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INTRODUCTION 

There is a glaring contrast between the theoretical advances in nonlinear input-output 

(NIO) theory and the surprisingly scarce list of applications in the empirical literature. This 

divorce cannot be attributed to the computational requirements for solving nonlinear models. With 

today’s specialized software computation should not be a decisive issue. The question probably 

lies on the informational requirements needed for the implementation of NIO models, particularly 

on sectoral response elasticities. As Lahiri (1983) acutely points out, empirical estimation of NIO 

models is nearly impossible—too many parameters for too few available observations. The same 

type of problematic data requirement situation is also common for the specification of computable 

general equilibrium models (CGE) but this has not stopped practitioners at all (see Dervis et al, 

1982, Mansur and Whalley, 1984). CGE modeling and research has become a very important area 

for policy analysis and evaluation and this has been possible, in part, thanks to the adoption of 

operational assumptions on behavior and the use of calibration techniques. We believe practical 

implementation of NIO models is equally possible once we accept (i) some specific behavioral 

rules in the definition of production activities and (ii) are able to use observed empirical data for 

the parameterization of production processes. 

The theory of NIO models has been concerned with establishing theorems that prove 

existence and uniqueness of solutions for a nonlinear version of the Leontief quantity equation. 

Under quite general conditions, but all of them sharing a modified system productivity assumption, 

existence and uniqueness can be proved. Sandberg (1973), Chander (1983), Fujimoto (1986), 

Szidarovsky (1989), Herrero and Silva (1991), among others, provide the necessary theoretical 

background for NIO logical consistency. In a NIO model technical coefficients are not taken as 

fixed. Their variability can be attributed to many different factors (technical innovation, input 

substitution, productivity changes, non-homogeneity, etc.) as Rose (1983) very clearly explains in 

his review and assessment paper. Theorists need not concern themselves with these possibilities 

but applied economists should at least explore them and consider how to sensibly incorporate 

them. The nonlinearities we consider in this paper are of the scale-dependent type, i.e. changes in 

total output need not be proportional to changes in total inputs but still a unique production mix is 

all that is available to firms. Isoquants are L-shaped but the isoquant map is not necessarily 

homothetic. Price-induced nonlinearities in coefficients due to smooth input substitution, as dealt 

with in Tokutsu (1989) or Sancho (2010), are not considered here. West and Gamage (2001), in 

turn, is one of the few empirical examples of using a nonlinear assumption although restricted to 
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the households’ income account, where average coefficients are substituted by marginal ones. 

Zhao et al (2006) introduce a Cobb-Douglas production function for defining the interindustry 

technical coefficients but since their model does not contemplate any price behavior whatsoever, 

the selection of the input mix is very much based on some ad-hoc assumptions—such as 

maintaining total output constant when substitution takes place in some sector. This has little if 

any economic justification. 

The paper follows this organization. Section 2 discusses the characteristics of the proposed 

nonlinear input-output model. In Section 3 we implement the model using interindustry data for a 

simplified fictitious economy. Section 4 summarizes. 

2. NONLINEAR INPUT-OUTPUT. 

2.1 Review of the conventional linear model. 

Interindustry data provide a detailed multisectoral depiction of the revenue-expenditure-

output macroeconomic identities. Consider an economy composed of n distinct productive sectors 

indexed as i, j=1, 2,..., n. In the period when data is assembled, identified here by super index 0, 

the following identities representing the circular flow of income hold true for all j=1, 2,..., n: 

  0 0 0 0 0 0 0 0 0 0

1 1

n n

i ij v j j ji j j j j
i i

p x p v p x p f p x
= =

⋅ + ⋅ = ⋅ + ⋅ = ⋅∑ ∑     (1) 

