Using the Regional Social Accounting Matrix to Forecast 
Household Expenditures: a Fuzzy Approach
Introduction

A Social Accounting Matrix (SAM) is a conceptual framework to explore the effects of various exogenous shocks on changes in a socio-economic system based on its structural characteristics. Compared to input-output (IO) table, a SAM shows not only the interindustry structure of the economy but the linkage between economic structure and an income generation, distribution, redistribution and use by institutional sectors. The household sector is a key element of this socio-economic framework. According to J. Round (2003) noted, an overriding feature of a SAM is that households and household groups are at the heart of the framework; only if there exists some detail on the distributional features of the household sector can the framework truly earn the label ‘social’ accounting matrix. 

Using IO multipliers, we estimate multiplier effects of exogenous shocks induced by the circular flow of commodities between production activities. SAM multipliers enhance knowledge about the structural features and interdependencies of an economy representing additional effects, induced by the circular flow of income between activities, factors and institutions. Considering that the construction of a SAM is based on the principle of equality incomes to expenditures, SAM multipliers are used to estimate the effect of different shocks on incomes as well as on expenditures of institutional sectors. In this article we consider such effects to forecast household expenditures because expenditures of this sector represent largest share in total expenditures for any regional economy in the USA. 

One of the main issues when estimating multiplier effects is the incompleteness and inaccuracy of SAM databases. Researcher highlight various causes of this issue: using different sources to build a SAM, sampling and non-sampling measurement errors, lack of data, and updating data irregularly. As S. Robinson et al. noted (1998), updating an input-output table is a special case of the general SAM estimation problem. Input-output matrices as the key sub-matrices of SAM are updated for a long period of time (usually five years or more). Other SAM data, such as national income and product data, are available annually, but with a lag. As a result, we have an inconsistent out-of-date SAM database to forecast changes in the socio-economic system using SAM multipliers. 

There are different approaches to handle the issue of updating SAM data to estimate SAM multipliers: RAS, GRAS, Cross-Entropy (CE), and statistical methods. Some of them are based on the assumption that SAM is deterministic, other ones assume the stochastic nature of information contained in the SAM. Analysis of existing techniques indicates that deterministic techniques do not generate the sufficient results when we starts from an inconsistent SAM, with incomplete knowledge about both row and column sums and flows within the SAM as it often happens in practice. The attempts to apply statistical methods shows the complication of yielding correct estimations because little is known about the error structure and data are scarce. 

Assuming the incompleteness and inaccuracy data when building and updating the SAM cause of using a wide variety data sources, we suggest the evolution of the idea of Thorbecke (2003) about estimating cells of the SAM based on knowledge of experts by using the fuzzy set theory (Zadeh, 1975). We employ the fuzzy set theory to verbally assess each cells of a SAM and to transform the expert assessment of SAM elements to the quantitative scale. In this article we represent the fuzzy approach when estimating elements of an input-output matrix as a core of the SAM direct coefficients matrix. Obtained by this way, the fuzzy SAM is used to forecasting of the influence of different exogenous shocks on changes in key indicators of a socio-economic system, in particular, in household expenditures. Fuzzy results are compared with "true" ones estimated based on real SAM. Having regard to the special problem of building and updating SAM tables at the regional level, this approach is considered for the New Jersey SAM in 2010.
2. Review of existing approaches to SAM estimation


Effectively using a SAM as the underlying data set for multiplier analysis of  the influence of exogenous shocks on the socio-economic system should be based on incorporate and error-free information. In practice, collecting SAM data is associated with a number of problems which result is inaccuracy and incompleteness of the information to estimating multipliers. Based on analysis of different issues to obtain the "correct" SAM database we distinguish three groups of such problems: an accuracy of data, an actuality of data, and a completeness of data. 

The problem of an accuracy of data appears because of the use of a variety of data sources to built the SAM. The first source is input-output tables which form a key sub-matrix of SAM. Other statistical sources are national income and product data, e.g., censuses of manufacturing, labor surveys, agricultural data, government accounts, international trade accounts, and household surveys. As a result, the initial SAM being a whole array of very different data sets (Throbecke, 2003) contains various sampling and measurement errors. 


