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Abstract 
As many have noted, a key limitation of IO models is that the coefficients in the models are fixed, and the models ignore substitution opportunities that should be prompted by market signals. Gordon et al (2009) suggested an approach to constructing new IO coefficients that captures substitution effects actually experienced in the labor sector. This new approach builds on both the demand- and supply- driven models. Their flexible approach relaxed the assumption of fixed coefficients in IO models by applying the RAS method to adjust coefficient matrices to account for empirical changes in value added and final demand. They demonstrated their approach via an example consisting of a two-by-two matrix of intersectoral flows. However, a more important implication of this approach is that it can be applied to extend the classic IO model, making the standard model a useful tool for studying economic resiliency. The coefficients in the resulting IO model can be adjusted across time periods to account for substitution-driven adjustments resulting from exogenous events such a natural disaster or a terrorist attack. This study suggests an approach for constructing such a resilient MRIO model that reflects substitution effects, based on the National Interstate Economic Model (NIEMO), an operational state-level MRIO model of the U.S. While many procedures have been developed over the years to update and/or regionalize coefficients of IO coefficients the flexiable NIEMO (FlexNIEMO) approach extends similar procedures to a MRIO model.  
I. Introduction

There are two standard models of the classic Input-Output (IO) system. The first, the Leontief, demand-driven IO model, follows Leontief’s early contributions (1936, 1941) on how to generalize interdependences between industries in an economy. The second, the Ghoshian, supply-driven IO model was introduced by Ghosh in 1958, and suggested an alternative way to understand the interrelations between industries. Inter-industry linkages in the demand-driven IO model account for technical relationships in an economy via production functions. In contrast, the supply-driven model is less transparent, suggesting monopolistic markets or a centralized, planned market in which all resources are scarce except for one, and considers the best use of this non-scarce input in combination with scarce resources. This best use is derived from a known social welfare function (Ghosh, 1964). 

Spatial extensions of the classic IO model include Interregional or Multiregional Input Output (IRIO or MRIO) models (Isard, 1951; Chenery, 1953; Moses, 1955); and empirical models of the US constructed in the late 1970s (Polenske, 1980) and early 1980s (Jack Faucett Associates, 1983). Recently, Park et al. (2007) constructed a new demand-driven MRIO model, the National Interstate Economic Model (NIEMO). Park (2006) and Park et al. (2006a) elaborated a supply-driven version of NIEMO, including empirical tests.
As many have noted, a key limitation of IO models is that the coefficients in the models are fixed, and the models ignore substitution opportunities that should be prompted by market signals. Gordon et al (2006) suggested an approach to constructing new IO coefficients that captures substitution effects actually experienced in the labor sector. This new approach builds on both the demand- and supply- driven models. Their flexible approach relaxed the assumption of fixed coefficients in IO models by applying the RAS method to adjust coefficient matrices to account for empirical changes in value added and final demand. They demonstrated their approach via an example consisting of a two-by-two matrix of intersectoral flows. However, a more important implication of this approach is that it can be applied to extend the classic IO model, making the standard model a useful tool for studying economic resiliency. The coefficients in the resulting IO model can be adjusted across time periods to account for substitution-driven adjustments resulting from exogenous events such a natural disaster or a terrorist attack. This study suggests an approach for constructing such a resilient IO model that reflects substitution effects. 

The rest of this paper deals with constructing a Flexible IO model (FlexIO) without spatial disaggregation. Then, the approach is extended to the current National Interstate Economic Model (NIEMO), a Multi-Regional Input Output (MRIO) model that has constant coefficients. The result is a Flexible NIEMO (FlexNIEMO). An example is shown comparing the results provided by FlexNIEMO and by NIEMO. Conclusions and remarks follow.

II.
Flexible Input Output Models (FlexIO) 

This section describes construction of a Flexible Input Output (FlexIO) model based on the classic demand- and supply-driven input output models. It is helpful to define the matrix of inter-industry flows to include the final demand and value added sectors. Table 1 shows such a national, expanded set of economic transaction flows. Matrix notation appears in parentheses.