In expression (1) the left-hand side collects total expenditure in intermediate purchases and 

value-added acquisition incurred by sector j to carry out the production of its output 0
jx , the middle 

part is total revenue accruing to sector j from the sale of its output 0jx  to other sectors –as 

intermediate demand– and to final demanders. Finally, the right-hand side of the expression is the 

value of total production 0jx  obtained in sector j. Expression (1) can therefore be seen as a sort of 

sectoral budget constraint. Interindustry data, however, is expressed in value and the distinction 

between physical magnitudes 0 0 0 0( , , , )ij j j jx x v f  and prices 0 0( , )j vp p  is not usually available. We can 

take observed transaction values as if they were physical magnitudes and in doing so we redefine 

units in such a way that every one of the new units has a worth of 1 dollar. In other words, we use 
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new prices pj=1 for goods and pv=1 for value added such that 0 0
i ij i ijp x p x⋅ = ⋅ , 0 0

v j v jp v p v⋅ = ⋅ , and 

0 0
j j j jp f p f⋅ = ⋅ .  

With this implicit normalization it is customary in interindustry analysis to omit the 

presence of prices in the balance identities in (1) for the base year. Contrary to the tradition, we 

will keep them explicit for reasons that will become clear shortly. Thus (1) becomes: 

1

n

i ij v j j j
i

p x p v p x
=

⋅ + ⋅ = ⋅∑        (1a) 

from the expenditure perspective and: 

  
1

n

j ji j j j j
i

p x p f p x
=

⋅ + ⋅ = ⋅∑        (1b) 

from the perspective of revenue; notice that since only price pj is involved here, it can be 

eliminated altogether from (1b) if so desired. However written, expressions (1) are nothing but 

observed data. The standard IO model adopts the assumption that input-output ratios and value-

added ratios are constant; in other words, it takes output as proportional to inputs by way of 

assuming nonnegative technical coefficients defined by /ij ij ja x x=  and /j j jv xυ = . They are 

assumed to be unique and independent of the scale of production. Substituting these coefficients in 

(1a) and simplifying yields: 

  
1

n

i ij v j j
i

p a p pυ
=

⋅ + ⋅ =∑        (2a) 

which, using the obvious vector-matrix notational translation, can be expressed and solved as: 

  ( )v vp p′ ′ ′ ′⋅ ⋅ = ⋅ ⋅ -1
p = p A + υ υ I - A       (3a) 

provided matrix A , with [ ] ijij
a=A , is productive and the value-added price vp  is taken as 

numéraire. Similarly, substituting in expression (1b) and eliminating now the irrelevant price pj 

gives: 

  
1

n

ji i j j
i

a x f x
=

⋅ + =∑         (2b) 
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In matrix terms we would obtain: 

  ( )= ⋅ + = − ⋅-1
x A x f I A f        (3b) 

 The linear IO model in (3a) and (3b) is composed of two sets of equations, one for prices 

and one for quantities, which solve independently of each other. For a given technology matrix A, 

cost covering prices ′p  depend only on the value-added technical coefficient vector ′υ , and output 

levels x  on external final demand f . This is the well-known dichotomy between prices and 

quantities in the conventional IO model and it is a property that derives from the linearity 

assumption in the technology.  

2.2 A nonlinear input-output system. 

 Let us assume now that output and inputs are no longer related though a linear relationship. 

Instead we posit a simple, nonlinear relationship along the technically efficient locus such as: 

  ij vj

j ij ij j jx x vβ βα η= ⋅ = ⋅         (4) 

For , , 0ij ij vjα β β >  this corresponds to a monotonically increasing production function, i.e. 

more output can only be obtained applying more inputs, where coefficients ijβ and vjβ  can be 

quickly seen to be output-to-input, or scale, elasticities. Additionally, when 1 (>1)ijβ <  the 

production coordinate linking output xj with inputs xij can be seen to present decreasing 

(increasing) returns to scale denoted by DRS (IRS). Notice that for the particular case 

when 1ij vjβ β= = , for all i and j, expression (4) reverts to the standard input-output linear 

assumption (with 1( )ij ija α −=  and 1( )j jυ η −= ). In the linear IO model all such elasticities are 

therefore implicitly assumed to be unitary. For those unitary values and the observed benchmark 

data set (xj, xij, vj) all technical coefficients for goods and value-added are accordingly calibrated. 

