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Abstract: The topological principles of the well-known Atkin Q-analysis are applied to the analysis of 

interconnectedness of sectors in input-output systems. This paper presents an attempt to integrate important 

coefficients(IC), Q-analysis and graph theory in the perspective of breadth and depth of connections between 

sectors, to find the changes of key sectors and analyze structural chains of highest dimension as the most 

significant input-output industrial clusters. Important coefficients analysis presents a transition from 

quantitative matrices to binary incidence matrices based on the maximum information content. While 

depending on above binary incidence matrices, structural Q-analysis provides a set of structural sectors which 

reflect the incidence relation of sectors and structural chains of highest dimension, and also provides a new 

way for visualizing economic complexity through the process of structural economic complication. Using a 

set of annual 19-sectors constant- price input-output tables, the application to Chinese’s economic structure 

analysis in the period of 1992 to 2005 revealed an increasing pulling function of other service industry to 

other sectors. Secondly, there is strong asymmetry between the forward and backward linkages structures by 

the Q-analysis, and the key structural chains mainly composed of chemical industry、non-mental mineral 

product industry and metal smelting、steel wire products industry both in the forward and backward linkages,; 

besides that, a much more stable and complex economic structure in the perspective of forward linkages than 

that in the perspective of backward linkages. 
 

1. Introduction 

The purpose of this paper is to integrate important coefficients(IC) and Q-analysis to find the changes of 

key sectors and analyze structural chains of highest dimension as the most significant input-output industrial 

clusters in the perspective of depth and span. Also, a visualizing economic complexity will be revealed in the 

application of graph theory. The central concern is the  

deepening of economic complexity through structural changes generated by the improvement of technology 

and the change of final demand. These structural changes are often complex and difficult to extract, so, new 

tools for illustration, interpretation and visualization provide the potential for greater insights into the nature of 

these changes. 

Recently, structural analysis has come to be one of the more important applications of input– 

output analysis. Traditionally, qualitative input–output analysis (QIOA) developed by Schnabl and Holub (1979) 

and Holub and Schnabl (1985) split the intermediate transaction flow (say, T) into several layers based on the 

Euler power series of technical coefficient matrix A. With a critical filter value, the sliced transaction matrices 

can be transferred to Boolean matrices with 0 or 1 entries, showing the pattern of economic links among sectors 

in each layer up to a certain layer. Since the filter is chosen subjectively according to some criteria, some 
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information may be lost depending on the nature of the filter critical value when the decomposition is 

conducted. Then, Dewhurst(1993) made some efforts on analyzing the production pattern ,revealing the 

sectoral interdependence in an economy ,by decomposing intermediate transactions in an input-output system.  

In contrast to QIOA, structural decomposition analysis (SDA) has received much more emphasis. Rose and 

Casler (1996) provided a detailed review of SDA. While new applications on SDA can be found in 

Albala-Bertrand (1999), Alcala et al. (1999), Mukhopadhyay and Chakraborty (1999), Wier and Hasler (1999), 

Dietzenbacher et al. (2000), Hitomi et al. (2000), Jacobsen (2000), Casler (2001), Dietzenbacher (2001), and 

Milana (2001) among others, these new applications still follow the traditional SDA, which decomposes 

observed changes into determinant parts, like technology, final demand or synergistic interactions between 

these two components. 

Two alternative approaches, the superposition flow decomposition( Sonis,1980; Sonis and 

Hewings ,1998,2001;Guo Dong, Sonis and Hewings,2003,2007) and the structural Q-analysis, proposed by 

Atkin (1974,1981) and developed further by Sonis and Hewings (1998,2000, 

2001,2003,2005,2007) had been applied in decomposing the strrcture hierarchically. On the one hand, 

superposition flow decomposition examines the degree to which the structure of flows might be decomposed 

into a set of weighed subflows, in which the subflows can be expressed in the form of extreme tendencies. 

Q-analysis, on the other hand, analyses the structure of a relationship or interdependency between sets of 

groups, such as some groups in a social context. The main central philosophy of Q-analysis is considering all 

the elements of a set as some different polyhedrons, all of these polyhedrons connect by the facts which shared 

by each of them. Atkin(1974) illustrates the application of the Q-analysis by giving an example of how a group 

of people connect with each other based on some common hobbies and characteristics.  

Note that in Q-analysis, the structure of the social interdependencies is represented by binary matrices. 

Following this idea, taking economic sectors as the sets in Q-analysis, provides an option to explore the 

intersectoral relationships in an economy. Usually, the intersectoral links in an economy can be shown in two 

ways: forward linkage and backward linkage (Chenery and Watanabe, 1958) , so does the Q-analysis.  

This paper is organized as follows: section two describe the methodology of structural Q-analysis and 

important coefficients (IC) .Following this exposition, the application to Chinese’s production structure from 

1992 to 2005 will be made. Some summary remarks complete the paper. 
 

2. The Description of the Methodology 
2.1 A brief introduction of Structural Q-analysis 

The following methodological description of the procedure of Q-analysis is taken from the Atkin 

studies(Atkin,1974; see also, Sonis, Hewings and Dong Guo, 2007,2005,2003;Sonis and 

Hewings,2000,1998;Sonis,1998, and Sonis ,Hewings and Bronstein,1994). 
The topological principle of Q-analysis, supposed by Atkin (1974) describes the structure of relationships. 

Suppose there are two finite sets X and Y, each of which has elements ix (i=1,2,…，m) and iy (i=1,2,…n) , 

and every element of X and Y considered to be a convex polyhedron. Suppose from set Y to set X there is a 

relation Y Xλ ⊂ × , which is a binary zero-one matrix ijλΛ = , defined as an incidence matrix. So such a 

relation defines a simplicial complex K, which can be denoted by ( ; )YK X λ ; the pattern is shown in figure 1. 



Note that the inverse relation 1 X Yλ− ⊂ × defines a simplicial complex 1( ; )XK Y λ− , whose pattern is shown 

in figure 2. 

λ  X  

Y  ( )ijλ  

                          Figure 1 Pattern of ( ; )YK X λ  

1λ−
 Y  

X  
1( )ijλ
−

 

                         Figure 2 Pattern of 1( ; )XK Y λ−  

In simplicial complex 1( ; )XK Y λ− , a p-simplex, pσ , is constructed with distinctive (p+1) vertices which 

are elements of X vertex set. It is the same way in the simplicial complex 1( ; )XK Y λ− . 

In the context of input-output tables, we consider the consume sectors as a set X and the consumed sectors 

as a set Y, each of which has elements ix (i=1,2,…，m) and iy (i=1,2,…n). 

The forward linkage reveals the structural relation of any element of set Y, means taking iy  as a iq

-dimensional polyhedron with 1iq +  vertices in the set X and researching the number of common faces and 

the connection mode between iy  and jy  ( i j≠ ). All the consumed sectors ky , ( 1, 2,k = …n ) is called the 

forward linkages simplicial family, hence, the backward linkage is analogical. 
 
2.2 q-connectivity  

Two simplexes, iσ  and jσ , are q-near only if they share at least q+1 vertices. Thus, two sectors iy  and 

jy  ( i j≠ ) are q-connected only if they share at least q+1 economic sectors accepting the inputs from the 

sectors iy  and jy ,which defined as q-connected simplexes. A series of such q-connected simplexes 

connected with each other is a q-connectivity forming a q-chain. It is not difficult to see that if iσ  and jσ  

are q-connected then they are also (q-1)-, (q-2)-,…,1-,0-connected in ( ; )YK X λ . Looking for the q-connected 

components, for a fixed value of q, means that we are looking for all simplices pσ  with p q≥  to see if they 

share any common faces of dimension greater than or equal to q.  
 