Table 1. Expanded Matrix of National Economic Transaction Flows
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is an NxN matrix of intermediate interindustry flows. Its elements 
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where 
[image: image33.wmf]T

N

u

is the 
[image: image34.wmf]N

-element unit row vector, i.e., (1, …, 1). 

[image: image35.wmf]F

 is a row vector consisting of the row sum across 
[image: image36.wmf]k

 final demands. Its elements


[image: image37.wmf]å

=

i

ik

k

f

f

,
(3.)

and

[image: image38.wmf]F

=
[image: image39.wmf]F

u

T

N

.
(4.)


In the general IO model, it is assumed that
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Given the flows in Table 1, consider an IO matrix that is open with respect to the household sector. The input coefficient matrix
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where
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The standard Leontief inverse matrix 
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Obtaining the corresponding Ghoshian supply-driven model requires a matrix of allocation (output) coefficients,
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, that allocates the sales of total inputs to each sector. Here, the allocation matrix for an initial time period,
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The Ghoshian inverse allocation matrix is obtained via equations (10.).  
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Note that 
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Table 1 shows provides matrix that shows the normal, pre-event economy in period 
[image: image76.wmf]0

t

.  An exogenous shock such a natural disaster or a terrorist attack is imposed on the economy. As a result of this shock, changes in production of economic outputs occur week-to-week or month-to-month. Total output changes can be obtained from monthly economic data. These changes capture a number of adjustments.  Given that data is available, a two-period data set for impacted industries can be prepared.  Designate the total output for an industry interest (such as the oil industry) just prior to the shock as the “nominal output,”
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We assume that the relationship between value added and total input and between final demand and total output is unchanged across all periods. The observed, pre-event value added and final demand vectors can be calculated as
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where the proportionate row vector relating valued added to total input defined as
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where the proportionate column vector relating final demand to total output defined as
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Similarly, new, post-event final demand and value added vectors for the first month of the post-event period are computed by combining the decreased total output matrix and the vectors of constant proportions, 
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The reductions in final demand and value added during the first month following the shock are calculated, respectively, as 
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Given the changes 
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The updated final demand vector 
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The standard RAS technique (Hewings, 1985; Miller and Blair, 1985) can be applied to created new coefficient matrices for first post-event period 
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Similarly, the diagonal matrix
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Updated technical coefficient matrices 
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and
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These updated matrices include the substitution effects actually occurring during the first post-event month.  

This approach makes it possible to estimate total impacts due to decreases in value added flows following an exogenous shock.  These impacts can be calculated relative to the pre-event conditions for any month for which post-event data is available. Ideally, these impacts should be calculated relative to the economy’s expected state had no exogenous shock occurred.  Such estimates of normal economic status can be produced via a time-series approach (Park et al., 2006a; 2006b; Gordon et al., 2007; Richardson et al., 2007). The difference between this estimated normal value added and the estimate of decreased value added the exogenous direct impact for the supply-side IO model. The total direct and indirect impacts in period 
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where
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. Generally, actual total output would be a V-shaped function over time. After a short period of rapid losses following a natural disaster or terrorist attack, losses which may continue for more than one period, total output begins to increase toward pre-event levels.  Numerous trade-offs and substitutions are being made during this period, and this approach captures these changes. 
Simple Example

The following simple, two-by-two example of an economy with two economic sectors illustrates the flexible IO model. Consider Miller and Blair’s (1985, p. 15) simplified 2x2 example. The 2x2 inter-industry flow matrix

[image: image180.wmf]Z

= 
[image: image181.wmf]÷

÷

ø

ö

ç

ç

è

æ

100

200

500

150

.
(27.)