Nothing of course precludes using another, non unitary, set of values for the output-to-input 

elasticities and proceed likewise with the calibration of all required parameters.  

We illustrate these ideas in Figure 1 where we can visualize the structure of a possible 

nonlinear production map for a 2 good economy, with production of good 1 following these 

hypothetical technological relationships: 11
1 11 11x xβα= ⋅  and 21

1 21 21x xβα= ⋅  and 11 0.5β = , 21 1.25β = , 
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11 21 1α α= = . We can see that the map is nonlinear on two counts. First, returns-to-scale are not 

constant as the non-unitary output elasticities show, and second the map is non-homothetic as the 

efficiency path is nonlinear due to the fact that 11 21/ 1.β β ≠   Notice that the two depicted L-shaped 

isoquants conform to the perfect complementarity property of input-output economics but the 

efficient input mix is itself variable, depending now on the scale of production. 

 

        x11       (β11 / β21) < 1     

                 

 

           2        x1=1.414 
 
 
                                          
          1                   x1=1 
               
            
 
 

               1    1.320    x22 

     

Figure 1: Non-homothetic isoquant map.  

 

 

The derivation of the complete nonlinear input-output system follows readily from 

assumption (4). For the quantity equation we start from the balance expression (1b) which we 

rewrite here as: 

  
1

n

ji j j
i

x f x
=

+ =∑         (5) 

From (4) we find: 

  ( ) ( ) ( ) ( )
1

1 1 11 jiji

ji jiji ji
i

ji ji i ji i i
ji

x
x a x a x x

ββ
β ββ β

α

− 
= = ⋅ = ⋅ ⋅  
 

   (6) 

Substituting (6) in expression (5) and using matrix notation we would find: 
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  = ⋅ +x A(x) x f         (7) 

with the elements of matrix A(x) being: 

  [ ] ( ) ( )
1 1 ji

ji jiji iji
a x

β
β β

−

= ⋅A(x)        (8) 

Notice that unitary output elasticities everywhere would yield back the standard technical 

coefficients of the linear input-output matrix A. Under quite general conditions, as we mentioned 

above, nonlinear equations such as the one in (7) have been proved to have a unique non-negative 

solution x for any possible non-negative vector f. The requirements for solvability include the 

following set of assumptions: (ass_1) the vector function ⋅A(x) x  is non-decreasing (i.e. more 

output x requires more intermediate inputs ⋅A(x) x ), (ass_2) continuity of ⋅A(x) x , and (ass_3) a 

productivity condition guaranteeing that expression (7) holds true for some pair (f, x). The 

function A(x) in expression (8) can be seen to satisfy (a_1) and (a_2). Assumption (a_3), on the 

other hand, is always satisfied in the case of an empirically implemented model by the base year 

solution. Thus equation (7) is in principle solvable, and for any other vector of final demand f ≥ 0 

there will always be a unique production plan x ≥ 0 compatible with the nonlinear quantity 

equation (7). 

The fact that the quantity equation is scale-dependent has another far-reaching implication, 

namely, that cost covering prices are no longer independent of quantities. With non-constant 

returns to scale, unitary costs are not constant either and their level depends on the actual 

production level. Despite the focus of the theoretical literature on the solvability of the quantity 

equation (7), the economic system as a whole has another component that needs to be factored in if 

overall balance, as described in expressions (1), is to be maintained after a change in final demand 

takes place. Plugging in assumption (4) into expression (1) and remembering that 1( )j jυ η −=  we 

would obtain: 

  ( ) ( ) ( ) ( )
1 1 1 1

1

ij ij vj ij

n

j j i ij j v j j
i

p x p a x p xβ β β βυ
=

⋅ = ⋅ ⋅ + ⋅ ⋅∑     (9) 