The problem of an actuality of data occurs when updating various sets of SAM data gathered over different intervals. According to M. Lahr (2007), the formation of IO tables takes at least seven years from survey to production in the USA as well as in many other countries. National income and product data are usually updated annually, but with different time lags, depending on the source. Thus, additional efforts are required to reconcile heterogeneous data sets of the SAM, collected over different periods of time.

The problem of a completeness of data is usually associated with the impossibility of obtaining some official information to build the SAM. These can be the data for certain cells or sections of the SAM as well as the information for the whole SAM. This problem is especially urgent on the regional level. For example, there are no published regional SAM in the United States, so collecting and reconciling information to build them requires special efforts. In addition, smaller industries are not represented by enough establishments to make a reasonable statistical survey.


To solve these problems, we need to find a technically efficient and cost-reasonable approach to use an inaccurate and incomplete initial information to estimate SAM multipliers with sufficient accuracy. Analysis of existing approaches indicates that the greatest attention of researchers is focused on finding an efficient way of updating and balancing a SAM database based on statistical information that is already available. Let's consider the most well-known of these approaches.
RAS approach. 

RAS is a bi-proportional technique for updating a SAM direct coefficients matrix given knowledge about row and column sums of a transaction matrix for a recent year and an existing direct coefficients matrix for a base year. Initially the RAS was developed for updating IO matrices. The literature on using this technique for IO data was thoroughly reviewed by K. Polenske (1997). Eventually, the RAS as a simple and inexpensive technique has been widely used for updating SAM. 


One of the main benefits of the RAS approach is updating a SAM matrix on the basis of new data for row and column sums using a simple iterative procedure. The methodology of the RAS techniques for updating US tables is represented by Lahr (2007). This approach works under the following conditions (Bacharach, 1970):

1. All row and column sums are known.
2. All row and column sums as well as elements of SAM direct coefficients matrix should be strictly positive values.

These RAS requirements are not always feasible. In many cases SAM matrices include zero or negative elements that can cause problems in some of the estimation techniques and also may cause problems of interpretation in the coefficients. Developed by Günlük-Senesen and Bates (1988) the GRAS approach allows the use of a bi-proportional technique for balancing and updating a SAM with both positive and negative elements. Later, this approach was re-discovered and more rigorously formalized by Junius and Oosterhaven (2003). However, as notes U. Temurshoev et al. (2013), the GRAS analytical solution and algorithm assume that every row and every column of a matrix to be balanced has at least one positive element. It is not always possible in practice; for example when dealing with large-scale data sources such as input–output tables, supply and use tables, social accounting matrices, or any other tables.

The GRAS as well as the RAS approach is based on the assumption that an initial SAM is balanced. Thus, these methods do not concern the problem of  either an accuracy or a completeness of data focusing only on the problem of an actuality of data by updating structural linkages between activities, factors and institutions using new information about row and column totals. According to the opinion of researchers of this issue, there is not enough information to identify the coefficients. Moreover, these techniques do not generate the sufficient results when we starts from an inconsistent SAM, with incomplete knowledge about both row and column sums and flows within the SAM as it often happens in practice (Robinson et al., 2001). The “Сross entropy” (CE) approach is developed to handle this issue.
  
“Сross entropy” (CE) approach


The CE approach is developed for estimating a consistent SAM from inconsistent data with errors (Robinson, Cattaneo and El-Said, 1998, Robinson and El-Said, 2001). This method represents a considerable extension and generalization of the standard RAS methodology to situations where there are different kinds of prior information than knowledge of row and column sums.


The CE approach aims to reduce the entropy of the system as a measure of its information uncertainty (Shannon, 1948). Based on the Kullback-Leibler (1951) information theorem, this approach minimizes the cross entropy between the probabilities that are consistent with the information in the data (pi) and the prior information (qi) (Kapur and Kenavasan, 1992):
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where I(p:q) is the Kullback-Leibler (1951) measure of the “cross entropy” (CE) distance between two probability distributions.

