

consistent with the aggregate information observed for the target. These 

aggregate data on row and column margins of the target are usually 

assumed as perfectly known. Note that this implies assuming that, even 

when the cells of the target are unknown, their sums are perfectly 

observable. Given that this assumption can be unrealistic, some adjustment 

techniques account for introducing non reliable margins in the estimation 

process. For example, in Golan and Vogel (2000) or Robinson et al. (2001) 

this possibility is considered when estimating a SAM by including an error 

term in the constraints of a Generalized Cross Entropy (GCE) adjustment. 

  

Basing on this idea, this paper suggests an alternative approach for 

introducing different levels of reliability of the aggregate information we 

include in the adjustment. Usually, the way for allowing different levels of 

error in GCE estimation is by means of changes in the tolerable bounds. 

However, this paper proposes paying attention to the a priori probability 

distribution assumed for the values of the error. For any given bounds for 

the random noise present in the observed margins of the target, the 

specification of a specific prior distribution implies fixing a certain degree of 

reliability on these aggregate data. Next section describes the basic problem 

of matrix adjustment basing on the Cross Entropy method and section 3 

generalizes it and allows for introducing noisy margins in the estimation. In 

section 4, a numerical experiment is carried out in order to compare the 

performance of different alternatives under several levels of noise in the 

observed aggregates. 
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2. The general matrix adjustment problem  

We will base our explanations on the matrix-balancing problem depicted in 

Golan (2006, page 105), where the goal is to fill the (unknown) cells of a 

matrix using the information that is contained in the aggregate data of the 

row and column sums.  

 

Figure 1: Known and unknown data in a matrix balancing problem. 

 …  …   

…  …  … … 

 …  …   

…  …  … … 

 …  …   

 …  …   

The  cells of the matrix are the unknown quantities we would like to 

estimate (shaded in grey), where the row and column aggregates (  and  

respectively) are known.  

Consequently, the followings equalities are fulfilled by the  elements: 

 (1) 

 (2) 

 

These two sets of equations reflect all we know about the elements of 

matrix . Therefore, we have only  pieces of information to estimate the 

 elements of . The solution to this type of problems can be obtained by 

minimizing a divergence measure with a prior probability matrix  subject 

to the set of constraints (1) and (2). If the specific divergence criterion 
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applied is the Kullback-Leibler measure a Cross-Entropy (CE) problem is 

posed, which can be written in the following terms: 

 (3) 

Subject to the restrictions given by the set of equations (1) and (2), which is 

equivalent to a RAS adjustment of the prior .   

 

This general program will be modified in order to consider the possibility 

that the aggregate information contained in the margins do not correspond 

exactly with the margins of the target matrix . 

 

3. A flexible CE estimation with non-reliable margins 

The above-sketched procedure is widely used to estimate IO tables because 

aggregate information on the margins of the target matrix is available 

generally earlier than its individual cells. Usually it is supposed that we 

have perfectly reliable information about  in the margins  and , which 

can be considered as an unrealistic assumption.  

Suppose that we observe row and column margins as  and , where: 

  (4) 

 (5) 

 

Where  and  are random errors that make the observed margins diverge 

from the real margins of the target matrix. In this situation is still possible 

to adjust our prior  with row and column margins not perfectly reliable by 

means of a Generalized Cross Entropy approach (GCE), following a similar 

approach to the ideas suggested in Golan and Vogel (2000) or Robinson et al. 

(2001). 
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The basic idea is to re-parameterize the errors  and  in terms of unknown 

probability distributions. The uncertainty about the realizations of these 

errors is introduced in the problem by considering each element  and  as 

discrete random variables with   possible outcomes (for the sake of 

simplicity  is assumed common for both). These values will be contained in 

two convex sets  and  respectively. 