2.3 The procedure of the linkage Q-analysis 



Following Atkin (1974) the operational basis of forward linkage for Q-analysis is given by a shared face 

matrix SF of the form:  

TSF U= ΛΛ −  

where Λ  is the incidence matrix corresponding to the chosen slicing procedure, TΛ  is its transpose and U is 

the matrix with unit entries. The components of the shared face matrix SF are the dimensions of the maximal 

mutual faces for each pair of sectors iy  and jy . 

The operational algorithm of Q-analysis includes following iterative steps for each dimension q, q=0,1,…N, 

where N is the maximal dimension of simplices from the simplicial complex: 

(1) Identify the sectors and their corresponding simplices whose dimension are equal or larger than q; the 

maximal dimension of simplices are on the main diagonal of the shared face matrix SF. 

(2) Constructed all distinct q-chains as previous step, the number of distinct q-chains is denoted as qQ .The 

vector 1 0{ , , , }N NQ Q Q Q−= …  is called the structural vector of the simplicial K(Y) and the maximal 

q-value N is a dimension of this complex. 

So far, the interaction matrix of the forward linkage Q-analysis has been presented. From the backward 

linkage perspective, the same slicing procedure can be adopted .Thus, 
T TS F U= Λ Λ −  

The components of the shared face matrix TS F  are the dimensions of the maximal mutual faces for each 

pair of sectors ix  and jx . Moreover, the backward linkages input-output Q-analysis can be performed 

analogously with the help of the conjugate shared face matrix. 

 
2.4 Slicing procedure 

In Q-analysis, construction a binary matrix to describe the relationship between two defined sets is called the 

slicing procedure. However, input-output tables describe the inter-sectoral relationship in an economy with 

definite numerical data, rather than in binary form. So chosing a proper slicing way to translate these 

non-binary matrices into binary matrices is one of the key parts of Q-analysis. In the context of input-output 

tables, there are many slicing methods have been tried before to transfer numerical data into the form of binary 

matrixes to show a certain sectoral structure. Sonis and Hewings (2000) removed 50% of the smallest 

components of the Leontief inverse matrix which called Hierarchical rank-size analysis when Q-analysing 

Israel’s economic structure. In the variable filter approach used in minimal flow analysis in QIOA noted earlier 

(Holub et al.,1985; Schnabl,1994), usually the filter value is subjectively set to be 0.2. However, it comes with 

the cost of losing some important information in a complicated economic system. Further, there is the problem 

of the appropriate definition of the filter. Even though 

standard SDA can decompose the total output changes between different time periods into three parts, it cannot 

provide the sectoral interaction relationship behind the changes. 

  On the basis of above deficiencies of these slicing approaches, hence, this paper intends to adopt information 

method based on the idea of important coefficients to choose some important coefficients from direct 

consumption matrix (A) which include enough information of Leontief inverse matrix (B) and construct a 

binary matrix avoiding missing important messages of the complicated economic system.  

Generally, important coefficients refers to the small part of direct consumption coefficients which play an 

important role in the economic system ( take the Leontief inverse matrix or total output for example). The main 



coefficient means it is only limited to the direct consumption coefficient and it is major or not depending on the 

extent of impact on the economic system. The field of influence and tolerable limits , based on 

Sherman-Morrison formula proposed by Xu&Madden（1991）, are the most common methods to analyse major 

coefficient. But both of them have some limitations. For the field of influence approach, it only measures the 

impact of each coefficient roles in the Leontief inverse based on the absolute change of each coefficient with 

considering the coefficient scale. However, the tolerable limits approach only inspects the relationship between 

one sector and total output and completely ignores the impact on other sectors. Thus, we adopt a new method, 

information method, to select the main coefficients which is a ideal approach to analysis the which direct 

consumption coefficient can take a greatest impact on the formation of current economic system. 

In the information method, there are two matrixes-influence matrix (A) and the influenced matrix (to be B 

or total output matrix), the main idea is to choose a main coefficients set from A which contains as little 

coefficients in a given information contained proportion (p). The information contained proportion means that 

we get a new matrix pA  of which some coefficients are keeping original as A, and others are 0. So, how 

much information of A contained in pA  is called the information contained proportion. Take Leontief inverse 

matrix (B) as influenced object for example, the information contained proportion P could be as follows: 
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p
ijb  is the element of matrix pB calculated by matrix pA  

Obviously, matrix 
pA  contains all the information of A when P equals 1 only if 

pA equals to A. The 

value of P depends on the needs of analysis and is usually subjectively set to be 75%, 80% or 85%, the more 

the non-zero coefficients of 
pA , the larger the P. Generally speaking, we set p equals to 60%-75% as the main 

coefficients couldn’t contain enough information of A in a smaller p and there are too many coefficients in a 
lager p. The relationship between information contained proportion and the rate of main coefficients accounting 
for total coefficients in different years is shown in table 1.Hence, we set 75% as a filter value of p. All the main 
coefficients of each year were presented from table 8 to 15. So far the binary matrix is obtained by the slicing 

procedure when letting the non-zero coefficients of 
pA to be 1 and others are still 0. 

Table 1 The information contained proportion and main coefficients scale. 
 

P 2005 2002 1997 1992 

75% 33.5% 29.9% 28.3% 28.3% 

80% 39.6% 36.6% 35.2% 34.9% 

85% 46.8% 44.0% 42.9% 42.7% 

90% 54.9% 52.4% 51.8% 51.8% 

 

3. Applications to the Chinese Economy:1992-2005 
3.1 Classical Backward and Forward linkages  



Avoiding the influence coursed by price fluctuation which goes with time, a set of annual 19-sector 

constant-price input-output tables, aggregated from the 62-sector constant-price tables, from 1992 to 2005 will 

be used to explore the structural changes in the Chinese economy. The sectors’ definitions are shown in table 2. 
 
Table 2 Sector definitions in the Chinese input-output tables 

Number Sector 
1 Agriculture 

2 Coal Mining and Washing Industry 

3 Petroleum and Natural Gas Extraction 

4 other Mining Industry 

5 Food, Textiles, Paper-making and Furniture Industry 

6 Petroleum Refining and Coking 

7 Chemical Industry 

8 Non-metallic Mineral Product Industry 

9 Metal Smelting and Metal Products 

10 Engineering Industry 

11 Transportation Facilities Manufacturing 

12 Electronic and Electrical Equipment Manufacturing 

13 Instrument and Meter, Office Machinery Manufacturing and other Industry  

14 Electricity, Gas and Water Production and Supply 

15 Construction Industry 

16 Transportation, Storage Post 

17 Wholesale and Retail Accommodations Industry 

18 Real Estate Financing and Insurance industry 

19 Other Service Industry 

In the classical input-output analysis, forward and backward linkage coefficients are often used to reveal the 

impetus of each sector on the social promotion which calculated with the help of Rasmussen indices presenting: 

1. Forward linkage : 

 

 

 

2. Backward linkage: 

 

 

 

where ijb  is element of Leontief inverse matrix and all the dynamics of linkages from 1992 to 2005 are 

presented in table 3 and table 4. 
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Table 3. Dynamics of Forward linkage , 1992-2005. 
Rank size 
hierarchy 

1992 
Sector 

No. 
1997 

Sector 
No. 

