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Abstract

We consolidate and interrelate the four main approaches to the mea-
surement and decomposition of total factor productivity growth, namely
Solow’s residual analysis, the index number approach, Data Envelopment
Analysis, and Domar aggregation. Two new results link the general tech-
nology TFP growth measure to the industry Solow residuals and ineffi-
ciency.

1 Introduction

This paper presents a general framework that encompasses and interrelates the
four main approaches to the measurement of total factor productivity (TFP)-
growth: (i) Solow’s aggregate production function model, (ii) Index Numbers,
(iii) Data Envelopment Analysis (DEA), and (iv) the Domar aggregation ap-
proach, which is associated with Input-Output (I-O) analysis. Our consolidating
framework serves two purposes. It is a vehicle to review the different approaches
to productivity measurement in the literature. Moreover, it is a breeding ground
for new results. In particular, two propositions (3 and 4) link the general tech-
nology TFP growth measure to the industry Solow residuals and inefficiency.
A conceptual difference between these approaches is the treatment of prices.

Traditional productivity indices use observed prices and rest on the assumption
that the observed prices are competitive, so that factors are paid their marginal
products. Under this assumption observed value shares are indeed the appro-
priate weights for the aggregation of the factor productivities into TFP. In the
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parametric literature adjustments are made for mark-ups and returns to scale
(Diewert and Fox, 2008). Frontier approaches, particularly DEA, make no be-
havioral assumption. Its TFP-growth measure, the so-called Malmquist index,
is based on production statistics only and the value shares are generated by the
shadow prices of the linear program that determines the production possibility
frontier. The I-O analytical framework is on either side of the fence. As is well
known, it accounts for intersectoral linkages and yields a TFP measure that is
conceptually close to the macro-economic Solow residual; see, e.g., Wolff (1994).
However, I-O can accommodate the shadow prices from a general equilibrium
model, which moves its TFP-growth measure close to the DEA’s. Since shadow
prices reflect marginal product values at the optimum, their use in computation
does not conflict with the assumption of competitive pricing required by meth-
ods operating with observed prices. Hence, it is possible to reunite both these
methodologies in one framework, capable of working with either of these prices.
Another difference lies in the assumption of optimizing behavior. The as-

sumption provides economic justification to index numbers such as Törnqvist
and Fisher’s, but has the drawback that it bars inefficiencies. The TFP-growth
measure arising in DEA makes no such assumption and has the capacity to
ascribe TFP growth to not only technical change but also efficiency change. In
order to incorporate this attractive feature, we must relax the assumption of
optimizing behavior.
The framework consists of (i) the technology, which in some cases is defined

by means of a linear program; (ii) data on inputs, net outputs, and either
observed or shadow prices; and (iii) rather general behavioral assumptions, such
as the assumption on prices to reflect marginal products. The latter assumption
is weaker that the assumption of profit maximizing behavior and allows for
inefficiency. As a result, similarly to DEA, TFP growth includes both technical
change and efficiency change. The former represents a shift of the production
frontier and resembles the Solow residual as defined under the assumption of
optimizing behavior, and the latter corresponds to a movement towards the
frontier.
A novelty of this paper is the consolidation of all the four main alternative

TFP-growth measures in a common theoretical framework. Although the eco-
nomic literature contains excellent review articles on productivity indices, such
as Diewert (1992) and Diewert and Nakamura (2003), to our knowledge this
paper is the first to encompass all four main measures, including interrelating
DEA efficiency measurement and Domar aggregation.

2 General framework

The measurement of TFP involves data, technological assumptions and possibly
behavioral assumptions. We begin describing each of them in turn and define
the concept of TFP growth that we use throughout this paper.

• Data. We assume that for each point of time t we observe of firms (in-
dustries or economies) the factor inputs x and the (net) outputs y, column
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vectors of different dimensions. We denote the prices of the outputs and
the inputs by row vectors p and w, respectively. The prices can be ei-
ther data or shadow prices of a maximization problem used to estimate
technology.

