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INTRODUCTION

There is a glaring contrast between the theoretci®lances in nonlinear input-output
(NIO) theory and the surprisingly scarce list ofpbgations in the empirical literature. This
divorce cannot be attributed to the computatioaglirements for solving nonlinear models. With
today’s specialized software computation should b®ta decisive issue. The question probably
lies on the informational requirements needed lierimplementation of NIO models, particularly
on sectoral response elasticities. As Lahiri (1983)tely points out, empirical estimation of NIO
models is nearly impossible—too many parameterddorfew available observations. The same
type of problematic data requirement situationl$® @ommon for the specification of computable
general equilibrium models (CGE) but this has riopged practitioners at all (see Dereisal,
1982, Mansur and Whalley, 1984). CGE modeling asg¢arch has become a very important area
for policy analysis and evaluation and this hasnbeessible, in part, thanks to the adoption of
operational assumptions on behavior and the usmldiration techniques. We believe practical
implementation of NIO models is equally possible@mwe accept (i) some specific behavioral
rules in the definition of production activitieschfii) are able to use observed empirical data for

the parameterization of production processes.

The theory of NIO models has been concerned withbéshing theorems that prove
existence and uniqueness of solutions for a naaiversion of the Leontief quantity equation.
Under quite general conditions, but all of themrstgaa modified system productivity assumption,
existence and uniqueness can be proved. Sandb@7@)(1Chander (1983), Fujimoto (1986),
Szidarovsky (1989), Herrero and Silva (1991), amotiters, provide the necessary theoretical
background for NIO logical consistency. In a NIO dabtechnical coefficients are not taken as
fixed. Their variability can be attributed to madifferent factors (technical innovation, input
substitution, productivity changes, non-homogenaitg.) as Rose (1983) very clearly explains in
his review and assessment paper. Theorists needonoern themselves with these possibilities
but applied economists should at least explore thaoh consider how to sensibly incorporate
them. The nonlinearities we consider in this paperof the scale-dependent type, i.e. changes in
total output need not be proportional to changestal inputs but still a unique production mix is
all that is available to firms. Isoquants are Lysth but the isoquant map is not necessarily
homothetic. Price-induced nonlinearities in coédints due to smooth input substitution, as dealt
with in Tokutsu (1989) or Sancho (2010), are naisidered here. West and Gamage (2001), in

turn, is one of the few empirical examples of usangonlinear assumption although restricted to
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the households’ income account, where average iceeffs are substituted by marginal ones.
Zhao et al (2006) introduce a Cobb-Douglas production functior defining the interindustry
technical coefficients but since their model does contemplate any price behavior whatsoever,
the selection of the input mix is very much based smme ad-hoc assumptions-such as
maintaining total output constant when substitutiakes place in some sector. This has little if

any economic justification.

The paper follows this organization. Section 2 géses the characteristics of the proposed
nonlinear input-output model. In Section 3 we inmpdmt the model using interindustry data for a

simplified fictitious economy. Section 4 summarizes

2. NONLINEAR INPUT-OUTPUT.
2.1 Review of the conventional linear model.

Interindustry data provide a detailed multisectatapiction of the revenue-expenditure-
output macroeconomic identities. Consider an ecgnoomposed oh distinct productive sectors
indexed as, j=1, 2,...,n. In the period when data is assembled, identifiece by super index O,

the following identities representing the circullaw of income hold true for ajEl, 2,...,n:

n n

2 POP+ D=3 FOf+ POf= pox (1)

i=1 i=1

In expression (1) the left-hand side collects tetgdenditure in intermediate purchases and
value-added acquisition incurred by se¢ttwr carry out the production of its outpm‘j’t, the middle
part is total revenue accruing to seciofrom the sale of its outpuk‘f to other sectors —as
intermediate demand- and to final demanders. Kindé right-hand side of the expression is the
value of total productiorxjJ obtained in sectgr Expression (1) can therefore be seen as a sort of
sectoral budget constraint. Interindustry data, éwew, is expressed in value and the distinction
between physical magnitudé¢s’, x’,\*, £°) and prices(p;, p) is not usually available. We can
take observed transaction values as if they weysigél magnitudes and in doing so we redefine

