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Abstract 

 

The paper pursues two goals. First, to apply Bayesian statistics for updating 

IO tables for 1996-2004 period, i.e. within “old” definition of industries. Second, 

to estimate IOT for 2004-2010, in new definition of activities, based on national 

accounts and industries-level data. Both goals are experimental since as we know 

Bayesian statistics is not yet in common use here. However, we believe, that this 

approach has several advantages over R.A.S. and Maximum entropy methods. 

First, it is a natural and flexible way to incorporate any kind and amount of 

information either as a prior distribution or observable data. Second, Bayesian 

methods provide full density profile on estimated parameters with covariates. And 

third, from computational perspective minimizing highly dimensional function 

with hundreds of parameters, like the cross entropy measure, might be much harder 

than evaluation of posterior distribution using modern sampling algorithms, such 

as Markov Chain Monte Carlo methods. Comparison of performance of various 

methods will be provided. 
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Introduction 
Russian statistical system is under transition for almost two decades from 

Soviet type Material Product System to SNA. The main transitional break in 

methodology took place in 2004-2005 when Russian statistical agency “Rosstat” 

started reporting based on the new definition of economic sectors consistent with 

NACE
§
, and stopped reporting using definition of activities inherited from the 

Soviet statistical system. This methodological break splits all industry level 

statistics into two periods with little consistency between each other. As a result, 

Rosstat stopped updating IOT in 2003, based on the only benchmark survey 

conducted in 1995. The next survey is scheduled for 2012 with expected 

publication of results in 2015 or later. Official backward estimation is not 

expected. Therefore Russian statistics will miss IOT at least from 2004 to 2010. 

Also quality of officially updated IOT from 1996 to 2003 based on 1995 

benchmark is questionable. 

… 

The paper is organized as follows. First we discuss a conceptual framework 

for updating IOT using Bayesian statistics, testing the methodology on artificial 

data in comparison with RAS and Maximum entropy methods, and applying it for 

updating Russian IOT for 2003. In the following section we discuss a possibility to 

estimate IOT for 2004-2010 years based on available information from National 

accounts, sequentially introducing additional information (constrains) to the 

estimation process. 

 

Updating IOT with Bayesian methods 
In this section we discuss a methodology for updating IOT using Bayesian 

framework and Monte Carlo Markov Chains method as alternative to RAS and 

maximum entropy methods. 

                                           
§
 Statistical classification of economic activities in the European community (in French: Nomenclature statistique 

des activités économiques dans la Communauté européenne). 
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Conceptual framework 

The basic problem of updating an IO matrix or more generally a SAM can 

be formulating as follows: find an unknown IO matrix with known sums of rows 

and columns and a known IO matrix for some previous year. Mathematically 

speaking, we need to find a matrix A with following restrictions: 

, ,

,

, 0i j j i ji

Y AX

a a a



 
         (1) 

where Y, X are known vectors and ja  are known sums of columns. And there is a 

known matrix 0A  from previous year. In classical framework the solution of this 

problem is usually reduced to finding such matrix A, which minimize some 

distance function from known matrix 0A  under system of restrictions (1). 

In this paper we propose to follow Bayesian methods in estimation of IO 

tables. Bayesian approach provides a natural and flexible way to incorporate any 

kind and amount of information either as a prior distribution or observable data. 

Bayesian methods also provide full density profile on estimated parameters with 

covariates.  

In Bayesian econometrics it is assumed that a researcher has some prior 

beliefs about estimated parameter vector   before observing the data, which could 

be summarized by prior density function ( )p  . When new data comes the 

researcher update the beliefs about parameters according Bayes theorem: 

( | ) ( )
( | ) ( | ) ( )

( | ) ( )

L Y p
p Y L Y p

L Y p d

 
  

  
 


                                                           (2) 

where ( | )p Y  is the posterior density and ( | )L Y   is the likelihood.  

Bayesian inference is easy since the posterior density contain all the 

information one may need. The researcher could be interested in point estimate, 

credible set and correlation of parameters and construct it from posterior 

distribution. In Bayesian framework point parameter estimate is chosen to 

minimize expected loss function with expectation taken with respect to the 
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posterior distribution. The most common loss function used for Bayesian 

estimation is the mean square error and the corresponding point parameter estimate 

is simply the mean of the posterior distribution. 

