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ABSTRACT 

 

Natural and man-induced disasters have been found to categorically disrupt the vital functions of 

several infrastructure and economic sectors that produce commodities and provide services indispensable 

for any given region to thrive. The intrinsic interdependencies linking these sectors exacerbate the disaster 

consequences as exemplified by a wider range of inoperability across interdependent sectors. The 

unavailability of the required production input resulting from non-operational sector sources amplifies 

economic losses. However, inventory levels during a disruptive event influence sector capability to 

absorb these input requirements while in an inoperable state. Hence, disaster preparedness may be 

improved by a thorough implementation of inventory-enhanced policies to target critically disrupted 

interdependent sectors. This research investigates the reliability of economic loss estimates and sector 

recovery analysis as influenced by the inherent stochastic behavior of inventory. Inventory modeling is 

incorporated into a dynamic cross prioritization plot (DCPP) that merges the risk assessment metrics, 

namely, economic loss and inoperability into a decision support tool that prioritizes the critical sectors for 

inventory enhancement. Risk assessment models without factoring inventory at the time of disastrous 

events were found to have overestimated total economic loss by approximately 22% relative to simulated 

inventory values derived from empirical cumulative distribution functions of individual economic sectors. 

Furthermore, the critical sectors found by implementing the DCPP varied significantly between the 

deterministic and stochastic models of inventory for average and extreme-event scenarios. Hence, the 

inclusion of inventory modeling reflects a more realistic system representation and strengthens the basis 

of the decision support tool in selecting the critical sectors. While the study focuses on enhancing 

preparedness through stochastic modeling of inventory, complementary analysis is recommended to 

manage the resilience of the service sectors. 

 



1. INTRODUCTION 

 

1.1. Preface 

 

Recent debilitating disasters like hurricanes Katrina and Irene, the earthquake in Haiti, the September 

11 attack, and the 9.0 magnitude earthquake in Japan have brought significant losses to the economy and 

left vivid and life-changing experiences to the society. These natural and man-made disasters present 

tremendous amounts of challenges affecting regional productivity in intricately interdependent systems. 

For example, hurricanes have been known to greatly affect physical infrastructures that, in turn, disrupt 

the production of goods (i.e. damaged power and communication lines) and its distribution (i.e. 

transportation systems). The disruption of such functions can easily propagate the disaster consequences 

to other sectors that are heavily dependent on these products and services for their operations especially 

when the levels of inventory are at their minimum. As indirectly hit sectors are unable to receive their 

production input requirements from the disrupted sectors and no material inventory on hand, they also 

become inoperable. As a result, an entire region experiences greater economic loss and a wider scope of 

inoperability. 

 

In fact, intrinsic interdependencies are a characteristic of today’s large and complex infrastructure and 

economic systems. And in the aftermath of natural and man-made disasters, the physical, economic, and 

logical connections facilitate the propagation of initial disruptions across the sectors of a given region.
(1)

 

This is apart from observed significant consumption pattern changes and production output adjustments 

over disaster recovery periods.
(2)

  

 

A holistic and immediate recovery management of systems disrupted by disastrous events must be 

achieved. Disaster preparedness plans should be formulated such that the recovery of disrupted critical 

economic sectors and infrastructure systems are prioritized in order to counter the ripple effect of disaster 

consequences across the region. Risk assessment and appropriate inventory management policies must be 

developed to help suppress the proliferation of inoperability and minimize the losses across the disrupted 

interdependent sectors. However, although interdependencies between sectors are increasingly becoming 

more pervasive, significant gaps still remain in the area of coordinated disaster policy making and risk 

analysis. 

 

The principal concept of this research is that maintaining higher levels of inventory increases a 

region’s capacity to provide the production input requirements while some sectors remain inoperable. 

System recovery may be improved and economic losses reduced through the implementation of 

inventory-enhanced policies to critically disrupted sectors. However, resources for supporting these 

inventory-enhanced policies are finite and may not be available completely or simultaneously as needed 

within the recovery period. Hence, prioritization of identified critical economic and infrastructure systems 

with respect to the allocation of these resources must be made. The use of these resources translates into 

an increase in the capacity of manufacturing sectors (a subset of critical sectors) to deliver their expected 

production output even when they are in a disrupted state thus, deterring the proliferation of inoperability 

across the economic region. Prioritization also allows enhancement of inventory in the earlier stages of 

recovery which decreases the chance of further propagation of disaster consequences across the region. 

 

The significant contribution of this research is the integration of a stochastic input-output model of 

interdependent inventory into a Dynamic Cross Prioritization Plot (DCPP)—an interactive graphical 

critical sector selection tool developed by Resurreccion and Santos 
(41)

. The research will investigate the 



capacity of current levels of inventory of manufacturing systems to absorb the input requirements of a 

region undergoing disaster recovery and formulate a decision support system to help generate cost 

effective inventory enhanced policies that will improve regional disaster preparedness. Various 

stakeholders, domain experts, and policy makers whose preferences would affect this decision process as 

well as budget allocations will be incorporated into the decision support system.  