2002 
Sector 

No. 
2005 

Sector 
No. 

1 1.7848 17 1.8163 9 1.8634 9 1.8021 9 
2 1.7254 9 1.8116 7 1.7488 7 1.6779 7 
3 1.6950 5 1.4687 5 1.3444 5 1.3690 5 
4 1.3464 7 1.2188 17 1.2768 12 1.3298 12 
5 1.3334 3 1.0978 1 1.1652 17 1.1498 19 
6 1.3086 18 1.0748 10 1.0666 16 1.1348 16 
7 1.1335 1 1.0746 12 1.0250 19 1.1194 14 
8 1.0192 16 0.9599 3 0.9955 10 1.0944 17 
9 0.9038 6 0.9548 18 0.9619 3 0.9746 10 
10 0.8850 10 0.9491 16 0.9570 1 0.9575 3 
11 0.8359 14 0.9275 14 0.9454 14 0.9228 1 
12 0.7366 12 0.8301 19 0.8871 6 0.8573 6 
13 0.7277 8 0.8073 6 0.8733 18 0.8008 11 
14 0.6846 2 0.7951 11 0.8486 11 0.7110 18 
15 0.6439 4 0.7484 2 0.6750 2 0.6833 2 
16 0.6166 11 0.7171 4 0.6531 4 0.6804 4 
17 0.6083 13 0.6733 8 0.6249 8 0.6779 8 
18 0.5948 19 0.6312 13 0.6121 13 0.6096 13 
19 0.4165 15 0.4437 15 0.4761 15 0.4476 15 

 
Table 4. Dynamics of Backward linkage, 1992-2005. 
Rank size 
hierarchy 

1992 
Sector 

No. 
1997 

Sector 
No. 

2002 
Sector 

No. 
2005 

Sector 
No. 

1 1.4948  12 1.3582  12 1.3370  12 1.2411  12 
2 1.4119  10 1.2261  9 1.2236  11 1.2135  9 
3 1.3766  9 1.2090  11 1.2006  10 1.2035  7 
4 1.3389  11 1.1995  7 1.1878  15 1.1695  2 
5 1.2751  8 1.1490  15 1.1837  9 1.1516  10 
6 1.2691  13 1.1380  10 1.1368  7 1.1075  11 
7 1.1084  7 1.1370  8 1.0814  5 1.1042  15 
8 0.9944  4 1.1209  5 1.0397  13 1.0351  6 
9 0.9792  5 1.0440  4 1.0336  8 1.0216  4 
10 0.9241  6 1.0209  6 1.0029  6 1.0173  13 
11 0.9085  15 0.9894  13 0.9352  4 1.0150  14 
12 0.8582  16 0.9616  14 0.9315  19 1.0047  5 
13 0.8333  2 0.8985  2 0.9310  16 1.0000  8 
14 0.8077  17 0.8792  17 0.9016  14 0.9552  19 
15 0.7944  14 0.8085  19 0.8782  17 0.8609  16 
16 0.7487  19 0.7691  1 0.8703  2 0.8122  17 
17 0.7081  18 0.7686  16 0.7923  1 0.7476  1 
18 0.6333  1 0.6846  18 0.6768  18 0.7232  3 
19 0.5353  3 0.6380  3 0.6558  3 0.6161  18 



As usually defined in conventional key sectors theory, the sector i is considered as a key sector if both of its 

iFL  and jBL  are larger than one. A forward linkage oriented sector means 1iFL >  and 1jBL < ; and a 

backward linkage oriented sector means 1iFL <  and 1jBL > ; a weakly linked sector mean both iFL  and 

jBL  are less than one. As depicted in table 3 and table 4, from 1992 to 2005, Metal Smelting and Metal 

Products (9), Chemical Industry (7), Food, Textiles, Paper-making and Furniture Industry (5), Electronic and 

Electrical Equipment Manufacturing (12) were emerging to be the key sectors of Chinese economical system. 

Almost only defined as a forward linkage oriented sector, Agriculture (1) had a small pulling impetus on other 

sectors, which jBL was about 0.7 and iFL  was nearly 1 from 1992 to 2005. Besides, Construction Industry 

(15) transformed into a backward linkage oriented sector from a weakly linked sector, which was rising in the 

hierarchy of backward linkages during the study period. 

Table 3 and table 4 shows that the hierarchy of forward linkages is more stable then the hierarchy of 

backward linkages. In the hierarchy of forward linkage Metal Smelting and Metal Products (9), Chemical 

Industry (7), Food, Textiles, Paper-making and Furniture Industry (5) are always on the top 3 of hierarchy, 

Petroleum and Natural Gas Extraction (3) and Real Estate Financing and Insurance industry (18) are always on 

the bottom; in the hierarchy of backward linkages Electronic and Electrical Equipment Manufacturing (12) is 

always on the top, while Metal Smelting and Metal Products (9), Engineering Industry (10), Transportation 

Facilities Manufacturing(11) are always up and down and all other sectors changed their place in the hierarchy. 

This change in both hierarchies signified the qualitative change in the economic relationship between the 

sectors during time. 

 
3.2 Structural Q-analysis of Chinese input-output system, 1992-2005 

Taking 2005 for example, based on the direct consumption matrix (A) and Leontief inverse matrix (B) of 

input-output table, 121 coefficients, accounting for one third of all coefficients, in A contain three fourths 

information of B. Then the incidence matrix Λ  could be formed on the ground of such important coefficients, 

which is depicted in the table 5. Following previous section, the consumption sectors and the consumed sectors 

are respectively defined as set X and Y, the subscript quantity of each sector consistent with the number in the 

table 2. 

For the forward linkage, as a practical algorithm for producing the connectivities of the simplices in 

( ; )YK X λ  shown in Table 6 we can proceed as above mentioned in 2.3. 

For the backward linkage ,by a similar reasoning we obtain table 7 for the connectivities of the simplices in 
1( ; )XK Y λ−  by forming the matrix product TΛ Λ  and subtracting 1 from each element.  

In the tables we represent q=-1(disconnection) by the symbol -, for ease of reference. Since Λ is a 19 × 

19 matrix it follows that both of TΛΛ and TΛ Λ  are 19 × 19. 
 
 
 
 
 
 
 
 
 



Table 5  The incidence matrix of 2005 
λ

 
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 

Y1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 
Y2 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 
Y3 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
Y4 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
Y5 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 
Y6 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 
Y7 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 
Y8 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 
Y9 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 
Y10 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 
Y11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
Y12 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 
Y13 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 
Y14 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 
Y15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y16 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1 
Y17 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 
Y18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y19 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 

 

Table 6 q-connectivities in ( ; )YK X λ , from TΛΛ  

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19  
3 — 0 0 3 0 2 — 0 0 — 0 — 0 — 1 2 — 2 Y1 

 3 0 0 — 2 1 0 1 2 — 1 1 2 — 3 2 — 2 Y2 

  1 0 0 1 0 — 0 0 — — — 0 — 1 0 — 0 Y3 

   3 1 2 3 1 3 3 — — 0 3 — 3 1 — 2 Y4 

    7 0 6 1 3 2 — 3 0 2 — 3 4 — 4 Y5 

     6 2 0 3 5 0 1 1 4 — 5 2 — 5 Y6 

      11 2 8 7 0 4 1 5 — 7 6 — 7 Y7 

       3 3 2 — 0 0 1 — 1 1 — 1 Y8 

        10 8 0 4 1 5 — 5 4 — 6 Y9 

         10 1 4 1 6 — 7 5 — 8 Y10 

          1 — — — — 0 — — 0 Y11 

           7 1 3 — 3 5 — 6 Y12 

            2 1 — 1 1 — 1 Y13 

             7 — 6 4 — 6 Y14 

              — — — — — Y15 

               10 6 — 8 Y16 

                8 — 8 Y17 

                 — — Y18 

                  12 Y19 

 