We also assume that these possible realizations are symmetric ( ; 

) and centered on zero. The unknown probability distributions for 

the support vectors will be denoted as  and  and, consequently, the 

random errors are defined as: 

  

  

 

Consequently, the GCE problem can be written in the following terms: 

 

 

 

(6a) 

  

 (6b) 

 (6c) 

 (6d) 
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 (6e) 

 

Note that both the bounds specified in the support vectors as well as the a 

priori probability distributions (  and ) reflect our assumptions on the 

way the errors are affecting the observed margins. Larger bounds in  and  

would allow, obviously, for larger errors. In the context of GCE problems, 

the values of the supporting vectors for the errors are usually fixed following 

the three-sigma rule (Pukelsheim, 1994), which in this case implies to take 

as upper and lower bound three times the standard deviation of  and  

respectively.  

 

The a priori probabilities assumed for these bounds also play a role. Once 

the supports are fixed, the larger the a priori probability we assign to the 

central point, the greater our confidence on the observed margins. Note that 

if, for example, we fix  for the central value in the support , we 

are strongly assuming that  and we impose a high penalty for 

diverging from this prior.  In the other hand, a uniform distribution still 

imply assuming  as the point of departure, but the penalty for 

obtaining solutions far from this prior is smaller than in the previous case.1 

 

4. A numerical experiment 

We will compare the performance of a CE estimation that does not consider 

the possibility of measurement errors in the margins with a GCE estimation 

under two alternative a priori distributions for the errors: a uniform one and 

a spike distribution with the probability mass concentrated in zero. For the 

sake of simplicity, only three points ( ) are included in the support 

                                                 

1 See Appendix for details. 
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vectors of the errors, which have been fixed using the three sigma rule and 

being always the central point equal to zero. 2  

 

The objective of the three estimators will be to obtain the target matrix  

from the prior matrix  and the noisy margins  and  under different 

levels of noise. For this purpose, we have taken as target matrix the inter-

industry matrix of flows for the US in 2002 being the prior the IO table for 

the US in 1997, both classified in seven industries. The tables used in the 

experiment are available online as supplementary resources of Miller and 

Blair (2009) handbook.3 

 

In order to introduce errors in the observed margins, the elements   and  

of equations (3) and (4) are generated as: 

  

  

 

Being  a scalar specified as certain proportion of the average value of the 

cells in matrix . Obviously, the bigger the value of , the more noise is 

introduced into the observed margins. In the generation of the noisy 

margins, additional constraints are imposed in order to assure that not 

negative values are generated and that the equality   is 

hold. In this scenario, matrix  is estimated by the three alternative 

methods mentioned under several values of noise . For each value of  

used in the experiment, 100 simulations are carried out.  

 

                                                 

2 More specifically, a probability of 99% has been assigned to zero, and the remaining 1% is 

split in two equal parts between the lower and upper bounds.  

3 See http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521517133  

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521517133
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In order to evaluate the relative performance of the three methods, the 

mean absolute percentage errors (MAPE) with respect to the real values are 

obtained for the technical coefficients and the elements of the Leontief 

inverse. Additionally, in each simulation one vector of final demand ( ) is 

generated from the actual vector of final demand for the US IO table of 2002 

( ) as , where  is a stochastic term that distributes normally 

with mean one and a standard deviation set to 0.05. By multiplying  by 

the respective estimate of the Leontief inverse we have obtained the vector 

of estimated output by industry under the three estimation techniques 

studied here. The estimates have been compared in each trial of the 

simulation with the output obtained by multiplying  by the actual 

Leontief inverse and we have obtained the average absolute error as a 

proportion of the total actual output in the US IO table for 2002. Table 1 

reports the results obtained for the three methods under consideration:   

 

Table 1: Mean absolute errors for technical coefficients, Leontief 

inverse and simulated output 

Matrix A (technical coefficients) 

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

No error 0.110 0.167 0.243 0.314 0.403 0.495 0.562 0.686 0.723 

Uniform 0.241 0.242 0.245 0.254 0.265 0.279 0.297 0.324 0.342 

Spike 0.112 0.161 0.230 0.296 0.366 0.436 0.504 0.577 0.649 

Matrix L (Leontief inverse) 