The CE approach was used by Golan, Judge, and Robinson (1994) to estimate the coefficients in an input-output table. They solved the problem of finding a new set of technical coefficients by using the criterion of minimization to measure the cross entropy distance between the prior 
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 and the new estimated coefficient matrix A:
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subject to
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where 
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 - current sum for column j.

Robinson S., Cattaneo A., and El-Said M. (1998) extended the CE approach to generate a balanced SAM and proved its advantage comparing with the standard RAS methodology. As distinct from the RAS technique, data sources for this technique are not only a prior set of SAM coefficients and new data on some or all of the row and column sums of SAM, but various macro aggregates such as value added, consumption, investment, government, exports, and imports as well as information about some of the SAM accounts such as government receipts and expenditures. Authors pays attention that SAM data is measured with noise and note that the CE approach should handle this issue.


Previously researchers have focused their efforts to apply statistical methods assuming the stochastic nature of the information contained in the SAM. The results, obtained by van der Ploeg (1982), Barker et al. (1984), Harrigan and Buchanan (1984), Schneider and Zenios (1990) and others, show the complication of yielding correct estimations using the standard statistical assumptions. According to Robinson et al. (1998) these assumptions are extremely constraining when estimating a SAM because little is known about the error structure and data is scarce. They developed the updated CE method based on the assumption of an "errors in variables" formulation where the independent variables are assumed to be measured with noise, as opposed to the "errors in equations" specification, where the process is assumed to include random noise (Robinson at all, 2000).


The updated stochastic CE approach involves two sets of errors: errors on column sums, and errors on macro aggregates. This technique specifies two sets of errors with separate weights, W1's and W2's, and extend the CE minimand in equation (2) to account for the specification of the error terms as follows: 
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where 
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 - prior SAM direct coefficients matrix;
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 - new SAM direct coefficients matrix estimated in the CE procedure;
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 - prior weights on the column sum errors;
W1 - new estimated weights on the column sum errors;
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W

 - prior weights on macro aggregate errors;
W2 - new estimated weights on macro aggregate errors.
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To estimate a balanced SAM using the criterion (4), Robinson et al. (2000) ran Monte Carlo simulations. For each run, they took a partial approach to the generation of a stochastic SAM, randomly changing eight cells of an initial balanced SAM. However, not only column sums and macro aggregates but any element of a SAM can be measured with errors. Hence, we should find an approach that extends the coverage range of SAM elements with errors while providing an unbiased estimate of SAM multipliers.


There have been various attempt to generate a completely stochastic input-output matrix as a key sub-matrix of a SAM by running Monte Carlo simulations. In particular, Roland-Host (1989), and Dietzenbaher (2006) randomized IO matrices by carrying out a series of Monte Carlo experiments to explore the influence of the stochasticity of this matrix on the multipliers bias. Using this approach large sample sizes, Dietzenbaher proved that multiplier estimates are positively biased but the biases are negligibly small. These conclusions are sufficient in the case of knowledge about distribution law of the elements of the technical matrix but collecting of this information is a quite complicate problem in practice.


Another approach, originally proposed by ten Raa and Rueda-Cantuche (2009), and extended further by Rueda-Cantuche and Amores (2010), is based on the econometric conception of estimating of multipliers. They recognize that although the bias in each element of the Leontief inverse can be very small, they accumulate in the output multipliers vector and could lead to significant deviations. To avoid the using the Leontief inverse when multipliers estimating, ten Raa et al. developed the Supply-Use Based Econometric (SUBE) approach. Following this approach, ten Raa and Rueda-Cantuche (2009), and Rueda-Cantuche and Amores (2010) used official supply and use tables to econometrically estimate the linear regression where the regression coefficients measure the output backward multipliers or any other kind of multipliers. The major achievement of the SUBE approach is obtaining unbiased and consistent estimations of the multipliers through standard econometric techniques.