Table 7 q-connectivities in 1( ; )XK Y λ− , from TΛ Λ  

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19  
2 0 — 0 2 — 2 1 0 0 0 1 1 — — — 1 — 1 X1 

 8 4 5 3 1 6 4 7 6 2 5 2 6 0 2 2 0 5 X2 

  5 4 0 0 4 2 4 3 1 3 1 4 0 2 1 0 2 X3 

   7 2 1 7 5 7 4 2 3 1 4 0 3 0 0 3 X4 

    5 0 5 2 3 3 0 3 1 2 — 1 3 0 4 X5 

     3 2 0 2 0 — — — 2 — 1 — — 0 X6 

      11 6 8 5 2 5 2 5 0 3 3 0 5 X7 

       7 6 3 2 4 2 2 1 1 0 — 3 X8 

        11 5 2 5 2 7 1 3 1 0 4 X9 

         6 2 5 2 4 0 2 2 0 4 X10 

          3 2 1 0 0 1 — — 0 X11 

           7 3 3 1 1 3 0 4 X12 

            4 1 0 — 1 — 2 X13 

             8 — 3 2 0 4 X14 

              1 — — — — X15 

               4 0 0 1 X16 

                4 0 3 X17 

                 0 0 X18 

                  6 X19 

Referring to Table 6 and Table 7 we can obtain the Q-analysis for both ( ; )YK X λ  and 1( ; )XK Y λ−  as 

the following set of equivalence classes:  

( ; )YK X λ  

q -value qQ -value Components 

12 1 {19} 
11 2 {19},{7} 
10 5 {19},{7},{9},{10},{16} 
9 5 {19},{7},{9},{10},{16} 
8 1 {19,17,16,10,9,7} 
7 4 {19,17,16,10,9,7},{5},{12},{14} 
6 2 {19,17,16,14,12,10,9,7,5},{6} 
5 1 {19,17,16,14,12,10,9,7,5,6} 
4 1 {19,17,16,14,12,10,9,7,5,6} 
3 1 {19,17,16,14,12,10,9,7,5,6,4,2,1,8} 
2 1 {19,17,16,14,12,10,9,7,5,6,4,2,1,8} 
1 1 {19,17,16,14,12,10,9,7,5,6,4,2,1,8,13,3,11} 
0 1 {19,17,16,14,12,10,9,7,5,6,4,2,1,8,13,3,11} 

 
 



The structure vector is  
12 0

{1 2 5 5 1 4 2 1 1 1 1 1 1}Q =  

1( ; )XK Y λ−  

q -value qQ -value Components 

11 2 {7},{9} 
10 2 {7},{9} 
9 2 {7},{9} 
8 3 {7,9},{14},{2} 
7 3 {7,9,2,14,4},{12},{8} 
6 3 {7,9,2,14,4,8,10},{12},{19} 
5 2 {7,9,2,14,4,8,10,5,12,19},{3} 
4 4 {7,9,2,14,4,8,10,5,12,19,3},{13},{16},{17} 
3 2 {7,9,2,14,4,8,10,5,12,19,3,16,17,13},{6} 
2 1 {7,9,2,14,4,8,10,5,12,19,3,16,17,13,1,6,11} 
1 1 {7,9,2,14,4,8,10,5,12,19,3,16,17,13,1,6,11,15} 
0 1 {all} 

 
The structure vector is  

11 0
{2 2 2 3 3 3 2 4 2 1 1 1}Q =  

The structure vector Q measures the stability of the economic system in the connect width of each sector. 

If we find a situation in which 0 1Q > , and all communication of sectors has ceased. In other words, all 

economic sectors are naturally divided into several irrelevant sets and all communication among the sets 

would be impossible when 0 1Q > . From the structure vector of ( ; )YK X λ , all sectors, excepting 

Construction Industry and Real Estate Financing and Insurance industry, are connected until we reach the 

level of 1q = , which means Construction Industry and Real Estate Financing and Insurance industry have 

relatively weaker forward influence than other sectors so as to the forward influence couldn’t be reflected in 

the structure vector rather than other sectors don’t needs inputs from these two sectors. And Other Service 

Industry (19), Wholesale and Retail Accommodations Industry (17), Transportation, Storage Post (16), 

Chemical Industry (7) form a key department chain at 8q = , the value of 8 1Q = which reveals that these 

sectors are highly associate and to be the major inputs source of other sectors. However, Agriculture don’t 

have such extensive contact as the above mentioned department, which is a major source of Agriculture, Food, 

Textiles, Paper-making and Furniture Industry, Chemical Industry, Wholesale and Retail Accommodations 

Industry.  

From the structure vector of 1( ; )XK Y λ− , all sectors are connected until we reach the level of 0q = , 

which means that a chain of 0-connection exists which includes any pair. Chemical Industry (7), Metal 

Smelting and Metal Products (9), Electricity, Gas and Water Production and Supply (14), Coal Mining and 

Washing Industry (2), other Mining Industry (4), Non-metallic Mineral Product Industry (8), Engineering 

Industry (10) form a key department chain at 6q = to require inputs from other sectors. It is also depicted 

that until 2q = , the value of 2 1Q = in the structure vector of 1( ; )XK Y λ−  while at 8q = and



5,4,3,2,1,0q = , the value of 8 5 4 3 2 1 0 1Q Q Q Q Q Q Q= = = = = = = in the structure vector of 

( ; )YK X λ  which reflect that the backward linkage structure is less stable than forward linkage structure. 

The comparison between the results of forward and backward linkage Q-analysis suggests that there is strong 

asymmetry between the forward and backward linkages structures. 

On the other hand, Q-analysis exposit the complexity of economic system and the connection of each 

section in the perspective of associated breadth, but, further study should be conducted in the perspective of 

associated depth. Based on classical forward and backward linkage theory, the strength of  

forward and backward linkage among sectors is measured by the corresponding correlation coefficients. Thus, 

we also adopt correlation coefficients to measure the associated depth of economic sectors.  

The whole backward and forward linkage between sectors are depicted in the figure 3 and figure 4 in 

Appendix. And the sectors pointed by arrowheads are respectively consumed and consumption sectors the 

figures. Decided by the completely consumption coefficients, the extent of sectoral inter-correlation is 

revealed by the thickness of connections lines between sectors, the more coarse the associated deeper, and 

vice versa. It is also shown that Other Service Industry (19), Wholesale and Retail Accommodations Industry 

(17), Transportation, Storage Post (16), Chemical Industry (7) are major sectors of forward linkage, but 

Agriculture is a key sector in the forward linkage as the extent of forward linkage is still deep with the 

connection sectors. 

It is shown in table 9 that although only Agriculture 、Food, Textiles, Paper-making and Furniture 

Industry 、Chemical Industry、Wholesale and Retail Accommodations Industry consume most of agricultural 

products and agriculture is the main raw materials for above forward connected sectors whose forward linkage 

coefficients with agriculture are 1.2367、0.3157、0.1276 and 0.1176 . So, Agriculture is still a key sector in the 

forward linkage structure. 