 

1.2. Scope 

 

The Homeland security policy makers have deliberately included hurricanes in its fifteen planning 

scenarios.
(3)

 Hurricanes can damage physical infrastructure systems, disrupt the flow of traffic, and can 

cause  substantial productivity losses. The Commonwealth of Virginia belongs to the top ten states that 

have experienced the most number of hurricane events on recorded history 
(4)

 incurring $625 million 

worth of damages from hurricane Isabel in 2003.
(5,6)

 To generate significant insights on Virginia’s disaster 

preparedness and recovery policies, a case study implementing the DCPP is presented to identify and 

prioritize the critical sectors in the region. More importantly is designing this prioritization process in 

allocating the finite resources to strengthen Virginia’s overall disaster preparedness capability. Hence, the 

inventory enhancement plans to be formulated and evaluated in this research will be based on the 

production output and inventory levels of the economic and infrastructure systems of Virginia. 

 

The purpose of this research is to formulate a stochastic model of inventory that provides more 

reliable estimates for the risk analysis metrics, namely, economic losses and sector inoperability. There 

may be other sources of uncertainty but the focus of this endeavor is to characterize inventory uncertainty 

in relation to risks. Utilizing principles of risk analysis, the research will analyze the impacts of inventory 

enhanced policies on the recovery behavior of interdependent sectors during a disaster. Inventory 

enhanced scenarios will be generated by integrating stochastic inventory modeling into the DCPP. The 

efficacy of these policies that allocate resources to the most critical economic sectors will be assessed 

based on dynamic inoperability input–output models (DIIM). In particular, the contributions of this 

research are as follows: 

 

(i) Expand the DCPP sector selection tool to integrate the stochastic behavior of inventory in 

manufacturing sectors. 

(ii) Design a structured process for identifying and quantifying disaster perturbation scenarios associated 

with the inoperability and recovery parameters of the interdependent sectors. 

(iii) Formulate measures of performance for evaluating the efficacy of inventory enhanced policies for 

different clusters of economic sectors. 

(iv) Formulate generalizations on the adequacy of (or the lack thereof) current inventory levels to absorb 

production input requirements under extreme event scenarios. 

(v) Provide recommendations to prioritize critical sectors and identify areas for broader preparedness 

applications. 

 

The research involves a comparison of a prioritization model that does not factor inherent stochastic 

inventory behavior (e.g. scenario 0) with a model that incorporates the uncertainty of interdependent 

inventory in estimating risk analysis metrics (e.g. scenario 1). The baseline case from which generated 

inventory enhanced scenarios (scenarios 2 to 5) are evaluated is anchored on scenario 1 as the absence of 

uncertainty in inventory modeling overestimates economic losses and is not reflective of real system 

behavior.
(42)

 Without loss of generality, these case studies serve as a repeatable methodology that can be 

extended to other disasters that directly affect different sets of initially disrupted sectors. 

 

The decision support system with an integrated stochastic inventory model developed in this research 

features a front-end graphical user interface (GUI). The support system is capable of identifying different 

portfolios of critical sectors for inventory enhancement, given different combinations of priority levels 



across inoperability and economic loss minimization objectives, and various levels of resource 

availability. 

 

2. REVIEW OF LITERATURE 

 

2.1. Modeling Disrupted Interdependent Systems 

 

Hurricane consequences are well documented in the literature. Blake et al.
(4)

 provide a list of 

destructive hurricanes in terms of intensities, as well as the resulting economic losses and human 

casualties. Hurricane Katrina’s landfall in 2005 unleashed a devastating $96 billion worth of damages to 

the Gulf Coast region affecting 138 counties—making it the most destructive hurricane on record in terms 

of economic losses.
(7)

 Other relatively less intense hurricanes can also bring significant regional losses. A 

case in point, Hurricane Isabel in 2003 brought massive flooding and destruction to the Hampton Roads 

region of Virginia. The Commonwealth sustained $625 million of damage
(6)

 and a death toll of 36 

people.
(5)

 The flooding of a bridge-tunnel in Virginia, which lasted for nearly a month, is one of the many 

examples of how an infrastructure failure can impair regional mobility and productivity.
(8)

 

 

Risk assessment and management have paved the direction for minimizing the impact of disruptive 

events such as hurricanes. Typically the process is guided by the triplet of questions in risk assessment: (i) 

What can go wrong? (ii) What is the likelihood? and (iii) What are the consequences?
(9)

 In risk 

management, we ask another set of triplet questions: (i) What can be done and what options are available? 