The total output vector
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The total value added row vector
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The total final demand column vector
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From the given vectors and matrices and equation (6.), the demand-side coefficients matrix for the pre-event economy is
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and hence
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Similarly, from equation (8.), matrix
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Scaling to some time period of interest, set the total output vector for the pre-event economy as 10 percent of the given vector. Consequently,
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From equations (13.) and (15.), the vector
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and the vector
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Due to some exogenous shock, the total output only for the second sector decreases from 200 to 130; and hence
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From equations (17.), 
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and
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Equations (18.) give direct losses for final demand,
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and direct losses for value added
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These values are used in equations (19.) and (20.) to update the total output and total input vectors for the first post-event month,
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and 
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These values are used in equations (21.) to update the final demand vector
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and the value added vector
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From equations (22.) and these four vectors 
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From equation (23.), the diagonal matrix
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From equation (24.), the updated technical coefficient matrix for the demand-side model is
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and from equation (25.), the update technical coefficient matrix for the supply-side model is
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These reflecting substitution effects during the month defining period 
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 can be obtained for each period i, and the resilient, total impacts for each period are as estimated in equation (26.).
III.
Flexible National Interstate Economic Model (FlexNIEMO) 

The construction of a demand-driven NIEMO is described in detail in Park et al. (2007). The supply-side version of NIEMO is described in Park (2006).  Based on those studies, we suggests two final equations to estimate total impacts. Let 
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in which the off-diagonals elements for a specific regional block are zero and 
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Based on the same set of matrices, the total output for the supply-driven version of NIEMO is
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in which the off-diagonals elements for a specific regional block are zero; and 
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and
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which are used to update the technical coefficient matrix in period 
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 for the demand-driven version of NIEMO
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and for the supply-driven version of NIEMO
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Updated technical coefficient matrices 
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and, 
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Also, the proportional changes of the derived final demand and value added are the same as total output and total input changes, under the constant proportional values of 
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and hence, 
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The two equations (65.) and (66.) substitute for equations (59.) and (60.) to calculate 
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and
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Therefore, equations (61.) and (62.) can be applied with the two newly obtained diagonalized matrices, equations (67.) and (68.), which are based on the proportioned final demand and value-added changes. 

Unless direct final demand and value-added losses are available, the exogenous direct losses 
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and,
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where 
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and 
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Total impacts in the supply-driven model for period 
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and
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Finally, the sum of the total impacts across all post-event periods, 
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, can be obtained and compared against the values computed with from the constant coefficient versions of NIEMO. 

Table 2 compares the outputs of the FlexNIEMO and NIEMO formulations, based on the previous paper by Park et al. (2006a). Because this example includes final demand and value added losses directly, the constant proportional adjustment of 
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To demonstrate an application, we were able to assemble monthly trade data for the Louisiana Customs District for all the months of 2003 to 2005. We used these data to test the FlexNIEMO model. Data applications are in two directions: 

· Updating technical coefficients based on the last five months of 2005 and first quarter of 2006

· Estimating direct losses for the same periods, based on the monthly data of January 2003 to August 2005. The direct losses are obtained from the differences between forecasts and actual volume, which determined changes in final demand and changes in value-added resulting from perturbed foreign imports and exports, from the data. 
Table 2. Comparison State-by-State effects between NIEMO and FlexNIEMO: The Case of Customs District of Louisiana; Foreign Export Losses during Last Four Months of 2005 ($M.).
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Figure 1. Monthly Multipliers Changes of FlexNIEMO 
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From the direct losses, we only applied the direct losses of USC sector 10 (Coal and petroleum products) to the input data for FlexNIEMO which has monthly updated technical coefficients for this application. We found that the model is able to estimate the changes in all of the model’s multipliers. Table 2 shows comparisons between results obtained from an application of just the final demand changes to NIEMO along with the application of both vectors to FlexNIEMO. Figure 1 shows the change of total multipliers by each month resulted from FlexNIEMO, where all multipliers are below 1.1. The monthly multipliers can be compared to the constant total multiplier of 2.8670 obtained from NIEMO. When comparing the multipliers of the two models, the results demonstrate that we are able to estimate significantly reduced impact multipliers, reflecting the many substitutions forced by the cataclysmic event. It is especially interesting that some states swung from experiencing negative impacts to garnering positive impacts.
IV. Conclusions and Remarks 
As this planet truly becomes one world and moves faster and faster via radical innovations in transportation and communication systems, we certainly observe facilities disruptions (such as from terrorist attacks and natural disasters) as well as facilities expansions. This is because the environmental disasters from the earth warmer are becoming unpredictable and gigantic and man-made attacks are more and more threatening to our communities and environment systems unexpectedly, as we experienced in 9.11. To provide more useful and important information to policy makers because they highlight local economic impacts, Input-output models are routinely used.
Input-output models are routinely used to assess economic impacts. Analysts trade-off convenience for plausibility if the direct impacts are large because the fixed-coefficients assumptions of IO are necessarily violated. Questions about the effects of time, distance and industry linkage can be posed and studied. We suggest that it is worthwhile and that it is feasible to study how such coefficients reflect actual adaptations. The heart of economics is all about how agents respond to new facts of life, as reported to them by price changes. The sum total of very large numbers of adjustments to a major event is summarized in the perturbed technological coefficients. 
This essay suggests coefficient adaptations by period and by industry and by region can be plotted. We have suggested and illustrated a straightforward way to identify changing IO coefficients. Our “toy” (2 x 2) example and our actual application, both, show that much smaller multipliers result, as expected. We are able to identify the economic resilience that standard IO analysis misses. For the future study, still, structural decomposition analysis (see Rose and Casler, 1996) is necessary to analyze the temporal and spatial coefficients obtained from the FlexNIEMO.
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		Table x: Comparison State-by-State effects between NIEMO and FlexNIEMO: The Case of Customs District of Louisiana