As to Construction Industry and Real Estate Financing and Insurance industry, the forward linkage is not 

significant revealed in the Q-analysis for the forward associated coefficients of Construction Industry and Real 

Estate Financing and Insurance industry are all too small to be selected. On the one hand , these two sectors 

play an more important role in the Residents sector than in the others which means that a residents-endogenous 

model can much more comprehensively reflect the forward linkage of these two sectors. On the other hand , the 

construction industry is defined as construction activities of some special buildings ,excepting the preparation 

work of constructing by China’s  national economy industry classification standards so as to the connection to 

the other sectors is unapparent. 

The computational processes of Q-analysis in 1992, 1997 and 2002 are presented in the Appendix. 
 

4. Conclusion  

The analysis of sectoral structure in Chinese’s economy during 1992 to 2005 suggests that the economy is 

becoming complicated in the sense of the complex of sectoral structure. Seen from the structure vector of 

forward linkage structure, a 6-connectivity was formed in 1992,1997 and 2002 , but in 2005 a 8-connectivity 

was formed which means that over time the value qQ =1 when the value of q is relatively large and the closer 

links among sectors. It is also depicted that Food, Textiles, Paper-making and Furniture Industry, Chemical 

Industry, Metal Smelting and Metal Products, Engineering Industry, Other Service Industry are the key input 



sectors to form a department chain of forward linkage and Other service is playing an increasing prominent role. 

Besides that, Agriculture is still a key sector in the forward linkage structure to provide materials to other 

sectors although the association breadth was lower than some manufacturing departments.  

In the perspective of backward linkage structure, Chemical Industry, Metal Smelting and Metal Products, 

Non-metallic Mineral Product Industry, Engineering Industry, other Mining Industry,  

Electricity, Gas and Water Production and Supply are the key sectors, consuming product from other sectors, to 

form a department chain of backward linkage. At the same time, The completely consumption coefficients of 

Construction Industry to the connected sectors are also large , so it still plays an important role in the economic 

system.  

    The objective of this paper is three fold. Information method was used to selected the important 

coefficients of the direct consumption matrixes to avoid missing some important information. Although this 

approach has some shortcomings, As for QIOA and Hierarchical rank-size analysis, this approach has less 

subjective facts. 

Secondly, the ideas of combinatorial topology in the form of Atkin’s Q-analysis were used in the analysis of 

economic interactions between the sectors which revealed in the complex system of forward and backward 

linkages. Meanwhile, the methodology has been illustrated with 19 sectors tables, which is much more valuable 

in application than that with very aggregated tables. Thus, this method is especially important for the analysis 

of the structural complication in input-output systems. 

Then, the relationship of sectors has depicted in the graphs of backward and forward linkage with 19 

sectors, which providing a forceful support of sector complexity. 

The methodology can provide some important ,complementary insights into the structure of economies only 

in the perspective of breadth of the link between sectors. Considering the value of forward and backward 

linkage coefficients of each sector is a complementary of Q-analysis, which in the perspective of depth of the 

link between sectors. So, combined these two perspectives in the analysis of economic interactions using 

connection graphs is the biggest innovation of this paper.  
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Appendix  

Table 8  Selected Matrices of direct input in 2005 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0.1568     0.1652   0.0383           0.0467    

2 0.0838     0.2880   0.0412  0.0443     0.0194  0.0795     0.1210   0.0928  

3 0.0656  0.0421   0.0724  0.0644   0.3804  0.0553  0.0186  0.0494  0.0547  0.0712  0.0774       0.0654  

4  0.0341     0.0308    0.0134      0.1655       

5      0.6114  0.0248              

6    0.0815    0.0210  0.0551  0.0987            

7   0.0279  0.0612   0.0360  0.0360   0.0256      0.0511   0.1299     

8        0.0917  0.0211    0.0277    0.2008      

9  0.1034  0.0324  0.0344    0.0180  0.0487  0.3550  0.2157  0.1134  0.1094  0.0895   0.1377      

10  0.0661  0.0302  0.0480    0.0129  0.0328  0.0223  0.1772  0.0785  0.0230   0.0504   0.0227     

11           0.2735      0.0690     

12  0.0454  0.0243        0.0624   0.3819  0.1158  0.0542    0.0249   0.0809  

13         0.0359     0.0541  0.0251       

14  0.1438  0.0617  0.0926    0.0627  0.0731  0.0565      0.0884      0.0236  

15                    

16  0.0714   0.0704  0.0284  0.0452  0.0380  0.0519  0.0429  0.0348     0.0401   0.1256    0.0335  

17  0.0512    0.0438   0.0399   0.0360  0.0410   0.0378   0.0445    0.0482   0.0671  

18                      

19  0.0789  0.0442  0.0538  0.0312   0.0354   0.0270  0.0346   0.0362   0.0372   0.0282  0.0821  0.0736  0.0842  



Table 9  Selected Matrices of Leontief Inverse in 2005 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1.2367     0.3157   0.1276           0.1176    

2  1.0926     0.0664    0.0639      0.2134       

3      0.6852  0.1154              

4    1.1154    0.0577  0.0925  0.1883            

5 0.1842     1.5024   0.1800  0.1462     0.1360  0.2035     0.2398   0.2190  

6   0.0569  0.1238   1.0942  0.1113   0.1034      0.1035   0.1798     

7 0.1768  0.1951   0.2175  0.2323   1.7180  0.1909  0.1600  0.2059  0.2159  0.2818  0.2431       0.2115  

8        1.1208  0.0571    0.0720    0.2447      

9  0.3069  0.1187  0.1664    0.1374  0.1797  1.6688  0.5084  0.3617  0.3671  0.2516   0.3264      

10  0.1490  0.0672  0.1153    0.0762  0.0940  0.1018  1.2734  0.1757  0.0951   0.1235   0.0709     

11           1.4073      0.1270     

12  0.1755  0.0878        0.1930   1.6890  0.2521  0.1772    0.0887   0.1954  

13         0.0818     1.0811  0.0527       

14  0.2449  0.1055  0.1764    0.1743  0.1581  0.1747      1.1805      0.0819  

15                    

16  0.1723   0.1557  0.0970  0.1166  0.1379  0.1346  0.1542  0.1302     0.1235   1.1924    0.1004  

17  0.1458    0.1167   0.1356   0.1327  0.1315   0.1387   0.1216    1.1018   0.1378  

18                    

19  0.1779  0.0896  0.1347  0.1006   0.1339   0.1251  0.1254   0.1381   0.1237   0.0864  0.1392  0.1119  1.1597  



Table 10  Selected Matrices of direct input in 2002 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0.1622     0.1608   0.0289         0.0783   0.0518    

2              0.1517       

3      0.5753               

4    0.0578     0.0545  0.0732            

5 0.0634     0.2843   0.0299  0.0441     0.0191  0.0809     0.1157   0.0935  

6    0.0518   0.0425  0.0348   0.0266      0.0488   0.1377     

7 0.0725    0.0716  0.0723   0.3730  0.0656  0.0199  0.0522  0.0611  0.0797  0.0776       0.0520  

8        0.0810  0.0157    0.0223    0.1124      

9  0.0689  0.0248     0.0160  0.0516  0.3533  0.2162  0.1226  0.1156  0.0886   0.1718      

10  0.0413  0.0233  0.0422     0.0341  0.0229  0.1815  0.0844  0.0245   0.0390  0.0454  0.0260     