Simplifying: 
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  ( ) ( ) ( ) ( )
1 11 1

1

ij vj

ij ij vj vj

n

j i ij j v j j
i

p p a x p x
β β

β β β βυ
− −

=

= ⋅ ⋅ + ⋅ ⋅∑     (10) 

Recalling expression (8) and defining in a like manner the vector of value-added marginal 

coefficients as: 

  [ ] ( ) ( )
11 vj

vj vj
j jj

x
β

β βυ
−

′ = ⋅υ (x)        (11) 

we would obtain the scale-dependent system of prices: 

  ′ ′ ′⋅ ⋅vp = p A(x) + p υ (x)        (12) 

The system of prices depends now on quantities and the traditional—and very convenient 

in computing terms—separation of prices and quantities no longer holds. As expected, with unitary 

output elasticities everywhere, the price equation in (12) reverts to the standard price equation of 

the linear model in (3a). The nonlinear, scale-dependent input-output system must therefore 

include both equations for quantities (7) and prices (12) for the system to be complete and all 

magnitudes to be in balance after external shocks are absorbed within the system. Prices in (12) 

can be interpreted as shadow prices, i.e. prices supporting the efficient production plans stemming 

from (7), or as accounting prices, i.e. prices that guarantee the sectoral and economy-wide balance 

relationships between total costs and total resources. They cannot and should not be interpreted as 

market prices since no demand behaviour is incorporated in this type of models. 

2.3. Calibration issues. 

The numerical implementation of the nonlinear input-output system in (7) and (12) requires 

that all coefficients aij and βij introduced in the production function (4) be available prior to 

computation. In the linear model things are particularly easy since βij = 1 for all i and j. In this 

case, the aij coefficients can be calibrated from (4) by using the observations for output (xj) and 

inputs (xij) read from the base year data: 

  1( ) ij
ij ij

j

x
a

x
α −= =         (13) 

These coefficients are the slope of the linear rays going through the origin as we can see in 

the fictional example in Figure 2. This is the consequence of taking all scale elasticities to be 
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unitary. In the general case, when the relationship is not linear, we need to adjust the value of the 

aij coefficients to the non-unitary scale elasticities so that for the pair of parameters (aij, βij) and 

base year data (xj, xij) expression (4) is upheld. In this case: 

  1( )
ij

ij
ij ij

j

x
a

x

β

α −= =         (14) 

In the linear example of Figure 2 we find that the technical coefficient is given by 

21 21 1/ 8 /10 0.8a x x= = =  (or 21 1.25α = ). Figure 3 illustrates the nonlinear situation for the same 

base year data and, in this DRS case with an elasticity value of 21 0.6β = , the calibrated coefficient 

turns out to be 21 0.6
21 21 1/ 8 /10 0.348a x xβ= = =  (or 21 2.872)α = . 

 

 

 

 

x21 8 

10 

    x1 

β21=1  �  a21= 0.8 

Figure 2: Calibration to linear. 
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Notice the procedure is exactly the same for the linear and the nonlinear case, conditional 

in both cases to the elasticity values being adopted. In the linear case they are unitary everywhere 

in the production function but this set of values is just but one of the many possible ones in 

parameter space and is therefore as ad-hoc as any other selectable set. In probability terms the 

linear set is of course highly unlikely. The justification for linearity should, in any case, rest on 

economic grounds. The empirical evidence in favour of universal constant-returns-to scale, 

however, is not conclusive. Based on engineering evidence assembled for the US manufacturing 

sectors, Jorgenson (1972) reported that CRS seem to be prevalent, at least from some minimal 

optimal size plant on. Dragonette (1983), in contrast, used time-series data on US manufacturing 

too but concluded using concentration indicators that CRS seem to be more the exception than the 

rule, with a majority of DRS industries. Chirinko and Fazzari (1994), on their part, checked for 

market power using a time-series database for 11 manufacturing US sectors. Since market power is 

theoretically incompatible with CRS, this estimate provides indirect evidence for the presence of 

non constant returns to scale. He concludes that market power, hence IRS, are present in a majority 

of those industries. This contradictory evidence is for manufacturing industries alone, and no 

similar information seems to be available for non-manufactures, such as the services sectors. 