		State				Aug. 05				Sep. 05				Oct. 05				Nov. 05				Dec. 05				Jan. 06				Feb. 06				Mar. 06				Sum				NIEMO

		AL				-0.0010				-0.0039				-0.0017				0.0004				-0.0007				-0.0001				-0.0002				0.0001				-0.0071				-1.1215

		AK				-0.0000				-0.0001				-0.0000				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0002				-0.0379

		AZ				-0.0001				-0.0007				-0.0004				0.0001				-0.0002				-0.0000				-0.0000				0.0000				-0.0013				-0.5650

		AR				-0.0007				-0.0030				-0.0012				0.0003				-0.0005				-0.0001				-0.0001				0.0001				-0.0052				-0.7722

		CA				-0.0611				-0.0924				-0.1645				0.0286				-0.0729				-0.0093				-0.0201				0.0085				-0.3833				-76.9350

		CO				-0.0002				-0.0008				-0.0004				0.0001				-0.0002				-0.0000				-0.0000				0.0000				-0.0014				-0.5722

		CT				-0.0002				-0.0009				-0.0004				0.0001				-0.0002				-0.0000				-0.0000				0.0000				-0.0016				-0.3026

		DE				-0.0001				-0.0003				-0.0001				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0005				-0.0732

		DC				-0.0000				-0.0001				-0.0000				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0002				-0.0356

		FL				-0.0073				-0.0226				-0.0109				0.0024				-0.0045				-0.0006				-0.0012				0.0005				-0.0443				-4.7969

		GA				-0.0007				-0.0030				-0.0013				0.0003				-0.0005				-0.0001				-0.0001				0.0001				-0.0053				-1.0020

		HI				-0.0000				-0.0001				-0.0000				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0001				-0.0315

		ID				-0.0001				-0.0006				-0.0002				0.0001				-0.0001				-0.0000				-0.0000				0.0000				-0.0010				-0.1203

		IL				-0.0005				-0.0023				-0.0012				0.0003				-0.0005				-0.0001				-0.0001				0.0001				-0.0044				-1.4019

		IN				-0.0011				-0.0043				-0.0020				0.0005				-0.0008				-0.0001				-0.0002				0.0001				-0.0079				-1.6162

		IA				-0.0001				-0.0006				-0.0003				0.0001				-0.0001				-0.0000				-0.0000				0.0000				-0.0010				-0.3004

		KS				-0.0003				-0.0013				-0.0005				0.0001				-0.0002				-0.0000				-0.0001				0.0000				-0.0023				-0.5839

		KY				-0.0003				-0.0013				-0.0006				0.0002				-0.0003				-0.0000				-0.0001				0.0000				-0.0024				-0.6168

		LA				-21.6790				-130.8633				-68.2233				51.2088				-131.2685				-34.7068				-92.6689				80.0748				-348.1264				-708.7323

		ME				-0.0000				-0.0002				-0.0001				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0003				-0.0647