11           0.2845      0.0711  0.0231    

12          0.0621  0.0274  0.3882  0.0988  0.0337    0.0256   0.0608  

13         0.0314     0.0520        

14  0.0699  0.0414  0.0724    0.0436  0.0561  0.0452      0.0510       

15                    

16    0.0514  0.0267  0.0406  0.0312  0.0543  0.0380  0.0310     0.0409   0.1115     

17     0.0540   0.0409  0.0530  0.0397  0.0442  0.0387  0.0452   0.0442    0.0532   0.0594  

18                0.0542  0.0638  0.1001   

19     0.0265   0.0263   0.0231    0.0307      0.0616  0.0613  0.0621  



Table 11  Selected Matrices of Leontief Inverse in 2002 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1.2333     0.3032   0.0927         0.1413   0.1183    

2              0.1774       

3      0.6333               

4    1.0767     0.0813  0.1329            

5 0.1412     1.4775   0.1246  0.1294     0.1218  0.1862     0.2207   0.1948  

6    0.0962   1.0850  0.0934   0.0885      0.0839   0.1844     

7 0.1807    0.1845  0.2417   1.6686  0.1932  0.1344  0.1980  0.2262  0.2928  0.2294       0.1687  

8        1.1003  0.0377    0.0549    0.1395      

9  0.1805  0.0811     0.1018  0.1670  1.6347  0.4956  0.3811  0.3731  0.2322   0.3712      

10  0.0825  0.0458  0.0888     0.0845  0.0840  1.2704  0.1836  0.0911   0.0842  0.1057  0.0720     

11           1.4262      0.1283  0.0522    

12          0.1742  0.1213  1.6886  0.2085  0.1029    0.0784   0.1418  

13         0.0653     1.0727        

14  0.1070  0.0611  0.1163    0.1068  0.1100  0.1175      1.0930       

15                    

16    0.1044  0.0832  0.0856  0.0979  0.1184  0.1165  0.1055     0.0899   1.1657     

17     0.1294   0.1181  0.1214  0.1221  0.1309  0.1270  0.1490   0.0969    1.1064   0.1194  

18                0.0937  0.1013  1.1290   

19     0.0791   0.0859   0.0865    0.1087      0.1052  0.0919  1.1109  



Table 12  Selected Matrices of direct input in 1997 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0.1658 0.0486   0.2087  0.0408          0.0464   

2        0.0506      0.1776      

3      0.5800 0.0246             

4    0.0993   0.0171 0.0693 0.0778           

5 0.0585    0.3015  0.0653 0.0665    0.0242 0.0865    0.1104  0.0562 

6      0.0437 0.0206  0.0273     0.0474  0.0839    

7 0.0728 0.0353 0.0268 0.0773 0.0629  0.3642 0.0692 0.0215 0.0394 0.0575 0.1182 0.0825      0.0567 

8        0.0927 0.0167   0.0246   0.1673     

9  0.0697  0.0274   0.0132 0.0616 0.3251 0.1943 0.1515 0.1646 0.0824  0.1463     

10  0.0484 0.0335 0.0685   0.0140 0.0341 0.0301 0.1753 0.0854 0.0291  0.0418      

11           0.2525     0.0522 0.0324   

12  0.0292       0.0097 0.0590 0.0253 0.2946 0.0571 0.0374 0.0510  0.0318   

13         0.0355    0.0481       

14  0.0573  0.0692   0.0455 0.0526 0.0526     0.0625      

15                    

16    0.0744   0.0254 0.0528 0.0362       0.0606    

17    0.0465 0.0594  0.0487 0.0680 0.0377 0.0351  0.0518  0.0477 0.0703  0.0758   

18         0.0345        0.0663 0.1409  

19         0.0244           



Table 13  Selected Matrices of Leontief Inverse in 1997 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1.2474  0.0959    0.4045   0.1484           0.1259    

2        0.0925       0.2128       

3      0.6346  0.0819              

4    1.1301    0.0430  0.1081  0.1442            

5 0.1399     1.5265   0.2144  0.1858     0.1523  0.2030     0.2204   0.1356  

6      1.0774  0.0624   0.0788      0.0785   0.1070     

7 0.1753  0.1297  0.0761  0.2116  0.2312   1.6628  0.2169  0.1471  0.1713  0.2135  0.3604  0.2267       0.1510  

8        1.1169  0.0407    0.0577    0.2016      

9  0.1778   0.1371    0.0951  0.1856  1.5755  0.4325  0.4066  0.4313  0.1986   0.3227      

10  0.0947  0.0577  0.1356    0.0667  0.0987  0.1062  1.2644  0.1852  0.1063   0.0970       

11           1.3621      0.0846  0.0598    

12  0.0759        0.0677  0.1385  0.0940  1.4651  0.1134  0.0966  0.1165   0.0725    

13         0.0721     1.0678        

14  0.0944   0.1196    0.1087  0.1122  0.1267      1.1062       

15                    

16    0.1277    0.0802  0.1124  0.1062        1.0870     

17    0.1165  0.1418   0.1395  0.1525  0.1261  0.1149   0.1629   0.1075  0.1582   1.1309    

18         0.1031         0.1079  1.1801   

19         0.0757            



Table 14  Selected Matrices of direct input in 1992 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0.1120     0.2405   0.0563           0.0362    

2         0.0246      0.1397       

3   0.0832    0.7585  0.0409        0.0682       

4    0.0900     0.0464  0.0712            

5 0.0416     0.2824   0.0901  0.1054  0.0238     0.2699     0.1190  0.0250   

6    0.0414    0.0214  0.0640  0.0266      0.0491   0.2073     

7 0.0782    0.0704  0.0407   0.2673  0.0657  0.0181  0.0365  0.0749  0.0949  0.0812     0.0158   0.0564  

8        0.1031  0.0171       0.1067    0.0371   

9  0.0348      0.0161  0.0549  0.3952  0.2208  0.1064  0.1737  0.0725   0.1204   0.0119    

10  0.0428  0.0197  0.0470     0.0319  0.0217  0.1806  0.1094  0.0425         

11           0.1881      0.0492     

12          0.0692  0.0285  0.2297         

13             0.0936        

14    0.0831    0.0374  0.0801  0.0497            

15                    

16       0.0255   0.0241         0.1512    

17  0.0666   0.0857  0.0557  0.0583  0.0848  0.1299  0.1072  0.1288  0.1502  0.1678  0.1253  0.0467   0.0607  0.0350  0.0664  0.0902  

18     0.0295   0.0736  0.0654  0.0911  0.0877  0.0746  0.1084      0.0235  0.1218   

19                 0.0282  0.0342   



Table 15  Selected Matrices of Leontief Inverse in 1992 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1.1667     0.4191   0.1752           0.1146    

2         0.0793      0.1645       

3   1.1080    0.8744  0.1329        0.1565       

4    1.1183     0.0815  0.1461            

5 0.1044     1.4816   0.2618  0.2981  0.1851     0.5474     0.2271  0.0969   

6    0.0944    0.0714  0.1385  0.1061      0.0846   0.2398     

7 0.1402    0.1626  0.1466   1.4330  0.1865  0.1206  0.1609  0.2151  0.2638  0.2254     0.0741   0.1181  

8        1.1479  0.0652       0.1397    0.0577   

9  0.1253      0.0940  0.1959  1.7472  0.5570  0.3614  0.4854  0.2176   0.2673   0.0587    