However, econometric techniques do not return sufficient results when estimating a SAM because, as we mentioned before, it is not enough of SAM data providing adequate degrees of freedom for estimation, and errors are not always normally distributed with zero mean and constant variance. Considering the errors of estimation in each cell of a SAM transaction matrix as a combination of sampling errors with systematic measurement errors, E. Thorbecke (2003) suggests a procedure to convert the SAM from deterministic concept to more stochastic one. This procedure entails a number of sequential steps: estimating of the SAM transaction matrix by different groups of experts; generating the stochastic data subject to error probability distribution for each cell in this matrix using a set of Monte-Carlo experiments; obtaining a set of the consistent and balanced the SAM based on the deterministic cross-entropy method; and using the stochastically derived SAMs yielding the corresponding consistent and balanced SAMs to calibrate parameters of SAM-based models. 


As distinct from approaches discussed before, this approach is aimed at solving the problem of a completeness of data based on the expert judgment. According to Thorbecke, the procedure implies the involvement of different teams of experts, each responsible for a specific module of the SAM, not only to provide point estimates of cells in their module but also to provide subjective information on the error structure of each cell. As a result of the initial SAM estimation, minor and major inconsistencies might come to different modules of the matrix that require us to bring together different teams to reduce these discrepancies. Obviously, this is quiet complicated and high-cost way to "smear" data in SAM tables.


We suggest another approach when estimating cells of a SAM based on the knowledge of experts. In this case, experts provide information about cells as a subjective qualitative assessment of their values. To transform the verbal estimation of SAM elements to the quantitative scale, the fuzzy set theory (Zadeh, 1975) is used. It should be noted that the term "fuzziness" does not mean the ambiguity of the results, which are obtained by the fuzzy set theory. An important feature of fuzzy models is the ability to process heterogeneous input data, increasing the overall reliability of the descriptions of an object's activities.

We represent a fuzzy approach when updating an IO coefficients matrix as a core of the SAM direct coefficients matrix. Obtained by this way, fuzzy SAM is used to forecast the influence of different exogenous shocks on changes in key indicators of a socio-economic system, in particular in household expenditures. Fuzzy results are compared with "true" ones estimated based on real SAM. Taking into account the special problem of building and updating SAM tables at the regional level, this approach is considered for the New Jersey SAM in 2010.
3. The fuzzy approach to forecasting of household expenditures using SAM


Let's consider the problem of forecasting of household expenditures as a response to exogenous shocks based on the SAM. The following notations will be used:
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 L  - set of value-added elements.
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 - matrix of value-added distribution coefficients;
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It is known, that the effect of exogenous shock on changes in output values is calculated by the formula: 
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where
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- the composite output vector with dimension (N1+N2+L) which includes the vector of sector supply X, the vector of exogenous added value R, and the vector of household incomes Y;

 S   
- the SAM direct coefficients matrix; 
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- the composite exogenous vector with dimension (N1+N2+L) which includes the vector of exogenous commodity demand Ex, the vector of exogenous added value Er, and the vector of exogenous household incomes Ey.

Let 
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 represent the SAM direct coefficients matrix under conditions of information indeterminacy. This means that values of some elements of this matrix are inaccurate. Assuming the inaccuracy of elements of the matrix of the technical coefficients, we describe them as fuzzy variables (Appendix 1). Thus, 
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 is treated as the fuzzy SAM direct coefficients matrix. 
In that case, the problem of estimating of output vector looks like the following:
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The existence of nonnegative solutions  to the similar stochastic programming problem, when using the stochastic matrix of technical coefficients to estimate the influence of exogenous vector of final demand on the vector of sector supply for any nonnegative values of final demand, was proved by Yermolyev and Yastremskiy (1997). To obtain the output vector they describe each technical coefficient as the expectation of a random variable with certain probability distribution function.