		MD				-0.0002				-0.0008				-0.0003				0.0001				-0.0001				-0.0000				-0.0000				0.0000				-0.0013				-0.2382

		MA				-0.0001				-0.0005				-0.0002				0.0001				-0.0001				-0.0000				-0.0000				0.0000				-0.0009				-0.2737

		MI				-0.0005				-0.0023				-0.0012				0.0003				-0.0006				-0.0001				-0.0002				0.0001				-0.0044				-1.5320

		MN				-0.0003				-0.0012				-0.0006				0.0001				-0.0003				-0.0000				-0.0001				0.0000				-0.0023				-0.5852

		MS				-0.0043				-0.0145				-0.0080				0.0018				-0.0034				-0.0005				-0.0009				0.0004				-0.0294				-4.3134

		MO				-0.0004				-0.0015				-0.0007				0.0002				-0.0003				-0.0000				-0.0001				0.0000				-0.0028				-0.6270

		MT				-0.0000				-0.0001				-0.0001				0.0000				-0.0001				-0.0000				-0.0000				0.0000				-0.0003				-0.2970

		NE				-0.0001				-0.0003				-0.0001				0.0000				-0.0001				-0.0000				-0.0000				0.0000				-0.0005				-0.1571

		NV				-0.0000				-0.0002				-0.0001				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0003				-0.1075

		NH				-0.0001				-0.0005				-0.0002				0.0001				-0.0001				-0.0000				-0.0000				0.0000				-0.0008				-0.1237

		NJ				-0.0005				-0.0017				-0.0010				0.0002				-0.0004				-0.0001				-0.0001				0.0001				-0.0036				-0.8444

		NM				-0.0001				-0.0003				-0.0002				0.0001				-0.0001				-0.0000				-0.0000				0.0000				-0.0007				-0.4224

		NY				-0.0003				-0.0016				-0.0008				0.0002				-0.0004				-0.0001				-0.0001				0.0001				-0.0031				-0.9803

		NC				-0.0004				-0.0017				-0.0008				0.0002				-0.0003				-0.0001				-0.0001				0.0000				-0.0031				-0.7675

		ND				-0.0000				-0.0001				-0.0000				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0002				-0.0449

		OH				-0.0005				-0.0019				-0.0011				0.0003				-0.0005				-0.0001				-0.0001				0.0001				-0.0038				-1.4619

		OK				-0.0003				-0.0013				-0.0010				0.0002				-0.0005				-0.0001				-0.0001				0.0001				-0.0030				-2.0785

		OR				-0.0001				-0.0005				-0.0002				0.0001				-0.0001				-0.0000				-0.0000				0.0000				-0.0009				-0.2579

		PA				-0.0011				-0.0045				-0.0022				0.0006				-0.0010				-0.0001				-0.0003				0.0001				-0.0085				-1.6926

		RI				-0.0001				-0.0003				-0.0001				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0005				-0.0810

		SC				-0.0003				-0.0014				-0.0006				0.0002				-0.0002				-0.0000				-0.0001				0.0000				-0.0025				-0.4270

		SD				-0.0000				-0.0001				-0.0000				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0002				-0.0496

		TN				-0.0008				-0.0032				-0.0013				0.0003				-0.0006				-0.0001				-0.0001				0.0001				-0.0057				-0.9685

		TX				-0.0334				-0.0792				-0.1385				0.0254				-0.0627				-0.0083				-0.0174				0.0075				-0.3066				-79.2055

		UT				-0.0001				-0.0006				-0.0003				0.0001				-0.0002				-0.0000				-0.0000				0.0000				-0.0011				-0.6304

		VM				-0.0000				-0.0001				-0.0001				0.0000				-0.0000				-0.0000				-0.0000				0.0000				-0.0002				-0.0386

		VA				-0.0003				-0.0015				-0.0006				0.0002				-0.0003				-0.0000				-0.0001				0.0000				-0.0026				-0.5299

		WA				-0.0002				-0.0010				-0.0005				0.0001				-0.0002				-0.0000				-0.0001				0.0000				-0.0019				-0.5678

		WV				-0.0002				-0.0008				-0.0004				0.0001				-0.0001				-0.0000				-0.0000				0.0000				-0.0015				-0.2774

		WI				-0.0004				-0.0015				-0.0009				0.0002				-0.0004				-0.0001				-0.0001				0.0001				-0.0032				-0.8766

		WY				-0.0001				-0.0003				-0.0002				0.0000				-0.0001				-0.0000				-0.0000				0.0000				-0.0006				-0.2943

		US Total				-21.80				-131.13				-68.57				51.27				-131.42				-34.73				-92.71				80.09				-348.99				-900.43