10  0.0765  0.0329  0.0923     0.0865  0.0840  1.2746  0.2049  0.1168         

11           1.2529      0.0694     

12          0.1363  0.0818  1.3316         

13             1.1256        

14    0.1299    0.0830  0.1441  0.1343            

15                    

16       0.0935   0.1259         0.1875    

17  0.1557   0.2058  0.1422  0.1206  0.2136  0.2996  0.3160  0.3586  0.3681  0.4205  0.2902  0.1218   0.1471  1.1093  0.1314  0.1601  

18     0.0926   0.1725  0.1808  0.2498  0.2603  0.2307  0.2981      0.0726  1.1729   

19                 0.0422  0.0499   



Table 16  The incidence matrix of 2002 
λ

 
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 

Y1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 
Y2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Y3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y4 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
Y5 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 
Y6 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 
Y7 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 
Y8 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 
Y9 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 
Y10 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 
Y11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 
Y12 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 
Y13 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 
Y14 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 
Y15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y16 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 
Y17 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 
Y18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
Y19 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 

Table 17  q-connectivities in ( ; )YK X λ , from TΛΛ  2002 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19  

4 — — — 3 0 2 0 1 0 0 0 — 0 — 1 2 0 2 Y1 

 0 — — — 0 — — — 0 — 0 — 0 — 0 0 — — Y2 

  0 — — 0 — — — — — — — — — 0 — — — Y3 

   2 0 1 2 1 1 2 — — 0 2 — 2 1 — 0 Y4 

    7 0 6 1 3 1 0 3 0 1 — 2 5 0 4 Y5 

     5 2 0 1 3 0 0 0 3 — 5 2 0 1 Y6 

      10 2 6 5 0 4 1 3 — 5 7 — 4 Y7 

       3 3 3 — 0 0 1 — 1 2 — 1 Y8 

        9 7 — 3 1 4 — 3 5 — 2 Y9 

         10 1 3 0 5 — 5 5 0 1 Y10 

          2 1 — — — 0 1 1 0 Y11 

           6 0 0 — 1 5 0 2 Y12 

            1 0 — 0 0 — 0 Y13 

             6 — 4 3 — 1 Y14 

              — — — — — Y15 

               8 5 0 2 Y16 

                9 0 5 Y17 

                 2 1 Y18 

                  6 Y19 

 



Table 18  q-connectivities in 1( ; )XK Y λ− , from TΛ Λ  2002 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19  
2 — — 0 2 — 2 1 0 0 0 1 1 — 0 — 1 — 1 X1 

 2 2 1 — — 1 2 2 1 1 1 0 1 1 0 — — — X2 

  2 1 — — 1 2 2 1 1 1 0 1 1 0 — — — X3 

   5 1 1 3 4 5 2 1 1 0 3 0 2 — — 0 X4 

    5 0 5 3 3 2 1 3 1 1 0 0 3 0 3 X5 

     2 1 0 1 0 — — — 1 — 1 — — — X6 

      8 5 6 3 2 4 2 3 1 1 3 0 3 X7 

       8 7 4 3 5 2 3 2 1 1 — 2 X8 

        10 4 3 5 2 4 2 2 1 0 2 X9 

         5 4 4 2 3 1 1 1 — 2 X10 

          5 4 2 2 1 1 2 — 2 X11 

           7 3 2 2 0 3 0 4 X12 

            4 0 0 — 1 — 2 X13 

             6 0 2 1 — 1 X14 

              3 0 0 — — X15 

               4 1 0 — X16 

                6 1 3 X17 

                 1 0 X18 

                  4 X19 

Referring to Table 17 and Table 18 we can obtain the Q-analysis for both ( ; )YK X λ  and 

1( ; )XK Y λ−  as the following set of equivalence classes:  

( ; )YK X λ  

q -value qQ -value Components 

10 2 {7},{10} 
9 4 {7},{10},{9},{17} 
8 5 {7},{10},{9},{17},{16} 
7 4 {7,17},{10,9},{16},{5} 
6 5 {7,17,5,9,10},{16},{12},{14},{19} 
5 1 {7,17,5,9,10,16,12,14,6,19} 
4 2 {7,17,5,9,10,16,12,14,6,19},{1} 
3 1 {7,17,5,9,10,16,12,14,6,19,1,8} 
2 3 {7,17,5,9,10,16,12,14,6,19,1,8,4},{11},{18} 
1 1 {7,17,5,9,10,16,12,14,6,19,1,8,4,11,18,13} 
0 1 {7,17,5,9,10,16,12,14,6,19,1,8,4,11,18,13,2,3} 

The structure vector is 
10 0

{2 4 5 4 5 1 2 1 3 1 1}Q =  



1( ; )XK Y λ−  

q -value qQ -value Components 

10 1 {9} 
9 1 {9} 
8 3 {9},{7},{8} 
7 3 {9,8},{7},{12} 
6 4 {9,8,7},{12},{14},{17} 
5 5 {9,8,7,12,4,5},{14},{17},{10},{11} 
4 4 {9,8,7,12,4,5,10,14,11,19},{17},{13},{16} 
3 3 {9,8,7,12,4,5,10,14,11,19,17,13},{16},{15} 
2 2 {9,8,7,12,4,5,10,14,11,19,17,13,2,3,15,16,1},{6} 
1 1 {all}  
0 1 {all} 

 
The structure vector is 

10 0
{1 1 3 3 4 5 4 3 2 1 1}Q =  

 
 
 
 
Table 19 The incidence matrix of 1997 

λ
 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 

Y1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 
Y2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 
Y3 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
Y4 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
Y5 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 
Y6 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 
Y7 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 
Y8 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 
Y9 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 
Y10 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 
Y11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 
Y12 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 
Y13 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 
Y14 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 
Y15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y16 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 
Y17 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 
Y18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 
Y19 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

 



Table 20 q-connectivities in ( ; )YK X λ , from TΛΛ  1997 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19  
4 — 0 0 3 0 3 — 1 1 0 1 — 1 — 0 2 0 — Y1 

 1 — 0 0 0 0 0 0 1 — 0 — 1 — 0 1 — — Y2 

  1 0 0 1 0 — 0 0 — — — 0 — 0 0 — — Y3 

   3 1 1 3 1 3 3 — 0 0 3 — 3 3 0 0 Y4 

    7 0 6 1 3 2 0 2 0 1 — 1 4 0 — Y5 

     4 1 0 1 2 0 1 0 2 — 2 2 0 0 Y6 

      12 2 8 8 0 5 1 4 — 3 6 0 0 Y7 

       3 3 2 — 2 0 1 — 1 3 0 0 Y8 

        9 7 0 6 1 4 — 3 6 0 0 Y9 

         9 0 5 0 5 — 3 6 0 0 Y10 

          2 1 — — — 0 0 0 — Y11 

           8 1 2 — 0 5 1 0 Y12 

            1 0 — 0 0 0 0 Y13 

             5 — 3 4 0 0 Y14 

              — — — — — Y15 

               4 3 0 0 Y16 

                9 1 0 Y17 

                 2 0 Y18 

                  0 Y19 

Table 21 q-connectivities in 1( ; )XK Y λ− , from TΛ Λ  1997 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19  
2 1 0 0 2 — 2 1 0 0 0 1 1 — — — 1 — 1 X1 