In this case, we treat fuzzy technical coefficients as parameters that described by appropriate continuous distribution functions (see Appendix 1). If each technical coefficient is presented as the expectation of the membership function for appropriate fuzzy variable and the composite exogenous vector is nonnegative, by analogy with stochastic approach we assume the existence of a nonnegative solutions of the problem (6).

Based on this assumption, we suggest the fuzzy approach of forecasting of household expenditures that includes the following steps:

Step 1. Fuzzification of the matrix of technical coefficients as a key sub-matrix of  the SAM direct coefficients matrix.
Step 2. Estimating of changes in household incomes as a response to exogenous shocks using the SAM with fuzzy parameters. 
Step 3. Forecasting of household expenditures based on fuzzy changes in household incomes.
Step 4. The comparison of the results of fuzzy forecasting of household expenditures with the corresponding ones obtained when using the classical approach.

We presents these steps using the SAM for New Jersey in 2010 (SAMNJ-10) that elaborated by M. Lahr et al. (2010). Initially, this SAM included 416 industries but we aggregated them to 57 industries for the convenience of the illustration and interpretation of the procedure of forecasting of household expenditures. Let's consider each step of this procedure. 


Step 1. As we noted above, we should fuzzify the matrix of technical coefficients as a key sub-matrix of the SAM direct coefficients matrix. This matrix with dimension 57x57 is derived form the SAM direct coefficients matrix with dimension 74x74. The procedure of fuzzification of the matrix of technical coefficients is described in Appendix. As a result of this step each element of the matrix of technical coefficients is replaced by the expectation of the membership function for its appropriate fuzzy variable 
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Step 2. Using the SAM directs coefficients matrix, which includes the fuzzy  matrix of technical coefficients, we estimate the vector of sector supply X and the vector of institutional incomes Y. Let's represent the criterion (6) as the combination of the following criterions:

	
[image: image33.wmf]min

~

2

1

1

1

1

1

2

¾

®

¾

÷

÷

ø

ö

ç

ç

è

æ

-

+

+

å

å

å

=

=

=

x

N

i

N

j

i

i

m

N

m

im

j

ij

x

ex

y

c

x

a


	(7)

	
[image: image34.wmf]min

2

1

1

1

1

2

2

1

¾

®

¾

÷

÷

ø

ö

ç

ç

è

æ

-

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

å

å

å

å

=

=

=

=

y

N

k

L

l

k

k

m

N

m

km

N

j

l

j

lj

kl

y

ey

y

h

er

x

v

z


	(8)


To estimate X and Y we differentiate criterion (7) with respect to each 
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, and criterion (8) with respect to each 
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. Setting partial derivatives equal to zero, we have the following system that includes (N1+N2) equations: 
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This system of equations (9) allows us to estimate the effect of exogenous shocks on changes in gross output of sectors as well as institutional incomes.  For example, this system is used to examine the fuzzy effect from the 10% increase of the first element of the vector of exogenous commodity demand 
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.  The results are represented in Table 1. The rows, highlighted in grey, represent household incomes.
Table 1.
	SAM elements
	Output values
	Fuzzy changes, 
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	Regular changes, 
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	Industry 1
	x1
	0.0390511
	0.0390332