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

No error 0.073 0.154 0.261 0.370 0.641 0.708 1.098 1.872 2.715 

Uniform 0.294 0.297 0.304 0.320 0.343 0.373 0.414 0.465 0.533 

Spike 0.077 0.148 0.247 0.351 0.503 0.668 0.975 1.403 1.551 

Simulated output 

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

No error 0.001 0.013 0.028 0.040 0.054 0.068 0.090 0.169 0.280 

Uniform 0.025 0.026 0.026 0.032 0.037 0.042 0.048 0.056 0.065 

Spike 0.001 0.013 0.026 0.039 0.052 0.065 0.084 0.131 0.163 
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The results indicate, not surprisingly, that only if the observed margins 

equal the actual margins of the target matrix ( ), it is preferable 

considering and adjustment that does not introduce any error. When some 

error is present in the aggregates we observe, a GCE estimation that allows 

for discrepancies between observed and actual margins yield lower deviation 

measures: the larger the size of the error, the better its comparative 

performance. 

 

Interestingly enough, even if we opt for a GCE adjustment that includes an 

error term and we fix specific boundaries for it, still there is room for 

introducing a priori expectations about the reliability of the margins. If we 

do not have much confidence in the reliability of the margins we observe, we 

can specify a uniform distribution for the error values (second rows in each 

part of the table). This would yield lower error measures with respect to the 

real values when the observed margins diverge largely with the actual ones, 

but behaves comparatively worse than an adjustment without error if the 

size of the noise is reduced ( ).  

 

However, it is still possible to work under the assumption that the margins 

are reliable by imposing a spike prior distribution for the errors. Keeping 

the same error bounds4, but assigning much probability to the central point, 

we allow for the presence of some noise in the margins although we a priori 

assume that the values on the bounds are improbable. Doing that, we obtain 

comparatively worse results than a GCE estimator with a uniform a priori 

distribution under large levels of noise ( ). However, this adjustment 

seems to yield lower deviations than a pure CE estimation without error 

except in the case that the margins are perfectly reliable.  

 

                                                 

4 Note that the bounds are fixed by the three sigma rule in any case. 
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In other words, the GCE estimation with a spike a priori distribution with 

the probability mass on zero can be seen as intermediate solution: it is not 

necessary to assume perfect knowledge on the margins although the 

possibility of large (positive or negative) errors is supposed very low. 

Obviously, it also allows for introducing different levels of reliability 

depending on the industry, for example, simply by changing the a priori 

probability we assign to the central point.  
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Appendix: CE penalty function with three support points 

for the error 

 

The penalty function defined for deviating from the a priori expected value 

of the error term can be obtained in the following way. Without loss of 

generalization, we will focus on one of the two types of errors (for the row 

margins), that in a case with a three-point support  centered 

on zero ( ) and symmetric ( ) can be written as: 

 

 (A.1) 

 

Note that the GCE formulation specifies for this type of errors the following 

divergence measure: 

 

 

 

(A.2) 

  

Let us denote the negative component of each error ( ) as  and the 

positive part ( ) as . So, (A.2) can be rewritten as: 

 

 (A.3) 

 

This penalty function depends on the divergence from the center of the 

support vector (  and ) and on the initial probabilities assigned to each 

value of the support vector ( ). If an a priori uniform distribution 

( ) is assumed, (A.3) turns into: 

 

 (A.3) 
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More generally, for any a priori symmetric distribution we can define a 

parameter like . Therefore, , given that . 

Equation (A.3) can be then rewritten in terms of  as: 

 

 (A.4) 

 

Deriving this penalty function with respect to  we obtain: 

 

 (A.5) 

 

(A.5) can be written in terms of the posterior weight for the central point as: 

 (A.6) 

 

Which is positive if the condition  holds. As the CE formulation is a 

form of shrinkage estimator (see Golan et al., 1996, p.31; Bera and Park, 

2008, p. 491), a smaller weight will be assigned to the values associated 

with the largest prior probabilities. This means that this condition is 

fulfilled and that the penalty function increases in . In other words, the 

penalty for any given  grows if the a priori probability mass assigned to 

zero increases (and, consequently, the prior weights  and  assigned to 

the bounds become smaller).   