• Technology. In each point of time the production possibility set is a
subset in the commodity space of nonnegative factor inputs and unsigned
net outputs, denoted by P t = {(x, y) : Φ(x, y, t) � 0}. The frontier
is given by Φ(x, y, t) = 0. We assume Φ to be continuous, piece-wise
differentiable and convex in (x, y). A simple example, Φ(x, y, t) = y − tx,
illustrates why marginal products will be given by −∂Φ/∂x and the shift
of the production function by −∂Φ/∂t, both including a minus sign. We
assume that the data are possible in the sense that all (x(t), y(t)) belong
to P t.

• Behavioral assumptions. If observed prices are used, they are assumed
to reflect the marginal products on the production frontier. This assump-
tion is weaker than those of cost minimization or profit maximization. In
particular, productive and allocative inefficiencies are admitted. It should
be mentioned that if price data are not used, shadow prices may fill the
gap and will automatically reflect marginal products.

• Definition of TFP. TFP growth T̂ is defined as the (Solow) residual
between the output and input growth rates, expressed by Divisia indices:

T̂ =
∑
βj ŷj −

∑
αix̂i; αi = wixi/wx, βj = pjyj/py. (1)

Here the symbol .̂ denotes the growth rate of a variable, for example,
ŷj =

dyj
dt /yj . The weights in equation (1) may come from external value

share data or from endogenous calculations. The distinction delineates
the alternative approaches reviewed in this paper.

The first proposition shows that under rather general assumptions the Solow
residual (1) can be decomposed into technical change and efficiency change.
The first term measures the shift of the frontier by the partial derivative of
the production frontier with respect to time. The second term measures the
movement in the distance to the frontier. It is convenient to use input distance
functions, as defined in DEA.1 More precisely, for (non)frontier observations we
have Φ(x, y, t)(<) = 0 and we contract input x by a factor D so that y remains
just producible from input Dx. By construction, for any producible (x, y) at
time t there is 0 � D(x, y, t) � 1 such that

Φ[D(x, y, t)x, y, t] = 0. (2)

Following Debreu (1951) distance function D is here defined by

D(x, y, t) = min{θ : (θx, y) ∈ P t}. (3)

1The results would carry through for an output orientation. Propositions 1, 3 and 4 will
assume constant returns to scale, under which the two approaches are equivalent. Proposition
2 can be modified in the obvious way.
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Proposition 1 Under constant returns to scale–meaning Φ is linearly homo-
geneous in (x, y)–and if prices reflect marginal products–meaning all pj

wi
=

−
∂Φ/∂yj
∂Φ/∂xi

–TFP growth decomposes into technical change and efficiency change:

T̂ = −∂Φ/∂t∑
(∂Φ/∂yj)yj

+ D̂.

Proof. Differentiate equation (2) totally with respect to time:

∑ ∂Φ

∂xj

(
D
dxj
dt

+
dD

dt
xj

)
+
∑ ∂Φ

∂yj

dyj
dt
+
∂Φ

∂t
= 0. (4)

Rearrange the terms in equation (4):

∑ ∂Φ

∂yj

dyj
dt
+
∑ ∂Φ

∂xj

dxj
dt
D = −

∂Φ

∂t
−
∑ ∂Φ

∂xj
xj
dD

dt
. (5)

The derivatives of Φ in equation (5) are evaluated in the associated frontier
point (D(x, y, t)x, y, t). Here, by linear homogeneity, Euler’s equation holds as
follows:

∑
(∂Φ/∂yj)yj = −

∑
(∂Φ/∂xj)(Dxj). Use either side of this equation

to divide the terms in equation (5):

∑
(∂Φ/∂yj)dyj/dt∑
(∂Φ/∂yj)yj

−

∑
(∂Φ/∂xj)dxj/dt∑
(∂Φ/∂xj)xj

=
−∂Φ/∂t∑
(∂Φ/∂yj)yj

+
1

D

dD

dt
. (6)

By assumption vectors (p,w) and (∂Φ/∂y,−∂Φ/∂x) are collinear, so that ∂Φ/∂y
and −∂Φ/∂x on the left hand side of equation (6) may be replaced by p and w,

respectively. This turns the left hand side into T̂ , defined by (1).

The assumption of constant returns to scale can be dispensed. This would
yield a third TFP component, namely a scale effect.
Following Färe and Grosskopf (2004), the leading, technical change term in

equation (6) can also be expressed in the distance function and we shall do so for
the two main representations of TFP growth, DEA and Domar aggregation. The
next proposition shows the underpinning. It features free input disposability,
which is defined by the condition that (x, y) ∈ P t, z � 0 implies (x+ z, y) ∈ P t.