units in such a way that every one of the new umats a worth of 1 dollar. In other words, we use



new pricegy=1 for goods ang~=1 for value added such that = g’ ¢, p, ¥, = f O/, and

p, Of, = p OO,

With this implicit normalization it is customary imterindustry analysis to omit the
presence of prices in the balance identities infglthe base year. Contrary to the tradition, we

will keep them explicit for reasons that will becemlear shortly. Thus (1) becomes:
2P0+ p Oy = pOx (1a)

from the expenditure perspective and:

n

2P0+ Of = pOx (1b)

i=1

from the perspective of revenue; notice that sinog price p; is involved here, it can be

eliminated altogether from (1b) if so desired. Hoerewritten, expressions (1) are nothing but
observed data. The standard IO model adopts thenggi®n that input-output ratios and value-
added ratios are constant; in other words, it tak&put as proportional to inputs by way of

assuming nonnegative technical coefficients defibgda, = /% and v, =v,/ x . They are

assumed to be unique and independent of the stpteduction. Substituting these coefficients in
(1a) and simplifying yields:

2P+ R =p (2a)
i=1

which, using the obvious vector-matrix notatiomahslation, can be expressed and solved as:
p=p'[A+p,0=p Ml -A)" (3a)

provided matrix A, with [A]ij =g, is productive and the value-added pripg is taken as

numéraire Similarly, substituting in expression (1b) andnehating now the irrelevant pricg

gives:

e Op+ f = x (2b)



In matrix terms we would obtain:
x=Ax+f=(1-A)" (3b)

The linear 10 model in (3a) and (3b) is composttvo sets of equations, one for prices
and one for quantities, which solve independentlgazh other. For a given technology makix

cost covering pricep’ depend only on the value-added technical coefftoiectorv’, and output

levels x on external final demand . This is the well-known dichotomy between pricesl a
guantities in the conventional IO model and it ipmperty that derives from the linearity

assumption in the technology.
2.2 A nonlinear input-output system.

Let us assume now that output and inputs are mgeforelated though a linear relationship.
Instead we posit a simple, nonlinear relationskop@the technically efficient locus such as:

X, =a, ¢ =n O 4)

For a;, 4 ,4; >0 this corresponds to a monotonically increasingipation function, i.e.
more output can only be obtained applying more tisjpwhere coefficientss; and S, can be
quickly seen to be output-to-input, or scale, élass. Additionally, when 5; <1 (>1) the

production coordinate linking outpuy with inputs x; can be seen to present decreasing
(increasing) returns to scale denoted by DRS (IR$Qtice that for the particular case

wheng, = B, =1, for all i and |, expression (4) reverts to the standard inputidutmear

assumption (witha; =(g; )™* and v, =, )™1). In the linear 10 model all such elasticities are

therefore implicitly assumed to be unitary. Forghaunitary values and the observed benchmark
data setx;, x;j, v;) all technical coefficients for goods and valueled are accordingly calibrated.
Nothing of course precludes using another, nonamnitset of values for the output-to-input

elasticities and proceed likewise with the calilorabf all required parameters.

We illustrate these ideas in Figure 1 where we \danalize the structure of a possible

nonlinear production map for a 2 good economy, vithduction of good 1 following these

hypothetical technological relationships:= a,, % and x, = a,, % and 8, =0.5, B,, =1.25,
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a,=a, =1. We can see that the map is nonlinear on two souitst, returns-to-scale are not
constant as the non-unitary output elasticitiesastand second the map is non-homothetic as the
efficiency path is nonlinear due to the fact tigat/ 5,,#1. Notice that the two depictedshaped

isoquants conform to the perfect complementaritypprty of input-output economics but the

efficient input mix is itself variable, dependingw on the scale of production.

A
X11 (Bl poy) <1
2 X=1.414
1 X1=1
1 1.320 Xo2

Figure 1: Non-homothetic isoquant map.