 5 1 3 1 — 4 3 4 3 3 3 2 2 1 — 1 — 0 X2 

  1 1 0 — 1 1 1 1 1 1 0 0 — — — — 0 X3 

   6 1 — 6 6 6 3 2 3 1 2 1 0 0 — 0 X4 

    3 — 3 2 1 1 0 2 1 0 0 — 2 — 1 X5 

     1 1 — 0 — — — — 0 — 0 — —  X6 

      10 7 7 3 2 4 2 3 1 1 2 — 1 X7 

       9 7 3 2 5 2 3 2 0 1 — 1 X8 

        12 4 3 5 3 4 3 1 2 0 0 X9 

         4 3 4 2 2 2  1 — 0 X10 

          4 3 2 1 1 0 1 — 0 X11 

           6 3 2 3 — 2 — 1 X12 

            4 0 1 — 1 — 1 X13 

             5 1 0 1 — — X14 

              3 — 1 — — X15 

               2 0 — — X16 

                5 0 0 X17 

                 0 — X18 

                  1 X19 



Referring to Table 20 and Table 21 we can obtain the Q-analysis for both ( ; )YK X λ  and 

1( ; )XK Y λ−  as the following set of equivalence classes:  

( ; )YK X λ  

q -value qQ -value Components 

12 1 {7} 
11 1 {7} 
10 1 {7} 
9 4 {7},{9},{10},{17} 
8 3 {7,9,10},{17},{12} 
7 4 {7,9,10},{17},{12},{5} 
6 1 {7,9,10,5,17,12} 
5 1 {7,9,10,5,17,12,14} 
4 4 {7,9,10,5,17,12,14},{16},{6},{1} 
3 2 {7,9,10,5,17,12,14,1,4,16,8},{6} 
2 1 {7,9,10,5,17,12,14,1,4,16,8,6},{11},{18} 
1 1 {7,9,10,5,17,12,14,1,4,16,8,6,2,3,11,13,18} 
0 1 {7,9,10,5,17,12,14,1,4,16,8,6,2,3,11,13,18,19} 

 
The structure vector is 

12 0
{1 1 1 4 3 4 1 1 4 2 1 1 1}Q =  

 

1( ; )XK Y λ−

 

q -value qQ -value Components 

12 1 {9} 
11 1 {9} 
10 2 {9},{7} 
9 3 {9},{7},{8} 
8 3 {9},{7},{8} 
7 1 {9,7,8} 
6 2 {9,7,8,4},{12} 
5 4 {9,7,8,4,12},{2},{14},{17} 
4 4 {9,7,8,4,12,2,10,14},{17},{11},{13} 
3 2 {9,7,8,4,12,2,10,14,11,13,15,5},{17} 
2 2 {9,7,8,4,12,2,10,14,11,13,15,5,17,1,7},{16} 
1 1 {9,7,8,4,12,2,10,14,11,13,15,5,17,1,7,16,19} 
0 1 {all } 

 



The structure vector is 
12 0

{1 1 2 3 3 1 2 4 4 2 2 1 1}Q =  

Table 22 The incidence matrix of 1992 
λ

 
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 

Y1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 
Y2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 
Y3 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 
Y4 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
Y5 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 
Y6 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 
Y7 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 
Y8 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 
Y9 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 
Y10 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 
Y11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
Y12 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
Y13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Y14 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
Y15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y16 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 
Y17 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 
Y18 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 
Y19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

Table 23  q-connectivities in ( ; )YK X λ , from TΛΛ  1992 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19  
3 — 0 — 3 0 3 — 1 — — — — 0 — 1 2 2 0 Y1 

 1 0 0 0 1 0 0 0 0 — — — 0 — 0 1 0 — Y2 

  3 — 0 1 0 — 0 0 — — — 0 — 0 2 0 — Y3 

   2 1 2 2 1 1 2 — — — 2 — 0 2 1 — Y4 

    7 2 6 2 4 1 — — 0 2 — 2 6 5 1 Y5 

     5 3 1 2 2 0 — — 3 — 1 5 2 — Y6 

      11 1 7 5 0 2 0 3 — 2 10 7 0 Y7 

       3 2 1 — — — 1 — 0 2 2 0 Y8 

        9 5 0 2 0 2 — 2 8 6 0 Y9 

         7 0 2 — 2 — 0 6 4 — Y10 

          1 0 — — — — 1 0 — Y11 

           2 — — — — 2 2 — Y12 

            0 — — — 0 — — Y13 

             3 — 1 3 2 — Y14 

              — — — — — Y15 

               2 2 2 0 Y16 

                15 8 1 Y17 

                 8 1 Y18 

                  1 Y19 



Table 24 q-connectivities in 1( ; )XK Y λ− , from TΛ Λ  1992 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19  
2 — — 0 2 — 2 1 1 0 0 0 1 — — — 2 0 0 X1 

 2 0 1 0 0 1 2 2 2 2 2 1 0 0 0 1 0 0 X2 

  1 0 — 0 0 0 0 0 0 0 — 0 — — — — — X3 

   5 1 0 3 5 5 2 2 2 1 1 — 1 1 0 1 X4 

    4 0 4 3 3 2 2 2 2 0 — 0 4 2 1 X5 

     1 1 0 0 0 0 0 0 1 — 0 0 0 0 X6 

      9 6 7 3 3 3 3 2 0 1 6 2 1 X7 

       9 9 4 4 4 3 1 1 1 4 3 1 X8 

        11 4 4 4 3 2 1 1 5 3 1 X9 

         5 5 5 2 0 0 0 3 1 1 X10 

          6 5 2 0 0 1 3 1 1 X11 

           5 2 0 0 0 3 1 1 X12 

            4 0 0 0 3 1 1 X13 

             3 — 1 0 0 0 X14 

              1 — 0 0    — X15 

               2 0 0 0 X16 

                7 3 1 X17 

                 4 0 X18 

                  1 X19 

Referring to Table 23 and Table 24 we can obtain the Q-analysis for both ( ; )YK X λ  and 

1( ; )XK Y λ−  as the following set of equivalence classes: 

( ; )YK X λ  

q -value qQ -value Components 

15 1 {17} 
11 2 {17},{7} 
10 1 {17,7} 
9 2 {17,7},{9} 
8 1 {17,7,9,18} 
7 3 {17,7,9,18},{10},{5} 
6 1 {17,7,9,18,10,5} 
5 1 {17,7,9,18,10,5,6} 
4 1 {17,7,9,18,10,5,6} 
3 3 {17,7,9,18,10,5,6,14,1},{3},{8} 
2 1 {17,7,9,18,10,5,6,14,1,3,8,4,12,16} 
1 1 {17,7,9,18,10,5,6,14,1,3,8,4,12,16,2,11,19} 
0 1 {17,7,9,18,10,5,6,14,1,3,8,4,12,16,2,11,19,13} 



 
The structure vector is 

15 11 0
{1 2 1 2 1 3 1 1 1 3 1 1 1}Q =  

1( ; )XK Y λ−  

q -value qQ -value Components 

11 1 {9} 
10 1 {9} 
9 2 {9,8};{7} 
8 2 {9,8};{7} 
7 2 {9,8,7};{17} 
6 2 {9,8,7,17};{11} 
5 2 {9,8,7,17,4};{11,10,12} 
4 3 {9,8,7,17,4,11,10,12,5};{13};{18} 
3 2 {9,8,7,17,4,11,10,12,5,13,18};{14} 
2 2 {9,8,7,17,4,11,10,12,5,13,18,2,14,1};{16} 
1 2 {9,8,7,17,4,11,10,12,5,13,18,2,14,1,15,16,19,6};{3} 
0 1 {all} 

The structure vector is 
 

11 0
{1 1 2 2 2 2 2 3 2 2 2 1}Q =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3 The backward linkage between sectors in 2005 

 
 



Figure 4 The forward linkage between sectors in 2005 
 

 