(ii) What are the tradeoffs in terms of all costs, benefits, and risks? and (iii) What are the impacts of 

current decision on future options?
(10)

 

 

Inventory management concepts, typically used in enhancing the efficiency of manufacturing 

systems, have also gained growing importance in the domain of disaster preparedness.
(11,12) 

With the just-

in-time (JIT) philosophy driving today’s supply chain-oriented systems, it has been observed that quite a 

lot of these systems are unprepared for ―low probability, high-impact disruptive events.‖
(11)

  Chopra and 

Sodhi
(13)

 identify two mitigation strategies for the management of risks resulting from disruptive events: 

(i) increasing inventory and (ii) providing redundant suppliers. However, the impact of disruptive events 

may be great enough that even the essential set of suppliers become unavailable when these events occur. 

Hence, a balance has to be made between allocating some resources to keep a level of inventory as buffer 

and the cost of inoperability. As to the level of inventory required to reduce risks from disruptive events, 

Barker and Santos
(11)

 evaluated the impact of incorporating inventory policies in the DIIM on the 

resilience of disrupted systems. They discussed how most of the key inventory control approaches found 

in practice and in literature are in conflict with the notion of preparedness and investigated tradeoffs 

between multiple objectives given various inventory policies. 

 

This research acknowledges the importance of inventory or the provision of buffer in addressing 

disaster preparedness. Inventories are a form of resilience adjustment that functions as temporary sources 

of production requirements while the actual sector provider is inoperable. As raised by Rose and Liao, 

system losses are underestimated by individual sector resilience where the use of inventories, among 

other measures, becomes an adaptive response of economic sectors to avoid incurring maximum potential 

losses.
(42)

 Hence, a manufacturing sector’s level of inventory at the occurrence of a disastrous event is a 

significant factor that can be associated with its resilience. And as this level involves uncertainty, 

investigating resilience enhancement from inventory requires stochastic modeling. This has been the 

motivation to incorporate inventory uncertainty in a critical sector selection tool that helps generate 

inventory enhancement policies to improve sector preparedness. 

 

The economic impacts of devastation from natural disasters and recent man-caused attacks have 

already impelled further research on disaster preparedness and management policies. Recent works on 



disaster risk analysis have extensively explored the areas of infrastructure renewal involving 

interdependencies and preparedness strategy development using extensions of the input–output (I-O) 

model. 
 

Chandana and Leung
(14)

 emphasized that the effectiveness of the infrastructure renewal process 

involves consideration of system requirements, processes, and interdependencies in disaster situation 

management. Arboleda et al.
(15)

 analyzed interdependencies between infrastructure systems and the 

operational vulnerability of health care facilities. Chang et al.
(16)

 presented a conceptual framework for 

investigating infrastructure failure interdependencies focusing on power outage consequences. Although 

these models integrate interdependencies to disaster management, a more holistic and quantitative 

approach for accounting economic loss and recovery capability of disrupted interdependent sectors has 

been provided by using I–O models. 

 

2.2. I–O Model and Extensions 

 

The following sections provide an overview of the classic Leontief I–O model and progressively 

discuss the formulations of the IIM and its dynamic extension. 

 

2.2.1. Leontief’s I–O Model 

 

The I–O modeling views the economy as a set of interconnected sectors, which both produces and 

consumes goods in the process of production.
(17)

  The Leontief model, which describes the output of each 

sector as a combination of intermediate consumption and final demands, has proven to be a useful model 

for evaluating impacts of economic disruptions across multiple sectors of a regional economy.
( 18,19)

 The 

National Cooperative Highway Research Program
(20)

 recognizes the I–O method in its guidebook for 

assessing the social and economic factors in infrastructure management domain. Extensions and current 

frontiers on I–O analysis can be found in Dietzenbacher and Lahr.
(21)

 The availability of high-resolution 

economic data and social accounting matrices enables the application of I–O model and its hybrids for 

analysis of relatively small regions (e.g., analysis of infrastructure disruptions in Portland
(22)

). 

 

From the general representation of interindustry flows of goods
(23)

 and the I–O economics first 

discussed by Leontief,
(17)

 ―individual industry sectors are interconnected with commodity transactions.‖ 

Hence, total production output includes commodity flows among interdependent sectors in addition to the 

output intended to satisfy final demand. In Leontief’s model, Equation (1), the total production output or 

the expected output, x, of a sector is the sum of what it provides as input to other sectors and its output for 

the final consumption of end-users. This relationship for all the sectors involved is summarized in (1)  

 

     x = Ax + c,    (1) 

 

where x is the output vector, c is the consumption vector, and A is the interdependency matrix. Given n 

sectors, x and c are column vectors with n elements each and A is an n × n matrix of technical 

coefficients. 

 

Each element, xi, of x represents the total production output of an industry sector i. Each technical 

coefficient, aij, of the interdependency matrix A indicates the proportion of the total production 

requirement of sector j that is provided by the production output of sector i. The collection of elements 

under a column j of A corresponds to the distribution of inputs from the row sectors as proportions of the 

total input requirements of sector j. Finally, each element, ci, of the consumption column vector c is the 

final demand for sector i by the end users. 