Proposition 2 Under free input disposability,
P t = {(x, y) : 1− 1/D(x, y, t) � 0}.

Proof. If (x, y) ∈ P t, then, by definition ofD, 0 � D(x, y, t) � 1, and, therefore,
1−1/D(x, y, t) � 0. Hence (x, y) ∈ {(x, y) : 1−1/D(x, y, t) � 0}. Conversely, if
the latter holds, 0 � D(x, y, t) � 1, and, therefore, z = [1−D(x, y, t)]x � 0. By
definition of D, (D(x, y, t)x, y) ∈ P t. By free input disposability, (D(x, y, t)x+
z, y) = (x, y) ∈ P t.

The upshot of this proposition is that we may reparametrize the production
possibility set using 1− 1/D instead of Φ. In particular, we will differentiate D
instead of Φ when measuring technical change.
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3 Approaches to the measurement of TFP growth

In this section we show how our framework encompasses the main measures of
TFP growth and review the relevant literatures.

3.1 Solow residual

Solow (1957) analyzed a macro-economic model with one output and two in-
puts, capital and labor, interrelated by a production function, F . This situation
can be derived from our framework by imposing a particular form on Φ, namely
Φ(K,L, Y, t) = Y −F (K,L, t), and assuming no slack in production and propor-
tionality between prices and marginal products. These assumptions were made
by Solow (1957), imply production efficiency, D = 1 hence D̂ = 0, and reduce

Proposition 1 to T̂ = ∂F
∂t /F . This replicates Solow’s result that TFP growth

measures the shift of the aggregate production function under the assumptions.

3.2 Index numbers

Since our point of departure, definition (1), is the Divisia index, other conven-
tional indices are encompassed. In discrete time, Christensen and Jorgenson
(1970) approximate the Divisia index by the Törnqvist index,
∑

j

∑

j

1

2
(βtj + β

t+1
j )(ln yt+1j − ln ytj)−

∑

i

1

2
(αti + α

t+1
i )(lnxt+1i − lnxti), (7)

and Diewert (1976) by the Fisher index,

1

2
(ln
ptyt+1

ptyt
+ ln

pt+1yt+1

pt+1yt
)−

1

2
(ln
wtxt+1

wtxt
+ ln

wt+1xt+1

wt+1xt
). (8)

These indices require observable price information. As in subsection 3.1, we as-
sume that there is no slack and that the prices reflect marginal products. This
reduces TFP growth to technical change. Under the stronger assumption of
price-taking profit maximization Diewert has shown that both indices are exact
for certain functional forms. The Törnqvist index (7) is exact for the translog
production function and, therefore, Diewert (1976) calls it the translog index.
The Fisher index (8) is exact for a rather flexible functional form (a second
order approximation to an arbitrary twice continuously differentiable aggrega-
tor function), a property Diewert (1976, p.117) calls ‘superlative.’2 Although
the Törnqvist and Fisher productivity indices are exact for different production
functions, most practical time-series applications yield similar numerical values;
see Black et al. (2003). Diewert and Nakamura (2003) interrelate the physi-
cal and financial concepts of TFP growth for these indices, as well as for the
Malmquist index, which we cover in subsection 3.3.

2More specifically, Diewert (1992) proves that under certain parameter restrictions, the
Fischer productivity index is exact for a time-dependent revenue function of the following
form: rt(p, x) = σt(p⊤Apx⊤Cx + αtpβ

txp⊤Btx)1/2, A = A⊤, C = C⊤, t = 0, 1, where σt
is a positive number, A, C, and Bt are parameter matrices, and αt and βt are parameter
vectors.
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3.3 Data Envelopment Analysis

In DEA technology Φ is constructed by the piece-wise linear envelopment of
the available observations on inputs and outputs. Under constant returns to
scale, the production possibility set represents a convex hull. There is no need
to impose behavioral assumptions; DEA does not require them. The data re-
quirement is reduced to outputs and inputs; DEA does not use the observed
prices but shadow prices that reflect marginal values on the production frontier.
Because DEA subscribes to definition (3) of the distance function, Propo-

sition 2 applies under free input disposability and we may use Φ = 1 − 1/D.