The derivation of the complete nonlinear input-amitsystem follows readily from
assumption (4). For the quantity equation we dtarn the balance expression (1b) which we

rewrite here as:

Zn:xji =X (5)

i=1
From (4) we find:

1-

X =(ifj=(aﬁ ) s =(a ) ) 2 ©

ji
a i

Substituting (6) in expression (5) and using matotation we would find:



X = A(X) X +f (7)

with the elements of matri&(x) being:

1-

Bii
B (8)

[A(X)] i (aji )ﬂl" EQX)

Notice that unitary output elasticities everywhermauld yield back the standard technical
coefficients of the linear input-output matéx Under quite general conditions, as we mentioned
above, nonlinear equations such as the one inai/§ been proved to have a unique non-negative
solution x for any possible non-negative vectorThe requirements for solvability include the
following set of assumptions: (ass_1) the vectorcfion A(Xx) X is non-decreasing (i.e. more
outputx requires more intermediate inpét&) [X ), (ass_2)ontinuity of A(x) X, and(ass_3)a
productivity condition guaranteeing that express{@) holds true for some paiff,(x). The
function A(x) in expression (8) can be seen to satisfy (a_1)(an#d). Assumption (a_3), on the
other hand, is always satisfied in the case ofrapigcally implemented model by the base year
solution. Thus equation (7) is in principle solvable, andday other vector of final demard 0
there will always be a unique production plare= 0 compatible with the nonlinear quantity

equation (7).

The fact that the quantity equation is scale-depettlas another far-reaching implication,
namely, that cost covering prices are no longeepeddent of quantities. With non-constant
returns to scale, unitary costs are not constaheriand their level depends on the actual
production level. Despite the focus of the theosdtliterature on the solvability of the quantity
equation (7), the economic system as a whole hath@ncomponent that needs to be factored in if
overall balance, as described in expressionsg1d be maintained after a change in final demand

takes place. Plugging in assumption (4) into expoes(1l) and remembering that = (/7].)‘l we

would obtain:

p;Ekﬁngﬁq)‘“M)‘“ pdy )a g x)a (©)

Simplifying:



1-4 - ﬁvj

o =S nefa )i dx) %+ oify ) of )5 10

Recalling expression (8) and defining in a like mamthe vector of value-added marginal

coefficients as:

1 A
(V)] =(v;)% dfx ) & (11)
we would obtain the scale-dependent system of @rice
p'=p' [AKX) +p, D'(X) (12)

The system of prices depends now on quantitiestfaadraditional—and very convenient

in computing terms—separation of prices and quastito longer holds. As expected, with unitary
output elasticities everywhere, the price equaio(iL2) reverts to the standard price equation of
the linear model in (3a). The nonlinear, scale-ddpat input-output system must therefore
include both equations for quantities (7) and @i¢&2) for the system to be complete and all
magnitudes to be in balance after external shooksabsorbed within the system. Prices in (12)
can be interpreted as shadow prices, i.e. prigggasting the efficient production plans stemming
from (7), or as accounting prices, i.e. prices tharantee the sectoral and economy-wide balance
relationships between total costs and total regsurthey cannot and should not be interpreted as
market prices since no demand behaviour is incatpdrin this type of models.

2.3. Calibration issues.

The numerical implementation of the nonlinear irputput system in (7) and (12) requires
that all coefficientsa; and g introduced in the production function (4) be aakblé prior to
computation. In the linear model things are paléidy easy sincgg; = 1 for alli andj. In this
case, they; coefficients can be calibrated from (4) by usihg bbservations for outpuk) and
inputs ;) read from the base year data:

_ a_ %
& =(ay) —;j (13)

These coefficients are the slope of the linear goyag through the origin as we can see in

the fictional example in Figure 2. This is the cemsence of taking all scale elasticities to be
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unitary. In the general case, when the relationghimt linear, we need to adjust the value of the
a; coefficients to the non-unitary scale elasticits@sthat for the pair of parameteeg,(5;) and

base year dat;( ;) expression (4) is upheld. In this case:

By
a =(a;)” =5 (14)
X;

In the linear example of Figure 2 we find that tleehnical coefficient is given by

a,, = X,/ x,=8/10= 0.€ (or a,, =1.25). Figure 3 illustrates the nonlinear situation floe same
base year data and, in this DRS case with an @tgstalue of 5,, = 0.6, the calibrated coefficient

turns out to bea,, = x5 / x, =8"°/10= 0.34¢ (or a,, =2.872).