 

 



2.2.2. IIM 

 

Initially intended for analyzing changes in consumption, the I–O model has been extended into an 

IIM by Haimes and Jiang
(24)

 and Santos and Haimes
(23)

 to investigate losses brought about by  cascading 

effects of disruptive events to interdependent sectors. Of particular interest is the quantification of the 

economic loss and inoperability of a sector arising from (i) disruptions to the sector itself and (ii) failure 

to receive the expected production requirements from other disrupted sectors.
(23)

 

 

The IIM has been featured in several applications. Examples include modeling of infrastructure 

interdependencies and risks of terrorism,
(25,26)

 regional electric power blackouts,
(27)

 and inventory 

management.
(11)

 The IIM was also applied to problems with sequential decisions and multiple objectives, 

such as the biofuel subsidy analysis explored by Santos et al.
(28)

 Crowther et al.
(29)

 have demonstrated the 

decision-making capability of the IIM for developing multiregional disaster preparedness policies for 

hurricane events, which can complement geospatial analysis.
(30)

 Santos et al.
(31)

 have also formulated a 

conceptual framework for bridging IIM analysis with agent-based simulation for interdependent 

infrastructure systems. 

 

The IIM assumes that the interdependency matrix in Equation (1) remains invariant to changes in 

output and consumption levels of a system in disrupted state. The I–O model becomes  

 

˜x = A˜x + ˜c,    (2) 

 

where ˜x is the output vector in disrupted state and ˜c is the consumption vector in disrupted state. 

 

The economic loss realized from changes in final consumption, c, and reduction of production output, 

x, of disrupted sectors. It is given in (3) and is obtained from the difference between the expected output 

(1), and the disrupted state output (2),  

 

x − ˜x = A(x − ˜x) + (c − ˜c).   (3) 

 

Manipulating (3), the economic loss relationship is 

 

(x − ˜x) = (I − A)−1(c − ˜c).  (4) 

 

This has been one of the metrics used by Santos and Haimes
(23)

 in analyzing the impacts of sector 

perturbation. The metric helps identify the highly affected sectors in terms of the associated monetary 

value that is lost as a result of not being able to deliver completely its expected output, x, during and after 

a disruption. Collectively, the total economic impact can be based on the sum of the economic losses from 

each of the n sectors of the given system. Thus, it is of essence that the sectors with the highest economic 

losses be identified as a set of ―critical sectors‖ as they contribute largest to the total economic loss of the 

system. Moreover, these unrealized expected outputs propagate the inoperability in the other sectors 

relying on these outputs for their own recovery. 

 

Inoperability is associated with the inability of a sector to function at its ―as planned‖ performance 

level due to internal or external disruptions. The inoperability, qi, is expressed as the fraction of the 

unrealized output of a sector over its expected output  

 

qi = xi − ˜xi 

        xi        (5) 

 



The inoperability shown in Equation (5) is the normalized economic loss from (4). The inoperability, 

qi has a value of 1 for a completely inoperable sector and an ideal value of 0 as the sector returns to its 

intended performance level. Santos and Haimes
(23)

 extended the I–O relationships from (1) and (4) into 

the IIM formulation as follows  

 

      q = (I – A*)
−1

c* ,   (6) 

 

where q is the inoperability vector, c* is the perturbation vector, and A* is the interdependency matrix. 

 

Each element, qi, of the vector q represents the inoperability of a sector i. Each element, a* i j , of the 

interdependency matrix A* represents the inoperability contribution of sector i to sector j. Finally, each 

element, c* i , of the perturbation vector c is the normalized changes in final consumption for sector i,  

 

     c*i = ci − ˜ci 

     xi         (7) 

2.2.3. DIIM 

 

Building on the IIM, Lian and Haimes
(32)

 developed DIIM to take into account the temporal evolution 

of inoperability among interdependent sectors during the recovery process. Lian et al.
(2)

 proposed an 

extreme event analysis extension to investigate significant consumption pattern changes and production 

output adjustments after extreme events. Barker and Haimes
(33)

 introduced an uncertainty index to 

evaluate the impact of the sensitivity of interdependency parameters on economic loss. Kujawski
(34)

 

developed a multiperiod model to decompose disaster recovery into two phases, namely (i) the period 

when the active perturbation affects the sector interdependencies and (ii) the period that it takes for the 

sectors to achieve a postdisaster equilibrium state. The same paper criticized the DIIM shortcomings 

particularly with the use of I-O data. Nevertheless, such shortcomings have been addressed with recent 

DIIM applications. In particular, DIIM extensions have been formulated to study preparedness strategies 

to address cyber-security scenarios involving oil and gas sectors,
(31)

 transient production levels in the 

aftermath of disasters,
(33)

 and workforce inoperability for pandemic recovery analysis.
(35)

 

 

The DIIM formulates the variability of q over time. A sector is assumed to recover from an initial 

disruption at time zero with inoperability qi(0) > 0, to some inoperability, qi(Ti) > 0 at a known time Ti. 