	Industry 2
	x2
	0.0001276
	0.0000127

	Industry 3
	x3
	0.0000193
	0.0000131

	Industry 4
	x4
	0.0001932
	0.0001434

	Industry 5
	x5
	0.0003000
	0.0000443

	Industry 6
	x6
	0.0001616
	0.0001428

	Industry 7
	x7
	0.0000779
	0.0000765

	Industry 8
	x8
	0.0001423
	0.0001217

	Industry 9
	x9
	0.0001205
	0.0000956

	Industry 10
	x10
	0.0001846
	0.0001125

	Industry 11
	x11
	0.0001361
	0.0001961

	Industry 12
	x12
	0.0000772
	0.0000627

	Industry 13
	x13
	0.0000918
	0.0000401

	Industry 14
	x14
	0.0001870
	0.0002311

	Industry 15
	x15
	0.0000857
	0.0000889

	Industry 16
	x16
	0.0000678
	0.0000552

	Industry 17
	x17
	0.0001098
	0.0000750

	Industry 18
	x18
	0.0001176
	0.0000888

	Industry 19
	x19
	0.0000874
	0.0000977

	Industry 20
	x20
	0.0000879
	0.0000587

	Industry 21
	x21
	0.0000310
	0.0000105

	Industry 22
	x22
	0.0000853
	0.0000734

	Industry 23
	x23
	0.0000330
	0.0000441

	Industry 24
	x24
	0.0000291
	0.0000233

	Industry 25
	x25
	0.0000681
	0.0000501

	Industry 26
	x26
	0.0000444
	0.0000388

	Industry 27
	x27
	0.0001193
	0.0000765

	Industry 28
	x28
	0.0000344
	0.0000292

	Industry 29
	x29
	0.0000758
	0.0000878

	Industry 30
	x30
	0.0000799
	0.0000746

	Industry 31
	x31
	0.0000711
	0.0000592

	Industry 32
	x32
	0.0002004
	0.0002026

	Industry 33
	x33
	0.0001164
	0.0000635

	Industry 34
	x34
	0.0000866
	0.0000519

	Industry 35
	x35
	0.0001610
	0.0001164

	Industry 36
	x36
	0.0000711
	0.0000706

	Industry 37
	x37
	0.0001046
	0.0001061

	Industry 38
	x38
	0.0000739
	0.0000583

	Industry 39
	x39
	0.0000679
	0.0000635

	Industry 40
	x40
	0.0000876
	0.0000861

	Industry 41
	x41
	0.0000819
	0.0000776

	Industry 42
	x42
	0.0000884
	0.0000621

	Industry 43
	x43
	0.0000843
	0.0000386

	Industry 44
	x44
	0.0001005
	0.0000649

	Industry 45
	x45
	0.0000983
	0.0000522

	Industry 46
	x46
	0.0000568
	0.0000352

	Industry 47
	x47
	0.0000890
	0.0000784

	Industry 48
	x48
	0.0000997
	0.0000876

	Industry 49
	x49
	0.0001214
	0.0000971

	Industry 50
	x50
	0.0001152
	0.0001059

	Industry 51
	x51
	0.0002079
	0.0001053

	Industry 52
	x52
	0.0001289
	0.0000813

	Industry 53
	x53
	0.0002208
	0.0008447

	Industry 54
	x54
	0.0001074
	0.0001071

	Industry 55
	x55
	0.0000331
	0.0000021

	Industry 56
	x56
	0.0000038
	0.0000002

	Industry 57
	x57
	0.0000027
	0.0000059

	CORP
	y1
	0.0001760
	0.0001617

	DIV
	y2
	0.0001723
	0.0001617

	H
	y3
	0.0001090
	0.0001053

	NRC
	y4
	0.0000000
	0.0000000


The next column of this table "Regular changes" contains results obtained when using the regular matrix of technical coefficients. The changes in the vector X and in the vector Y for this column are estimated by Formula (5).

Step 3.  Household expenditures are forecasted based on the estimation of changes in household incomes:
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	(10)


where 
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 - rate of change in household income;
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- marginal propensity to save ;
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 are calculated based on household column in the SAM:
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 = 0.178417; 
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= 0.097340.

Step 4.  Let's forecast household expenditures as a result of the effect from the 10% increase of different elements of the exogenous vectors using both fuzzy and classical approaches, and compare the results. Based on the structure of the composite exogenous vector 
[image: image55.wmf]Exry

, we distinguish three groups of exogenous factors: 
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In this case, 1 group is represented by industries with different share in the total gross output for the economy of New Jersey: 
Ex_39 - element #39 of the vector Ex (20.2%);

Ex_18 - element #18 of the vector Ex (9.3%);
Ex_7 - element #7 of the vector Ex (5.2%);
Ex_3 - element #3 of the vector Ex (3.2%);
Ex_8 - element #8 of the vector Ex (2.2%);
Ex_1 - element #1 of the vector Ex (0.8%).
2 group is represented by the factor (this is element #1 of the vector Er) because we have information only about this element of the added value in the SAM for New Jersey. 
3 group includes two elements: household and non-resident consumption (there are element #3 and element #4 of the vector Ey).
The effects from 10% increase of values of exogenous factors for each group are shown in Table 2.
Table 2.