Despite the attractiveness of this method, in the past, Bayesian inference was 

not so popular due to numerical integration needed in equation (2). In some cases 

when the prior on   is conjugate with posterior on   the posterior density can be 

obtained analytically. But in more general setup we know posterior density up to 

normalizing constant. Recently developed computer-intensive sampling methods 

such as Monte Carlo Markov Chain (MCMC) methods have revolutionized the 

application of Bayesian approach. MCMC methods are iterative sampling methods 

that allow sampling from posterior distribution ( | )p Y . 

Heckelei et al. (2008) shortly discuss IOT update with Bayesian method and 

give an example on artificial data. In this paper authors present a Bayesian 

alternative to the cross-entropy method for deriving solutions to econometric 

models represented by undetermined system of equation. In the context of 

balancing an IO matrix they formulate posterior distribution in the following way: 

( | ) ( ) ( )p z data I z p z                                                                                      (3) 

( )z vec A                                                                                                        (4) 

Equation (4) means vectorization of matrix A. In equation (3) ( )p z  is some 

prior distribution, ( | )p z data  is the posterior distribution and ( )I z  is the indicator 

function that assigns weights of 1 if z satisfies the constraints (1) and 0 otherwise. 

Authors interpret the indicator function as the likelihood function. As estimate of z 

Heckelei et al. (2008) consider mode of posterior distribution which could be 

found with some optimization routine. And they illustrate proposed method 

balancing small 4x4 matrix with independent normal prior taking 0A  as prior 

mean.   

But proposed by Heckelei et al. (2008) method actually reduced to 

minimization yet another distance function from known matrix 0A . In this paper 
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we concentrate on finding full density profile of posterior distribution with MCMC 

techniques and applying it to real data.  

For convenience we consider equality and inequality constraints of the 

system of restriction (1) separately. Inequality constrains could be simply 

introduced in prior distribution by assigning 0 value of density in inadmissible 

domain. For example one could specify independent truncated normal distribution 

between 0 and 1 for each parameter of the matrix A. On the other hand if we have 

certain beliefs about some parameters we could introduce it as additional linear 

equality constraints. For example it is convenient to assign 0 values for elements of 

unknown matrix A if corresponding elements in the matrix 0A  are zeros. 

At the next step let us consider linear equality constraints and rewrite it in 

the following form: 

Bz T                                                                                                             (5) 

where B is the known matrix, T is the known vector and  ( )z vec A  is the unknown 

vector of estimated parameters. System (5) represents undetermined linear system 

of equations. And from linear algebra it is known that any solution of linear system 

(5) could be written in the form: 

(1) (1)z z F                                                                                                     (6) 

where z  is the particular solution of the system (5) and (1)F  is the fundamental 

matrix of solutions of homogeneous system 0Bz  . And any vector (1)  solves 

system (5). The particular solution and the fundamental matrix could be obtained 

by Gaussian elimination algorithm.   

Columns of the fundamental matrix (1) (1) (1)

1[ ,.., ]kF f f  represent basis of the 

Euclidean subspace. At the next step we could find the basis of the orthogonal 

complement of this subspace (2) (2) (2)

1[ ,.., ]n kF f f  . Let us consider linear 

transformation of the original space: 

(1)
1

(1) (2)

(2)
( )F F z z





 
     

 
                                                                                (7) 

In the new system of coordinates prior density has the following form: 
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(1) (2) (1) (1) (2) (2)( ) det ( )Zp F F p z F F                                                            (8) 

If we specify posterior distribution in the form (3) than posterior distribution 

will be the conditional distribution of random vector (1)  given the zero value of 

the random vector (2) : 

(1) (2)

(1) (2)

|
( | ) ( | 0)p data p  
                                                                         (9) 

If prior distribution is multivariate normal distribution, posterior distribution 

of vector (1)  is also multivariate normal and we could compute posterior mean and 

covariance matrix analytically. But it doesn’t guarantee nonnegative values of 

estimated matrix A.  In general setup we use truncated prior distribution and know 

posterior density up to normalizing constant. To conduct inference about 

parameters we approximate posterior distribution (9) applying MCMC sampling 

methods. After generating the sample of vectors (1)  we could move to initial space 

using formula (6) and obtain the sample of vectors z, which represents elements of 

unknown matrix A. 