The recursive form of the DIIM
(32)

 is 

 

     q(t + 1) = q(t) + K[A*q(t) + c*(t) − q(t)],  (8) 

 

where q(t), q(t + 1) is the inoperability vectors at times t and t + 1, respectively, K is the resilience matrix, 

and c*(t) is the perturbation vector at time t. 

 

Observe that A* of Equation (8) is the same as the matrix from an IIM and that at a steady state (e.g., the 

disruption levels for all sectors have reached equilibria), q(t + 1) = q(t). Further, a sector in the recovery 

process has q(t + 1) < q(t) where q takes only nonnegative values as defined from Equation (5). In this 

case, the second term of Equation (8) yields only negative values. Therefore, to hasten the recovery of a 

system to the near-ideal state, the inoperability, q, and the contribution of the second term in Equation (8) 

must be kept at their minima. From Equation (5), lower values of qi reflect higher proportions of satisfied 

output requirements, which is either an indication of a low impact disturbance or a high level of 

preparedness to absorb disruption consequences. 

 

The resilience matrix, K, is a diagonal matrix that reflects the collection of resilience coefficients, ki, 

which represent the recovery capability of a sector i from a disruptive event. From Equation (8), lower 



values of ki suggest closer values between q(t + 1) and q(t) as this intend to decrease the contribution of 

the second term to the equation. From the published results,
(32)

 sector resilience is given by 

 

ki = ln[qi (0)/qi (Ti )]  (1/(1-a*ii)) 

    Ti     (9) 

 

Although the significance of economic loss directly shows the monetary equivalent of disaster 

impacts on the individual sectors and the system as a whole, the objective of reducing inoperability and 

using qi as a metric for evaluating the importance of deciding an inventory enhancement for sector i has 

its own implication. For example, a sector, regardless of the underlying disaster intensity, could still 

exhibit a high economic loss due to the significance of its total output. It is probable that such particular 

sector will experience a higher economic loss but its inoperability (or the production loss normalized with 

respect to total output) will remain insignificant relative to other sectors. This sector’s corresponding 

resilience coefficient (see Equation (9)) will be low enough such that the benefit of an additional 

inventory enhancement could be marginal in reducing its high economic loss. In addition, as Equation (8) 

demonstrates inoperability as a component for eventually reaching the desired ideal state over some 

period, T, inoperability is an also an excellent metric to evaluate the preparedness capability of a sector in 

terms of the period of recovery from disruptive events. Hence, the objectives of minimizing economic 

loss and inoperability are both important in achieving preparedness among interdependent sectors. 

 

2.3. Critical Asset Prioritization 

 

With the resources essential for acquiring inventory often being finite, prioritization is needed to 

allow only the most ―critical‖ sectors to receive inventory enhancement. Through the proper allocation of 

these resources, the underlying objectives of hastening recovery through the reduction of inoperability 

and minimizing overall system losses can be achieved.  

 

The following presents the development of selection mechanisms to prioritize elements based on 

multi-objective problems. 

 

Gokey et al.
(36)

 developed a prioritization methodology to help the decision makers from the Virginia 

Department of Transportation allocate their limited budget effectively with respect to bridge maintenance. 

Separate lists of the most critical bridges (each arranged in decreasing order of importance) were found 

according to two perspectives, economic and maintenance. Hence, a multi-objective approach was 

presented by integrating the ordinal ranking of the critical bridges based on these two important 

perspectives.  

 
 

Fig. 1. Equally preferred inoperability and economic loss. 

 
Each point in the graph developed by Gokey et al.

(36) 
represented the relative position of a bridge in 

terms of its ordinal ranks, with 1 being the highest or most important with respect to a perspective. A 



bridge’s economic rank and maintenance rank corresponded to the x and y coordinates of the point 

representing the bridge, respectively. Thus, the points closest to the origin are given priority to receive 

funding for bridge maintenance because they are the most important based on the two perspectives. The 

use of quarter circles illustrated how the points closest to the origin are enclosed and captured for the 

identification of a single list of the most critical bridges for the multi-objective problem. This is based on 

the assumption that the circular regions represent two perspectives having equal importance or weights.  

 

This critical asset prioritization methodology, similar to the chart depicted in Fig. 1, had very limited 

capability in terms of handling user specifications.
(37)

 It applies only to two objectives with equal 

preferences. It presents a static visualization of the critical region by arbitrarily varying the size of the 

quarter circle and manually counting the final number of enclosed critical assets. The graph is not 

supported by analytical formulations that explicitly relate the preference structure for the different 

objectives. 

 

Resurreccion and Santos 
(37,41)

 explored the use of generalizable regions (in contrast to fixed circular 

regions) to gain more flexibility in capturing critical sectors for varying preferences on two given 

objectives. That is, possibly adapting an arc orientation that captures more points closer to the x-axis (y-

axis) to highlight the higher preference for the inoperability (economic loss) objective over the economic 

loss (inoperability) objective. Figures 2 and 3 reflect these resulting arbitrary curves (represented as 

ellipses) with higher preference on the inoperability and economic loss objectives, respectively. The user-

specified values required to define these curves are prioritization scope and ELpreference. 