X1

T — E
le:]_ -> 1= 0.8

v

8 X21

Figure 2: Calibration to linea



X1

K I e — E
: [321:0.6 - &= 0.348

v

8 X21

Figure 3: Calibration to nonlinea

Notice the procedure is exactly the same for thea and the nonlinear case, conditional
in both cases to the elasticity values being adbptethe linear case they are unitary everywhere
in the production function but this set of valussjust but one of the many possible ones in
parameter space and is thereforeadshocas any other selectable set. In probability tetihes
linear set is of course highly unlikely. The jussttion for linearity should, in any case, rest on
economic grounds. The empirical evidence in favotiruniversal constant-returns-to scale,
however, is not conclusive. Based on engineerindee¢ce assembled for the US manufacturing
sectors, Jorgenson (1972) reported that CRS sedme fwevalent, at least from some minimal
optimal size plant on. Dragonette (1983), in castirased time-series data on US manufacturing
too but concluded using concentration indicatoed @RS seem to be more the exception than the
rule, with a majority of DRS industries. ChirinkodaFazzari (1994), on their part, checked for
market power using a time-series database for Iufaeturing US sectors. Since market power is
theoretically incompatible with CRS, this estimatevides indirect evidence for the presence of
non constant returns to scale. He concludes thetahpower, hence IRS, are present in a majority
of those industries. This contradictory evidenceois manufacturing industries alone, and no

similar information seems to be available for noanurfactures, such as the services sectors.
2.4. Computing issues.

The complete input-output system includes the twolinear equations (7) and (13) and
both need to be solved. The solution to (7) pravidetput levelx that satisfy final demanidand
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are compatible with the production mappia¢x). The solution to (13) guarantees cost covering
prices compatible with the dual cost functions. §idered together (7) and (13) yield the required
economy-wide balance between uses and resouraegmessions (1). For any possible level of
final demandf, the solutionx(f), p(x(f)) is obtained using the GAMS (General Algebraic
Modeling System) softwate The system of equations is transformed into ardymonlinear
optimization program using a fake objective functwith no relation to the endogenous variables.
The nonlinear program includes as constraints ifd) (43). Since GAMS looks first for a feasible
solution to the constraints and only after findibhgries to increase the objective function while
keeping feasibility, the process converges swifflige feasible solution to the nonlinear program
exists and is unique, as implied by the theoretitadature. The nonlinear solver is seeded with
the benchmark data values and is run to obtairsadolution which of course coincides with the
benchmark values. Once the first feasible solusofound, GAMS tries to find a better feasible
one but, being the unique feasible solution, therao room for improvement and the process
quickly stops. This first run provides an initisddis for the subsequent, non-benchmark runs and

facilitates convergence.

These additional runs simulate sequential changésal demand and are solved using the
loop facility in GAMS. For instance, final demandgood 1 is assumed to change by one unit and
a new nonlinear input-output balance is found. Thesl demand for 1 is reset to the benchmark
level and next a unitary change in demand for gb@considered. The process is repeated for the
rest of goods. This allows calculation of multiplegfects induced by changes in final demand for
all goods both in quantities and in prices, a datiand novel possibility not present in the

standard linear model, where prices are not resp®ihs changes in quantities.

The fact that quantities and prices change has nderesting implication for the
measurement of output multipliers. In the lineardelo since prices do not change when final
demand changes, the total multiplier value cands#lyecalculated by column summation. After
all, units have been chosen to the effect that ipAlysand value magnitudes coincide. With
constant prices, aggregation is simple and addmguantities is permissible. In the NIO system,
however, prices are scale-dependent too and indlweeconomy-wide balance both quantities and
prices will have changed. This requires the usmaéx numbers to isolate quantity effects from

price effects.

! See Brooket al (1992).
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3. NUMERICAL RESULTS.