Consequently ∂Φ/∂t
∂Φ/∂yj

= ∂D/∂t
∂D/∂yj

and, therefore, the technical change term in

Proposition 1 becomes −∂D/∂t∑
(∂D/∂yj)yj

, the movement in the distance function D.

Now by construction of the distance function, Φ(xD(x, y, t), y, t) = 0, or, in-
voking constant returns to scale, Φ(x, y/D(x, y, t), t) = 0. Differentiation with
respect to y yields ∂Φ/∂y ·[1/D−(y ·∂D/∂y)/D2] = 0. Hence, (∂D/∂yj)yj = D;

and therefore the technical change is reduced to ∂D(x,y,t)
D∂t .

Substituting the latter in equation (6) and using the differentiation rules

yield:

T̂ =
dD(x, y, t)

Ddt
−
∂D(x, y, t)

D∂t
=
∂ lnD(x, y, t)

∂x

dx

dt
+
∂ lnD(x, y, t)

∂y

dy

dt
(9)

In discrete time, the right hand side of this expression is approximated as

lnD(xt+1, yt+1, ·) − lnD(xt, yt, ·) = ln D(x
t+1,yt+1,·)

D(xt,yt,·) . Evaluating this expres-

sion at t and t+1, taking the average of the two logarithms and exponentiating,
one obtains the standard expression of Malmquist productivity index:

[
D(xt+1, yt+1, t)

D(xt, yt, t)

D(xt+1, yt+1, t+ 1)

D(xt, yt, t+ 1)

]1/2
. (10)

The decomposition of Malmquist index into technical change and efficiency
change is well known; see Färe et al. (1989, 1996). If we assume inefficiency
away, the efficiency change term drops out and the Malmquist index features
only the technical change component. This component corresponds to techni-
cal change as defined by Solow under the assumptions of no slack and inputs
paid by marginal products. The explicit price information in the expression of
the Solow residual is replaced by the implicit shadow price information, derived
from the shape of the frontier; see Coelli and Rao (2001).
Two important results from the DEA literature provide a link between the

Malmquist index and two other TFP growth indices, namely, Törnqvist and
Fisher indices. First, Caves et al. (1982) have shown that the Malmquist index
becomes a Törnqvist productivity index (7) provided that the distance functions
are of translog form with identical second order coefficients, and that the prices
are those supporting cost minimization and profit maximization. Second, Färe
and Grosskopf (1992) proved that under the assumption of profit maximizing
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behavior the Malmquist index is approximately equal to the Fisher productivity
index (8). In both cases the assumption that prices support cost minimizing
and profit maximizing behavior is crucial. Balk (1998) reviews comprehensively,
including non-constant returns to scale.

3.4 Domar aggregation

In a multi-sectoral economy, aggregate TFP growth can be represented as a
combination of industry productivity growths, the Domar (1961) aggregation.
In this section we show how the Domar aggregation can be derived from our
framework. For this purpose we use a functional form of Φ which reflects the
I-O model of Leontief (1936) and assume no production slack and zero profits.
No production slack is weaker than the assumption of optimizing behavior that
underlies many TFP models. In addition to production slack there may be
allocative inefficiencies, but these do not occur in Leontief’s model.
I-O analysis is based on the gross outputs zj (of industry j, j = 1, ..., n),

interindustry transactions zkj (the quantity of the intermediate input industry
k supplies to industry j, at price pk) and factor inputs xij (the quantity of factor
input i utilized in the production of industry j, at price wi). Letting e be the
unit vector (all components equal to one), and introducing obvious vector and
matrix notations, the utilized inputs are given by vector Xe and the net supply
is given by z−Ze. The utilized inputs cannot exceed the available resources of
the economy, given by vector x, and the net product supply must at least be
the final demand vector, given by vector y. Hence the feasibility constraints are
Xe � x and z −Ze � y. In I-O analysis technology is represented by the input
coefficients akj = zkj/zj and bij = xij/zj . With obvious matrix notation, (x, y)
belongs to the I-O production possibility set if for some gross output vector
z ≥ 0 the feasibility constraints are fulfilled, Bz � x and z − Az � y. The
distance function of the I-O model is given by the following program:

D(x, y, t) = min
θ,z
θ subject to: [I −A(t)]z � y, B(t)z � θx, z � 0. (11)

By Proposition 1, technical change is measured by −∂Φ/∂t∑
(∂Φ/∂yj)yj

. The follow-

ing proposition provides the relation between this expression and the well known
Domar aggregation (Wolff, 1994), linking the general technology TFP growth
measure to the industry Solow residuals under the assumption of technically
efficient production.