 

   
 
Fig. 2. DCPP with more importance to inoperability.             Fig. 3. DCPP with more importance to economic loss. 

 

Prioritization scope is the maximum permissible rank of a sector with respect to a preferred objective 

for which decision makers no longer consider such sector to be critical. That is, only sectors having ranks 

for the preferred objective that are better than the prioritization scope value (1 being the best rank value) 

can be enclosed in the ellipse. This also represents the distance of a co-vertex from the major axis of the 

ellipse whereas the preferred objective lies along its minor axis. This parameter allows the region 

enclosed by the ellipse to be increased to include more critical sectors should resource allocation fund 

also increase. 

 

The second user-specified value, ELpreference, determines the weights associated with the 

importance of meeting each objective. As there are only two objectives, they should add up to unity and 

the weight of one could be expressed in terms of the other. In the graphical user interface, only the 

ELpreference weight associated with the economic loss objective is user-specified and Qpreference, the 

weight associated with the inoperability objective is just 1 - ELpreference. Table 1 summarizes the user-



specified parameters associated with the DCPP model. (41) includes a detailed derivation and further 

explanation of the DCPP. 

 

Table 1.  Preference cases and values of ratio and prioritization scope 

 

Objective 

Preferred 

EL 

preference 

Ratio  

 

a B 

Equal 

preference 

0.5 1 Prioritization 

scope 

Prioritization 

scope 

Economic 

loss 

> 0.5 and 

≤ 1.0 
1  Prioritization 

scope  

a / ratio 

Inoperability ≥ 0 and   < 

0.5 
1  b * ratio Prioritization 

scope 

 

3. METHODOLOGY 

 

3.1. Determination of Sector Ranks 

 

3.1.1. Data 

 

Regional productivity data for the 65 sectors coded according to the North American Industry 

Classification System (NAICS) are adapted as the set of economic and infrastructure systems forming a 

region. Published data of industry-by-industry total requirements for 2009 between the 65 infrastructure 

and economic sectors for the United States from the Bureau Economic Analysis (BEA) are used to build 

the interdependency matrix. The expected output requirements and interdependency represented by this 

data are under normal operating conditions. Additional production output requirements arising from 

disastrous events will be an area for future research work.  

 

Data from the Regional Economic Information System are taken to customize the interdependency 

matrix for the Commonwealth of Virginia.
 (38)

 To complete entries for Equation (1), the gross domestic 

product by state from the BEA website is used for the consumption vector c. 

 

Finally, monthly inventory to sales ratio data from BEA with a 14-year span and 168 observations are 

utilized to generate empirical cumulative distributions for each of the 21 manufacturing and retail and 

trade sectors to model inventory uncertainty. The resulting empirical cumulative distributions are depicted 

in Figure 4. 

 

3.1.2. DIIM Implementation 

 

Equations (8) and (9) are implemented over a simulated period with one day time intervals for q 

values to generate the daily inoperability of the 65 sectors over the simulated recovery period. The initial 

inoperability (at day 0) is assumed to be proportional of each sector’s expected output, which has a 

resulting total economic loss comparable to what the state of Virginia experienced from hurricane Isabel 

in 2003. The resilience coefficients used are assessed based on the initial inoperability value. For the 

purpose of investigation, fully recovered state is assumed to be when a sector has regained an operability 

equivalent to 99.9% of its expected output prior to the disruption. 

 

From the computed daily inoperability values, Equation (5) gives the daily economic losses for each 

sector. The 65 sectors are then ranked according to their cumulative economic losses over an arbitrarily 



selected horizon that exceeds the maximum period of all predetermined sector recovery periods (i.e., the 

Ti term in Equation (9)). If it were a single objective of minimizing economic loss, this ranking would 

give top priority to the sector with the highest possible cumulative economic loss. 

 

As for the inoperability metric, the effective inoperability is obtained by manipulating Equation 5 

using published data of yearly expected output against the obtained cumulative economic losses over the 

study period. The sectors are ranked in the order of decreasing effective inoperability. The most critical 

sectors based solely on this metric are those that have the highest effective inoperability values. This 

completes the two separate lists of rankings for the multi-objective inventory preparedness problem. 

 

3.2. Inventory Model  

 

3.2.1. Inventory Cumulative Functions 

 

The processing of monthly inventory to sales ratio data from BEA resulted in the individual 

empirical cumulative probability distributions (CDFs) of each of the 21 manufacturing and retail and 

trade sectors. Sample CDFs are presented in Fig. 4. Each of the 65 sectors are coded as S1, S2, …, S65. A 

complete list and description of the sector coding system used in the case studies are found in the 

appendix of this paper. 