To obtain sample from posterior distribution for examples in this paper we 

perform the Metropolis sampling algorithm, which is a special case of a broader 

class of Metropolis-Hasting algorithms, and apply a standard single-site updating 

scheme. As a proposal density for generating candidate parameter values we use 

normal distribution for each parameter of vector (1) . Standard deviations of the 

proposal density are iteratively selected during adaptive phase to guarantee 

acceptance rate for each parameter to be between 35 and 45 percent.  

 

Monte Carlo Experiments 

To illustrate the proposed Bayesian method for updating IO matrices in this 

section we perform Monte Carlo experiments and compare results with the RAS 

and the cross-entropy methods. In Bayesian framework we assume that there exist 

several additional known matrices 1,.., TA A  from all previous years and they could 

provide additional information for the estimation purpose. The main hypothesis of 
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our set up is that incorporating additional information in Bayesian framework 

about variation of IO coefficients in time could improve estimate of unknown 

coefficients. This information could shed light on relative stability of IO 

coefficients. 

To perform Bayesian method we need to specify some prior distribution for 

parameters and we assume independent truncated normal distributions for each IO 

coefficient and use coefficients of last known IO table as prior mean. To specify 

standard deviations in prior distribution we estimate standard deviation for each 

coefficient from all available matrices 0 1, ,.., TA A A   with a following formula:  

2
0 0

, , ,

1 1

1

t t

i j i j i j

t T t T

a a
T T


 

 
  

 
                                                                      (10) 

So in Monte Carlo simulations we would assume that we don’t know the 

true data generating process and apply the same procedure for all data sets. And for 

robustness of results we experiment with different stochastic processes for IO 

coefficients.  

We perform 10 000 Monte Carlo experiments. Monte Carlo are carried out 

by randomly generating (data generating process would be described later) of six 

4 4  matrices 4 0,.., ,A A A . Than we generate randomly vector X and compute vector 

Y from equation (1). In the next step we treat IO matrix A as unknown and estimate 

it with known vectors X, Y and matrices 4 0,..,A A . Bayesian method is performed by 

assuming independent normal distribution for each parameter as prior distribution 

with 0A  as prior mean and estimated standard deviation for each coefficient from 

matrices 4 0,..,A A  as prior standard deviation.  

To compute posterior distribution of coefficients we apply Markov chain 

Monte Carlo (MCMC) method with one chain and sampled length of 50 000 

simulation. In each experiment we also estimate matrix A with the RAS and the 

cross-entropy methods using 0A  as prior information about unknown coefficients. 

To compare relative performance of methods we need to specify some measure of 

closeness between true coefficients of matrix A and its estimated values. In contrast 
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to the RAS and the cross-entropy method, Bayesian approach provides full 

probability profile of estimated parameters and as point estimates of coefficients 

we choose the mean of posterior distribution.  To compare results for each of the 

methods in each Monte Carlo experiment we compute following statistics: 

1. Root mean square error: 

 
24 4

1 1
ˆ1/16 ij iji j

RMSE a a
 

                                                                    (11) 

2. Mean absolute error: 

4 4

1 1
ˆ1/16 ij iji j

MAE a a
 

                                                                             (12) 

3. Mean absolute percentage error: 

4 4

1 1

ˆ
1/16

ij ij

i j
ij

a a
MAPE

a 


                                                                          (13) 

And now we describe data generating process. For robustness of results we 

experiment with stationary and nonstationary processes for IO matrix coefficients. 

The main assumption in data generating is that there are different variances of error 

terms for coefficients stochastic processes. Coefficients are generated only for the 

first three rows of the matrix tA  and the last element is computed as 

3

4, ,1
1t t

j i ji
a a


  . And if one of the coefficients falls out the boundary restrictions 

we treat the current experiment as unsuccessful and through it out. We experiment 

with following data generating procedures: 

1. Independent IO coefficients. We assume that each coefficient 
,

t

i ja  has 

normal distribution 2

, , ,( , )t

i j i j i ja N m  . At the first step of generating data in one 

Monte Carlo experiment we generate mean parameters ,i jm  from uniform 

distribution [0,0.5]U . Than we compute standard deviation as 
, , ,i j i j i jk m  , where 

,i jk  are random variables from uniform distribution [0,0.05]U . So we assume that 

standard deviations of simulated coefficients are not greater than 5% of its value. 