Proposition 3 In the I-O model technical change −∂Φ/∂t∑
(∂Φ/∂yj)yj

is measured by

the Domar weighted sum of industry Solow residuals, T̂ =
∑
τ̂ jpjzj/py, where

τ̂j = −
∑
k
pkzkj
pjzj

âkj −
∑
i
wixij
pjzj

b̂ij, and prices and production levels are the

shadow prices and the optimal production levels of program (11).

Proof. Technology function Φ can be given by Φ(x, y, t) = max{B(t)[I −
A(t)]−1y−x}, where the maximum is taken with respect to factor input compo-
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nents. Here the distance function has been derived from the production possibil-
ity set. Because inputs are freely disposable in model (11), by Proposition 2 we
may use Φ = 1−1/D and, as in subsection 3.3, technical change is measured by

−∂D/∂t∑
(∂D/∂yj)yj

. By program (11) the partials of the distance function with respect

to output components are equal to the sensitivity of objective θ with respect
to the first bound components, hence its Lagrange multipliers: ∂D/∂yj = pj .
The partials of the distance function with respect to time are determined by
the sensitivity of the objective with respect to constraint coefficients. As shown
in ten Raa (2005), equation (4.33), the derivative of max

q
aq : C(t)q � b equals

−λdCdt q, where λ is the row vector of Lagrange multipliers and q the optimum.

Because in the present situation, q =

[
θ
z

]
, a = ( −1 0 ), λ = ( p w σ )

and C(t) =




0 A(t)− I
−x B(t)
0 −I


 , the partial derivative of maximization ob-

jective −θ with respect to time equals −( p w σ )



0 dA/dt
0 dB/dt
0 0



[
θ
z

]
=

−(pdA/dt + wdB/dt)z. It follows that −∂D/∂t∑
(∂D/∂yj)yj

= −(pdA/dt+wdB/dt)z∑
pjyj

. The

numerator features pdAdt z = pk
dakj
dt zj = pk(

dakj
dt /akj)akjzj = pkâkjzkj and, sim-

ilarly, w dB
dt z = wib̂ijzij . Therefore we obtain the Domar aggregation expression

for technical change in this model:

−∂Φ/∂t∑
(∂Φ/∂yj)yj

=
∑
τ̂jpjzj/py, τ̂ j = −

∑
k

pkzkj
pjzj

âkj −
∑
i

wixij
pjzj

b̂ij , (12)

in which zij and xij correspond to the optimal production levels, and pk and
wi are shadow prices.

Since Proposition 3 has been proved for optimal production levels and shadow
prices, it remains to show that under the additional assumptions of no slack and
zero profits–stated at the beginning of this section–the use of this formula is
also justified at observed prices and production levels.
The first assumption, no slack in production, means that the observed pri-

mary input x and net output y satisfy Φ(x, y, t) = max{B(t)[I−A(t)]−1y−x} =
0, and therefore it is impossible to produce more y with less x. This follows
that the primary input uses are at their frontier levels and sufficient to just
produce net output y. Given a fixed proportion technology in production, the
intermediate production must satisfy z −Az = y. Hence, we cannot increase y
by their reallocation. Hence, the observed inputs and outputs can be used in
equation (12) instead of those from the linear program. The assumption that
there is no slack implies also that the efficiency change term, 1

D
dD
dt , equals to

zero and the TFP growth is fully expressed by (12).
The other assumption, that industry profits are zero, reads:
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pjzj =
∑
k

pkzkj +
∑
i
wixij , where i, j, k = 1, ...n. (13)

As long as equation (13) holds, the industry TFP growth in the Domar aggre-
gation expression can be represented both in terms of output and input growth
levels and in terms of the growth of technical coefficients: τ̂j = −

∑
k
pkzkj
pjzj

âkj−∑
i
wixij
pjzj

b̂ij = ẑj − (
∑
k pkzkj ẑkj +

∑
iwixijx̂ij)/(pjzj). Shadow prices satisfy

the zero profit conditions by complementary slackness, but we need to impose
the requirement of zero profits in order to justify the use of the observed prices
instead of shadow prices.