 

 

 
 

 
 

 
Fig. 4   Empirical Cumulative Distribution Functions 
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3.2.2. Inventory Scenarios 

 

Two scenarios to investigate the impact of using stochastic inventory models are defined as 

Scenario 0, a DIIM that does not take into account the uncertainty in inventory level behavior and 

Scenario 1, a DIIM that incorporates uncertainty in the inventory levels. These scenarios are developed to 

serve the purpose of validating how individual sectors may use portions of their inventory levels as an 

adaptive response to counter threats of inoperability as a consequence of disrupted sector sources.
(42)   

 

Since the composition of critical sectors may vary depending on the decision-maker’s objective 

preferences
(41)

, three additional scenarios are evaluated for different ELpreference values to determine the 

impact of enhancing the level of inventory in critical manufacturing sectors. The baseline for comparison 

for the last three scenarios is scenario 1 which assumes that a ―no inventory enhancement policy‖ is 

equivalent to the current levels of inventories in the economic sectors. Its purpose is to provide a 

reference for the evaluation of the performance of applied inventory-enhanced policies for the stochastic 

inventory model. The resulting inoperability of each sector is obtained as a proportion of the sector’s 

expected output before the disruption and matches the resulting total regional economic loss brought 

about by hurricane Isabel to the state of Virginia in 2003. Further, the study assumes that complete 

recovery is when sector inoperability has been reduced back to an acceptable level of recovery (or when 

inoperability asymptotically reaches 0). 

 

In summary, the five scenarios evaluated are: 

 

 Scenario 0 - No Inventory Model Scenario 

 Scenario 1 – Current Inventory Scenario (Baseline Scenario) 

 Scenario 2 – Enhanced Inventory at ELpreference=0.2 (Reduction of inoperability is 

preferred over economic loss) 

 Scenario 3 – Enhanced Inventory at ELpreference=0.5 (Reduction of inoperability and 

economic loss are equally preferred) 

 Scenario 4 – Enhanced Inventory at ELpreference=0.8 (Reduction of economic loss is 

preferred over inoperability) 

 

 Simulation of the above scenarios and discussion of associated results are found in subsequent 

sections of this paper. 

 

3.2.3. Simulation 

 

The DIIM computer code was ran in Matlab and the random number generator in it was adapted for 

the simulation of inventory levels. A simulation run is a 20-level, 10 replications per level design to 

specifically store the maximum economic loss incurred for every replication. This is to capture upper 10 

percentile for an extreme-event analysis.  The program was run to account for 5000 replications for every 

defined stochastic inventory scenario. 

 
4. RESULTS AND DISCUSSION 

 

4.1. Stochastic Inventory Model 

 

Results (fig. 5) show that scenarios 0 and 1 differ in the sets of the 10 most critical sectors for 

each objective. There is evidence that shows the significance of incorporating uncertainty in inventory as 

it affect economic losses and sector inoperability. Consistent with previous findings
(41)

, more 

manufacturing sectors experience the highest inoperability values than service and infrastructure systems. 



However, by incorporating the stochastic behavior of inventory, even at the current level data, the 

capacity of inventories to increase disaster preparedness is supported by the drastic reduction in the 

number of critical manufacturing sector from scenario 0 (e.g. 90% in the top ten are from manufacturing 

sectors) into only 3 after considering current inventory levels. Also, there is a significant from $760M to 

$623M in total regional economic loss between the two scenarios. The cushioning effect of inventory is 

evident from the inoperability curve for S8 for scenario 1. It had the 2
nd

 highest initial inoperability of 

almost 13% in scenario 0 but was not inoperable at the time that the simulated disaster struck from 

scenario 1. S8 experienced an inoperability level of no more than 8% throughout the recovery period. 

Finally, for the worst ten % of the cases based on the sample, extreme-event average economic loss rises 

to $635M from $623M.  

 

 

DIIM w/out Stochastic Inventory Model 

(Scenario 0) 

DIIM w/ Stochastic Inventory Model 

(Scenario 1) 

  

  
Total economic loss = $760M Average total economic loss = $623M 

Extreme-event average economic loss = $635M 

 

Fig. 5. Inoperability and Economic Loss Behavior w/out and w/ Stochastic Inventory Model 

 

 

4.2. Enhanced Inventory Scenarios 

 

 Applying the DCPP to the rankings resulting from part 4.1 for scenario 1, table 2 summarizes the 

critical manufacturing and retail and trade sectors identified for the chosen enhanced inventory scenarios. 