And at the last step we generate 
,

t

i ja  from the distribution 2

, ,( , )i j i jN m  . 
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2. AR(1) process for IO coefficients. We assume that each coefficient 
,

t

i ja  are 

from the following stationary process:  

1 2

, , , , , ,(1 ) , (0, )t t t t

i j i j i j i j i j i ja m a N                                                            (14) 

For generating parameters 
,i jm  and  

,i j  we apply the same procedure as in 

the previous point. For simplicity we fix parameter 0.7    and the initial 

conditions for the 4

,i ja   equal to the unconditional mean ,i jm . And at the last step we 

generate 
,

t

i j  from the distribution 2

,(0, )i jN  . 

3. Random walk process for IO coefficients. We assume that each coefficient 

,

t

i ja  are from the random walk process:  

1 2

, , , , ,, (0, )t t t t

i j i j i j i j i ja a N                                                                           (15) 

At the first step we generate the initial conditions for the 4

,i ja  using the same 

procedure for generating ,i jm  in previous points and analogically generate values 

for standard deviations 
,i j . And finally generate realizations 

,

t

i j  from the 

distribution 2

,(0, )i jN  . 

Table 1 summarizes relative performance of the Bayesian method in 

comparison with the RAS and the cross-entropy methods. Results indicate that the 

Bayesian approach outperforms the competing methods according to the 

introduced measures of fit. In the case of the independent process Bayesian method 

wins the RAS and the cross-entropy methods in 70-80 percent of simulations and 

in the case of random walk wins in 60-70 percent of simulations. 

 

Table 1. Relative performance of Bayesian method. 

 

  Independent process AR(1) process Random walk 

Entropy RAS Entropy RAS Entropy RAS 

RMSE 72.2% 73.2% 67.3% 67.8% 62.0% 63.0% 

MAE 76.0% 77.8% 71.2% 73.1% 66.1% 67.7% 

MAPE 76.2% 78.1% 72.4% 74.1% 67.1% 69.0% 
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Figure 3 - Figure 5 in appendix demonstrate scatter plots of the RMSE, 

MAE and MAPE statistics for the Monte Carlo experiments for each data 

generating process. On the Y-axis is the corresponding statistic obtained using the 

Bayesian approach. On the X-axis is the statistic obtained using one of the 

competing methods. All graphs demonstrate that most of the points lie below the 

solid line at 45 degrees. The Monte Carlo experiments show that Bayesian method 

with additional information about variation of IO coefficients could potentially 

improve estimate of unknown IO matrix. 

 

An example: Updating 2003 IO table for Russia 

In this part of the work we illustrate an application of the proposed method 

to real data. There are available official Russian publications of IO accounts for the 

period from 1995 to 2003. These accounts used the All-Union Classifier of 

Economy Branches (OKONH). At different years Rosstat published IO accounts 

for different number of industries and the longest period of the consistent 

symmetric IO tables with 22 industries is the period from 1998 to 2003. 

In our empirical implication we use symmetric IO tables at basic prices from 

1998 to 2002 for the estimation of IO matrix coefficients of 2003. We assume that 

we know only vectors of total outputs and intermediate demand. Value added we 

also treat as unknown and estimate corresponding coefficients of IO matrix. We 

apply the same procedure for estimation as in the Monte Carlo experiments: we 

assume independent truncated normal distributions for each IO coefficient and use 

coefficients of 2003 IO table as prior mean. To specify standard deviations in prior 

distribution we estimate standard deviation for each coefficient on the period from 

1998 to 2002. To compute posterior distribution of coefficients we apply Markov 

chain Monte Carlo (MCMC) method with one chain and sampled length of 300 

000 simulation. 

Figure 6 in appendix shows scatter plot of the posterior mean of the 

estimated coefficients in comparison to the true values. All points are concentrated 
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around the solid line at 45 degrees and estimates are close enough to the true 

values. We also compare the performance of the Bayesian method to the RAS and 

the cross-entropy methods as in the Monte Carlo experiments. Table 2 shows 

closeness statistics of the three methods. 

 

Table 2. Results of updating 2003 IO table. 