2.4. Computing issues. 

The complete input-output system includes the two nonlinear equations (7) and (13) and 

both need to be solved. The solution to (7) provides output levels x that satisfy final demand f and 

x21 8 

10 

    x1 

β21=0.6  � a21= 0.348 

Figure 3: Calibration to nonlinear. 
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are compatible with the production mapping A(x). The solution to (13) guarantees cost covering 

prices compatible with the dual cost functions. Considered together (7) and (13) yield the required 

economy-wide balance between uses and resources in expressions (1). For any possible level of 

final demand f, the solution x(f), p(x(f)) is obtained using the GAMS (General Algebraic 

Modeling System) software1. The system of equations is transformed into a dummy nonlinear 

optimization program using a fake objective function with no relation to the endogenous variables. 

The nonlinear program includes as constraints (7) and (13). Since GAMS looks first for a feasible 

solution to the constraints and only after finding it tries to increase the objective function while 

keeping feasibility, the process converges swiftly. The feasible solution to the nonlinear program 

exists and is unique, as implied by the theoretical literature. The nonlinear solver is seeded with 

the benchmark data values and is run to obtain a first solution which of course coincides with the 

benchmark values. Once the first feasible solution is found, GAMS tries to find a better feasible 

one but, being the unique feasible solution, there is no room for improvement and the process 

quickly stops. This first run provides an initial basis for the subsequent, non-benchmark runs and 

facilitates convergence.  

These additional runs simulate sequential changes in final demand and are solved using the 

loop facility in GAMS. For instance, final demand in good 1 is assumed to change by one unit and 

a new nonlinear input-output balance is found. Then final demand for 1 is reset to the benchmark 

level and next a unitary change in demand for good 2 is considered. The process is repeated for the 

rest of goods. This allows calculation of multiplier effects induced by changes in final demand for 

all goods both in quantities and in prices, a distinct and novel possibility not present in the 

standard linear model, where prices are not responsive to changes in quantities. 

The fact that quantities and prices change has an interesting implication for the 

measurement of output multipliers. In the linear model, since prices do not change when final 

demand changes, the total multiplier value can be easily calculated by column summation. After 

all, units have been chosen to the effect that physical and value magnitudes coincide. With 

constant prices, aggregation is simple and adding up quantities is permissible. In the NIO system, 

however, prices are scale-dependent too and in the new economy-wide balance both quantities and 

prices will have changed. This requires the use of index numbers to isolate quantity effects from 

price effects. 

                                                           
1 See Brooke et al (1992). 
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3. NUMERICAL RESULTS. 

Given the absence of firm evidence on returns-to-scale, the variety of possible sectoral 

situations, and the lack of data for economy-wide estimation of returns-to-scale, the second best 

option is to estimate economic effects using a set of distinct global scenarios which try to 

encompass reasonable alternatives on output-to-input elasticities. For instance, a central scenario 

with CRS can be accompanied by two scenarios with DRS and IRS, providing interval estimates 

of effects quite richer than the usual and point-estimate typical of the linear case. To this effect we 

use fictitious interindustry data to calibrate all the needed coefficients. The data includes a 

disaggregation of 3 distinct sectors, which is sufficient for our expository purposes here. 