 

Table 2. Scenario Description  
 

 ELpreference value Critical manufacturing sectors 

Scenario 2 0.2 S8, S15, S23 

Scenario 3 0.5 S8, S15, S19 

Scenario 4 0.8 S19, S25, S27, S28 

 

 



4.2.1. Scenario 2 – Enhanced Inventory at ELpreference=0.2 

 

 Among the enhanced inventory scenarios considered, scenario 2 exhibited the least reduction in 

expected economic losses as well as having the highest extreme-event mean for economic loss. A 

probable cause would be the lower ELpreference specification set for this the scenario as compared to 

scenarios 3 and 4. However, no similar pattern follows with respect to sector inoperability. What can be 

said is that there is evident improvement in the individual inoperability behavior of the critical 

manufacturing sectors and an average improvement of 2% functionality (e.g. a drop of .02 inoperbliity to 

individual sectors as a result of interdependence (fig. 6).  

 

 

 
ELpreference=0.2 w/out Inventory Enhancement ELpreference=0.2 w/ Inventory Enhancement 

  

  
Average total economic loss = $623M 

Extreme-event average economic loss = $635M 

Average economic loss = $607M 

Extreme-event average economic loss =$618M 

  

Fig 6. Inoperability and Economic Loss Behavior w/ Stochastic Inventory Model (ELpreference=0.2) 

 

 

 

4.2.2. Scenario 3 – Enhanced Inventory at ELpreference=0.5 

 

 Similar to scenario 2, there were also three critical manufacturing sectors found for scenario 3 but 

enhancing the inventory level of sector S19 instead of S23 has reduced economic losses by at least $16M 

more. The variability of individual sector inoperability has been reduced but, in general, the scenario did 

not have the same effect on the mean which remained about the 10% level. 

 

 

 

 

 

 

 



ELpreference=0.5 w/out Inventory Enhancement ELpreference=0.5 w/ Inventory Enhancement 

  

  

Average total economic loss = $623M 

Extreme-event average economic loss = $635M 

Average economic loss = $602M 

Extreme-event average economic loss = $605M 

 

Fig. 7. Inoperability and Economic Loss Behavior w/ Stochastic Inventory Model (ELpreference=0.5) 

 

 

 

4.2.3. Scenario 4 – Enhanced Inventory at ELpreference=0.8 

 

 It is important to note that in all the enhanced inventory scenarios considered, the critical 

manufacturing sectors experienced a delay in the spike of inoperability since the sectors were able to use 

their current inventory to remain in operation. The interdependency took its toll when the inoperability 

levels rise as a result of the diminishing supply of inventory and the directly hit sectors remain inoperable. 

It also can be observed that there is a unified direction for individual sector inoperability as the curves 

(figs. 6, 7 and 8) almost coincide as the sectors move towards recovery. For this particular scenario, it has 

a comparably low total economic loss indicating that the minimization objective at an ELpreference of 0.8 

has been met. This can only be possible as the sectors attain earlier recovery which is supported by the 

lowest range of inoperability even when the objective preference if for the minimization of economic loss.   

 
 

ELpreference=0.8 w/out Inventory Enhancement 
ELpreference=0.8 w/ Inventory Enhancement 

  



  
Average total economic loss = $623M 

Extreme-event average economic loss = $635M 

Average economic loss = $609M 

Extreme-event average economic loss = $611M 

 

Fig. 8. Inoperability and Economic Loss Behavior w/ Stochastic Inventory Model (ELpreference=0.8) 

 

 

5. CONCLUSIONS AND AREAS FOR FUTURE RESEARCH 

 

In this research, we integrated a stochastic inventory model to interdependency analysis and critical 

sector prioritization. In particular, we derived empirical cumulative distribution functions to model the 

inventory levels of manufacturing and retail and trade sectors. We investigated how inventory serves as 

resiliency adjustment medium that delays the propagation of disaster consequences while certain sectors 

of an economic region remain inoperable. We generated and evaluated inventory enhancement policies by 

revisiting the DIIM and the DCPP. With the inclusion of published inventory levels for estimating 

disaster scenario parameters and user-elicited preference structure pertaining to the DIIM objectives (i.e., 

inoperability and economic loss), we obtained a closer replica of actual regional sector relationships.  

 

In anticipation of disasters, such as hurricanes, results from the scenarios reveal that maintaining 

enhanced levels of inventories can significantly reduce associated losses and expedite recovery. Although 

inventory minimization in the context of JIT has proven to be cost-effective for ―as-planned‖ scenarios, 

prudence in its implementation must be exercised particularly in times of disasters (despite their 

seemingly low likelihoods). More so, caution must be taken as extreme-event conditions prove to be more 

costly even with enhanced levels of inventory. 

 

The hurricane-based scenarios performed in this research have exposed a host of other potential 

contributions in the area of disaster preparedness and recovery. Although the focus of the current 

application is on enhancing inventory levels in Virginia’s manufacturing sectors, a complementary 

analysis is needed to manage the resilience of workforce sectors—particularly those involved in the 

provision of essential services to further expedite recovery. Sensitivity analysis of inoperability and loss 

reduction objectives with respect to recovery assumptions can be performed to generate robust resource 

allocation policies. Finally, the flexibility and scalability of the current methodology and resulting 

decision support system can also be extended to accommodate analysis of other regions and other disaster 

scenarios.
(40) 
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