		Rest of World				-0.12				-0.10				-0.29				0.05				-0.12				-0.02				-0.03				0.01				-0.6239				-89.22

		World Total				-21.92				-131.23				-68.86				51.33				-131.55				-34.74				-92.75				80.11				-349.62				-989.65

		Diret losses				-21.0				-129.5				-67.4				51.0				-131.0				-34.7				-92.6				80.0								-345.1

						Aug. 05				Sep. 05				Oct. 05				Nov. 05				Dec. 05				Jan. 06				Feb. 06				Mar. 06
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		Table x: Comparison State-by-State effects between NIEMO and FlexNIEMO: The Case of Customs District of Louisiana

		State				Direct Impacts				Total Impacts: NIEMO				Total Impacts: FLEXNIEMO

		AL				0.0000				-1.1215				-0.0071

		AK				0.0000				-0.0379				-0.0002

		AZ				0.0000				-0.5650				-0.0013

		AR				0.0000				-0.7722				-0.0052

		CA				0.0000				-76.9350				-0.3833

		CO				0.0000				-0.5722				-0.0014

		CT				0.0000				-0.3026				-0.0016

		DE				0.0000				-0.0732				-0.0005

		DC				0.0000				-0.0356				-0.0002

		FL				0.0000				-4.7969				-0.0443

		GA				0.0000				-1.0020				-0.0053

		HI				0.0000				-0.0315				-0.0001

		ID				0.0000				-0.1203				-0.0010

		IL				0.0000				-1.4019				-0.0044

		IN				0.0000				-1.6162				-0.0079

		IA				0.0000				-0.3004				-0.0010

		KS				0.0000				-0.5839				-0.0023

		KY				0.0000				-0.6168				-0.0024

		LA				-345.0733				-708.7323				-348.1264

		ME				0.0000				-0.0647				-0.0003

		MD				0.0000				-0.2382				-0.0013

		MA				0.0000				-0.2737				-0.0009

		MI				0.0000				-1.5320				-0.0044

		MN				0.0000				-0.5852				-0.0023

		MS				0.0000				-4.3134				-0.0294

		MO				0.0000				-0.6270				-0.0028

		MT				0.0000				-0.2970				-0.0003

		NE				0.0000				-0.1571				-0.0005

		NV				0.0000				-0.1075				-0.0003

		NH				0.0000				-0.1237				-0.0008

		NJ				0.0000				-0.8444				-0.0036

		NM				0.0000				-0.4224				-0.0007

		NY				0.0000				-0.9803				-0.0031

		NC				0.0000				-0.7675				-0.0031

		ND				0.0000				-0.0449				-0.0002

		OH				0.0000				-1.4619				-0.0038

		OK				0.0000				-2.0785				-0.0030

		OR				0.0000				-0.2579				-0.0009

		PA				0.0000				-1.6926				-0.0085

		RI				0.0000				-0.0810				-0.0005

		SC				0.0000				-0.4270				-0.0025

		SD				0.0000				-0.0496				-0.0002

		TN				0.0000				-0.9685				-0.0057

		TX				0.0000				-79.2055				-0.3066

		UT				0.0000				-0.6304				-0.0011

		VM				0.0000				-0.0386				-0.0002

		VA				0.0000				-0.5299				-0.0026

		WA				0.0000				-0.5678				-0.0019

		WV				0.0000				-0.2774				-0.0015

		WI				0.0000				-0.8766				-0.0032

		WY				0.0000				-0.2943				-0.0006

		US Total				-345.0733				-900.4341				-348.9928

		Rest of World				0.0000				-89.2166				-0.6239

		World Total				-345.0733				-989.6507				-349.6167





all (2)
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