  RMSE MAE MAPE RMSPE 

Bayes 0.0074 0.0029 0.1844 0.4502 

RAS 0.0067 0.0026 0.1728 0.4604 

Entropy 0.0065 0.0026 0.1797 0.4552 

 

where RMSPE is root mean square percentage error: 

2

1 1

ˆ
1/ ( * )

m n ij ij

i j
ij

a a
RMSPE m n

a 

 
   

 
                                                      (16) 

The main idea of computing the additional closeness statistic is that 

estimated standard deviations are approximately proportional to the coefficients 

values. And all other things being equal, Bayesian method should outperform the 

other methods according to this statistic because of the corresponding specification 

of the prior distribution. Nevertheless Bayesian estimate demonstrates the poorest 

results according the other measures of fit. But this result is not surprising because 

only the 1995 IO accounts were constructed on the basis of the detailed survey 

method. The other IO accounts based on nonsurvey methods. 
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Bayesian estimation of IOT with limited information 
In this section we consider a standard IOT exercise: 

 

Y = A * X, 

 

where Y is an intermediate demand, X is a gross output, and A is a IO-

matrix. 

We assume that A is unknown, and are trying to get any inference regarding 

A based on known Y and X. It should be noted, we are not trying to estimate A, 

but we are interested in tolerance range for every cell of A, if we don’t know any 

other information except Y and X. 

Based on the methodology discussed above, we use MCMC method with 

uniform priors (0,1) to sample A matrix for Use table in 2006, OKVED (NASE) 

classification, 15 products by 15 activities. The resulting distribution for every cell 

of A is presented on the Figure 7 in Appendix. As it follows from the figure, the 

most distributions are asymmetric and skewed to the zero. The asymmetry is easy 

to explain since the cells of the table are linearly dependent. Large numbers (closer 

to the unit) are not possible in all cells of a column at one time, whereas low values 

(closer to zero) are very likely in most cells of a column in one time. 

The Figure 1 below shows distribution of pairwise correlation coefficients 

between cells (225 combinations). Figure 2 represents scatter plots for 9 selected 

correlation coefficients. 

As it follows from the Figure 1, most of the correlation coefficients values 

are close to zero (not surprising for a sparse matrix). Some of the coefficients have 

relatively large absolute values, therefore any additional information imposed on 

such coefficients as a prior information, will impose constrains on other cells of the 

matrix. Figure 8 and Figure 9 in the Appendix show changes in the estimated 

distributions in a case when we provide “narrow” prior information for one of the 
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coefficients of the table. The information about the coefficients (A(D,D) in our 

case) significantly affects distributions of all other coefficients. 

 

Figure 1. Distribution of pairwise correlation coefficients between estimated cells of USE-2006 matrix. 
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Figure 2. Correlation scatterplots for selected cells of the estimated Use table. 

Preliminary findings 
- The discussed Bayesian methodology is a feasible alternative to RAS, 

Maximum entropy, and other methods applied for updating, balancing and 

updating input-output tables. 

- The Bayesian techniques have several advantages over other methods:  

o Flexibility in an experiment design: MCMC method allows working 

with very wide range of functional forms, distributions, and 

constrains. 

o Accommodation of various types of information into estimation 

process: through priors. 

o Lower sensitive to data availability and data quality: uncertainty in 

data can be naturally introduced into estimation process. 

o Provide full density profile on estimated parameters with covariates: 

in contrary to standard point estimate methods, MCMC output is a 

sample of values satisfying the considered model, data and priors; the 
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sample can be used for estimation of shape of the parameters 

distribution, confident intervals, correlations and covariates. 

- As demonstrated by Monte-Carlo experiment, the proposed Bayesian 

methodology outperforms RAS and Maximum entropy methods in average 

in 70% cases (based on 10 thousands experiments). 

- Some inference can be drawn regarding IOT coefficients based on 

information on columns and rows sums of the matrix. Any additional 

information about IOT coefficient(s), former matrices, variance of the 

coefficients, might significantly improve the estimate. 

From our point of view, Bayesian techniques have a great potential as application 

to IOT. 
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Appendix 

 
Figure 3. Independent IO coefficients, plots of performance statistics 
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Figure 4. AR(1) process for IO coefficients, plots of performance statistics 
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Figure 5. Random Walk process for IO coefficients, plots of performance statistics. 
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Figure 6. Comparison of the Bayesian estimate of the IO matrix coefficients for 2003 to the true values. 
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Figure 7. Estimated distributions (blue) of USE table coefficients in a case when intermediate consumption and intermediate demand by industries are known, and actual 

values (red). 
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Figure 8. Estimated distributions (blue) of USE table coefficients with added information for Use(D,D) coefficient. 
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Figure 9. Comparison of estimated coefficients with (green) and without (grey) added information for Use(D,D) coefficient, and actual values (red). 