Three sets of elasticities are assumed. The first one adopts the universal unitary elasticity 

values specific to the linear model (CRS), i.e. 1ij viβ β= = . We then modify those values 

downward (DRS) and upward (IRS) by 10 percent and proceed to recalibrate the needed two sets 

of aij coefficients for matrix A(x). The model is then solved for unitary sequential changes in final 

demand. This allows us to obtain estimates of the quantity multiplier matrices for the three 

scenarios on returns to scale and estimates of the induced cost changes under the two non-constant 

returns to scale cases. To simplify the exposition and save space, we present summary results 

instead of the complete matrix results, which are of course available from the authors. We 

calculate total multipliers as aggregators of matrix columns using quantity Paasche indices. These 

numbers inform of the effects on total physical output in response to unitary changes in final 

demand and they are similar to the usual presentation in the linear interindustry model. We also 

evaluate aggregate price responses to changes in final demand, in this case using weighted cost 

elasticities so as to neutralize the size effect. 

The effects on all output levels of a changed in the final demand in a specific good are 

captured by the matrix M of partial derivatives: 

[ ] i
ijij

j

x
m

f

∂= =
∂

M         (15) 

 Similarly a matrix C of price changes can be calculated for each possible change in final 

demand: 
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  [ ] i
ijij

j

p
c

f

∂= =
∂

C         (16) 

Once matrices M and C are calculated under all scenarios we derive the appropriate 

summary results, which we reproduce in the Tables in the Appendix. 

 

4. CONCLUDING REMARKS. 

 We have shown that nonlinear input-output models of the scale dependent type can be 

easily implemented using standard interindustry data. The numerical implementation is possible 

thanks to the existence theorems provided by the theoretical literature. The determination of the 

nonlinear equilibrium requires the use of standard computing techniques. We use here a nonlinear 

programming algorithm as backbone solver. The algorithm computes both quantities and prices 

simultaneously since the classical dichotomy no longer holds and both quantities and prices are 

now scale dependent. We perturb the initial equilibrium to generate multiplier matrices in several 

scenarios. 
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APPENDIX 

Input-output table: 
 1 2 3 D V  X 
1 10 15 25 50 0 100 
2 40 20  0 40 0 100 
3 30 25 35 10 0 100 
D  0  0  0  0 0   0 
V 20 40 40  0  0   0 
X   100  100  100  0 0      0  
 
 
 
 
Parameter BETA = 0.8 
 
----    153 PARAMETER mulx  multiplier matrix 
 
            1           2           3 
 
1      2.3501      1.1319      1.3063 
2      1.5673      2.0882      0.8711 
3      2.4386      1.9155      3.1337 
 
 
----    153 PARAMETER muxp  Paasche multipliers 
 
1 6.3562,    2 5.1355,    3 5.3119 
 
 
----    155 PARAMETER elas  elasticity of cost to final demand 
 
            1           2           3 
 
1      0.0894      0.0519      0.0144 
2      0.0667      0.0513      0.0109 
3      0.0813      0.0494      0.0176 
 
 
 
 
 
 
 
 



-16- 

 

PARAMETER BETA = 1.2 
 
----    153 PARAMETER mulx  multiplier matrix 
 
            1           2           3 
 
1      1.3010      0.2908      0.3826 
2      0.5203      1.3163      0.1530 
3      0.6121      0.4897      1.5917 
 
 
----    153 PARAMETER muxp  Paasche multipliers 
 
1 2.4333,    2 2.0967,    3 2.1271 
 
 
----    155 PARAMETER elas  elasticity of cost to final demand 
 
            1           2           3 
 
1     -0.0247     -0.0128     -0.0038 
2     -0.0155     -0.0165     -0.0028 
3     -0.0174     -0.0099     -0.0056 
 
 
PARAMETER BETA = 1 (standard Leontief) 
 
----    153 PARAMETER mulx  multiplier matrix 
 
            1           2           3 
 
1      1.5116      0.4651      0.5814 
2      0.7558      1.4826      0.2907 
3      0.9884      0.7849      1.9186 
 
 
----    153 PARAMETER muxp  Paasche multipliers 
 
1 3.2558,    2 2.7326,    3 2.7907 
 
 
NO COST EFFECTS 