Given the absence of firm evidence on returns-&besche variety of possible sectoral
situations, and the lack of data for economy-widengation of returns-to-scale, the second best
option is to estimate economic effects using a dfetistinct global scenarios which try to
encompass reasonable alternatives on output-td-glpsticities. For instance, a central scenario
with CRS can be accompanied by two scenarios wiRs @nd IRS, providing interval estimates
of effects quite richer than the usual and poinitieggte typical of the linear case. To this effeet w
use fictitious interindustry data to calibrate #ile needed coefficients. The data includes a

disaggregation of 3 distinct sectors, which isisight for our expository purposes here.

Three sets of elasticities are assumed. The firstamlopts the universal unitary elasticity

values specific to the linear model (CRS), i8, =4, =1. We then modify those values

downward (DRS) and upward (IRS) b percent and proceed to recalibrate the needec¢iso

of a; coefficients for matriXA(x). The model is then solved for unitary sequentiahges in final
demand. This allows us to obtain estimates of thantity multiplier matrices for the three
scenarios on returns to scale and estimates aohdlueed cost changes under the two non-constant
returns to scale cases. To simplify the exposiaod save space, we present summary results
instead of the complete matrix results, which afecaurse available from the authors. We
calculate total multipliers as aggregators of matolumns using quantity Paasche indices. These
numbers inform of the effects on total physicalpamitin response to unitary changes in final
demand and they are similar to the usual presentati the linear interindustry model. We also
evaluate aggregate price responses to changesaidiémand, in this case using weighted cost

elasticities so as to neutralize the size effect.

The effects on all output levels of a changed i final demand in a specific good are

captured by the matril of partial derivatives:
0%
M| =m = 15
[ ]u | af] ( )

Similarly a matrixC of price changes can be calculated for each pesshmnge in final

demand:
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op,

C|. =c =—+ 16
[ ]u 1) afJ ( )

Once matricesM and C are calculated under all scenarios we derive tharopriate

summary results, which we reproduce in the Talsldbe Appendix.

4. CONCLUDING REMARKS.

We have shown that nonlinear input-output modéishe scale dependent type can be
easily implemented using standard interindustna.d@ihe numerical implementation is possible
thanks to the existence theorems provided by therétical literature. The determination of the
nonlinear equilibrium requires the use of standamehputing techniques. We use here a nonlinear
programming algorithm as backbone solver. The #lyor computes both quantities and prices
simultaneously since the classical dichotomy ngéwrholds and both quantities and prices are
now scale dependent. We perturb the initial equilib to generate multiplier matrices in several

scenarios.
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APPENDIX

| nput - out put tabl e:
1 2 3 D
10 15 25 50
40 20 0 40
30 25 35 10
0 0 0 0
20 40 40 0
100 100 100 0

X< OWN R
coocooooL

Paraneter BETA = 0.8

- 153 PARAMETER mul x

1 2
1 2.3501 1.1319
2 1.5673 2.0882
3 2.4386 1. 9155

---- 153 PARAMETER nuxp

1 6.3562, 2 5.1355,

---- 155 PARAMETER el as

1 2
1 0. 0894 0. 0519
2 0. 0667 0. 0513

3 0. 0813 0. 0494

100
100
100

mul tiplier matrix
3
1.3063

0.8711
3. 1337

Paasche multipliers

3 5.3119

el asticity of cost to final

3

0. 0144
0. 0109
0.0176
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PARAMETER BETA = 1.2

153 PARAMETER nmul x

1 2
1 1. 3010 0. 2908
2 0. 5203 1. 3163
3 0.6121 0. 4897

153 PARAMETER nuxp

1 2.4333, 2 2.0967,

155 PARAMETER el as

1 2
1 -0. 0247 -0. 0128
2 -0. 0155 -0. 0165
3 -0.0174 - 0. 0099

mul tiplier matrix
3
0. 3826

0. 1530
1. 5917

Paasche multipliers

3 2.1271

el asticity of cost to final demand

3
- 0. 0038

-0. 0028
- 0. 0056

PARAVETER BETA = 1 (standard Leonti ef)

153 PARAMETER nul x

1 2
1 1.5116 0. 4651
2 0. 7558 1. 4826
3 0. 9884 0.7849

153 PARAMETER nuxp

1 3. 2558, 2 2.7326,

NO COST EFFECTS

mul tiplier matrix
3
0. 5814

0. 2907
1.9186

Paasche multipliers

3 2.7907
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