4 Synthesis of Domar aggregation and DEA

In this section we establish a relationship between DEA and Domar aggrega-
tion. The principal difference between the two lies in the data requirements
and the behavioral assumptions. As we do not impose general restrictions on
these factors, there is scope for synthesis. Our approach is to allow slack in the
structural approach and to replace the observed prices by shadow prices. The
obtained measure of TFP is based on the fundamentals of the economy, namely
technology and preferences. The model draws from ten Raa and Mohnen (2001,
2002) and Shestalova (2001), but replaces their utility based output distance
function by the input distance function used in this paper and, for simplicity,
takes the one-country closed economy variant. Employing the distance function
program (11) and combining Propositions 1 and 3, we obtain the next propo-
sition, which allows technical inefficiency in the I-O model and shows how to
measure it as well as technical progress.

Proposition 4 Model (11) yields T̂ =
∑
τ̂ jpjzj/py+D̂, in which the first term

is evaluated at shadow prices and optimal output levels.

Proposition 4 intermingles the Domar approach with the DEA decompo-
sition in technical and efficiency changes, where the technical change term is
expressed in the Domar aggregation form (12) taken at shadow prices and opti-
mal production levels from the linear program (11). While in DEA the potential
for efficiency is determined by cross-sectional or intertemporal best practices,
in this combined model the available production technology is represented by
the observed technical coefficients and inefficiency stems from the suboptimal
allocation of production within the system, or from underutilization of resources
in industries.3

In the case of an open economy, international trade represents another source
of TFP growth. An extension of the above model to the case of an open economy

3Strictly speaking, DEA can incorporate other types of inefficiencies as well (for example,
non-radial DEA models can account for the presence of a slack). However, we will not discuss
those in this particular application, since the standard Malmquist indices based on DEA with
constant returns to scale, which are typically used for the TFP measurement, do not consider
them.
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allows us to incorporate the effect of change in the terms-of-trade. This effect
has been considered by ten Raa and Mohnen (2001, 2002) for the case of a
small open economy, and by Shestalova (2001) for the case three large open
economies. See also Diewert and Morrison (1986) on the effect of international
trade on productivity.

5 Conclusion

The paper offers a common framework which links the main approaches to the
measurement of TFP growth rates, namely, the original approach by Solow
(1957), conventional TFP growth indices such as Fisher and Törnqvist indices,
the structural Domar aggregation approach, and Data Envelopment Analysis.
We have introduced a general framework that consolidates these approaches.
For all the main well known TFP growth indices, we review the main results

established in the literature concerning the conditions under which these indices
yield equivalent (or close) TFP growth measures. The condition of optimizing
behavior appears to be crucial in this respect. This condition, which lends the-
oretical support to the conventional Divisia, Törnqvist or Fisher indices, while
not required in the case of Malmquist indices, explains the main conceptual dif-
ference between the conventional index numbers and the DEA-based Malmquist
indices. This allows the Malmquist indices to incorporate the effect of efficiency
change which is neglected by the other indices.
Our framework augments the standard production function with an efficiency

term (which is similar to the efficiency term that arises in DEA) and yields the
TFP growth measure which is conceptually close to the Malmquist index. The
measure encompasses both technical change and efficiency change. The frame-
work interrelates the DEA approach with the other approaches. In particular,
we show that in a multi-sectoral economy, the technical change component takes
the Domar aggregation form known from the structural, I-O approach. Similarly
to DEA, technical change is measured at shadow prices and production levels
resulting from the linear program, and not at observable prices and production
levels; and the efficiency is interpreted as the potential for boosting the produc-
tion to reach the production possibility frontier. However, while in DEA the
potential is determined by the observable best practice (possibly achieved by
other market participants), in the augmented I-O model it comes from improv-
ing allocations of production factors within a multi-sectoral economy.
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