	Change in exogenous vectors
	Household spending
	Estimation error

	
	Fuzzy
	Regular
	

	Ex_1
	321410.33
	321411.50
	0.00036%

	Ex_3
	321377.77
	321387.65
	0.00308%

	Ex_7
	321813.86
	321823.53
	0.00300%

	Ex_8
	321571.90
	321585.85
	0.00434%

	Ex_18
	322553.04
	322514.23
	-0.01203%

	Ex_39
	323247.34
	323193.75
	-0.01658%

	Er_1
	325371.97
	325444.66
	0.02233%

	Ey_3
	329153.41
	329295.27
	0.04308%

	Ey_4
	322079.65
	322059.72
	-0.00619%


As we see, using the fuzzy approach allows to obtain the results of forecasting with the sufficient accuracy because the estimation error does not exceed 0.044% by its absolute value. 
Conclusions

One of the main issues of forecasting of the influence of exogenous shocks on the socio-economic system using a SAM is the correct estimation of outcomes based on an inaccurate and incomplete initial information. The analysis of existing techniques of updating SAM shows that they do not return sufficient results because of either ignoring of various errors in SAM data, or their assumptions are extremely constraining when processing scarce data with the little known error structure. We suggest a fuzzy approach as a technically efficient and cost-reasonable way to obtain forecasting results with sufficient accuracy using "smear" SAM data. We employ this method to verbally estimate and then to convert to the quantitative scale the IO table as a core of the SAM. Obtained fuzzy SAM is used to forecast the influence of different exogenous shocks on expenditures of the household sector as a major constituent of total expenditures.
We presented the fuzzy approach of forecasting of household expenditures using SAM as the set of following steps: fuzzification of the matrix of technical coefficients (the replacement of each element by its fuzzy analogue); the fuzzy estimation of the influence of exogenous factors on the vector of output values, in particular, household incomes; forecasting of household expenditures based on changes in household incomes; the comparison of the fuzzy results with the corresponding ones obtained when using the classical approach.
The fuzzy approach was implemented using the SAM for New Jersey in 2010 that was built by M. Lahr et al. We estimated the influence of different groups of exogenous factors such as the commodity demand, the added value, and the institutional incomes on the household expenditures. The fuzzy results were compared with the corresponding ones obtained when using the classical approach. The estimation error did not exceed 0.044% by its absolute value that makes it possible to obtain the adequate results when forecasting of household expenditures using the fuzzy approach.
Appendix: The fuzzification of the matrix of technical coefficients 

To fuzzificate the matrix of technical coefficients we define each element of this matrix as a fuzzy variable 
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Each  fuzzy  variable corresponds to a certain fuzzy subset:

[image: image61.wmf](

)

(

)

(

)

{

}

U

u

U

u

A

A

Î

=

,

/

~

~

a

m

a

– fuzzy subset of the universal set U, which describes the restrictions on possible values ​​of fuzzy variable α;
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 –  membership function.

For each specific value 
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 takes a specific value from a closed interval [0, 1], which is called the degree of membership of u to fuzzy set 
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In this case, the universal set U is the set of technical coefficients. The fuzzy subset 
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it is first necessary to select the definitional domain of each fuzzy variable. We derive the numeric intervals, which characterize the definitional domain of fuzzy variables, from the matrix of technical coefficients using cluster analysis procedure.

Next, based on calculated numeric intervals, we determine the corresponded membership functions and calculate the expectation for each membership functions. In this case, the membership functions are defined as the continuous Gaussian functions:
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The results of the calculations are shown in Table x.


Table x.
	Cluster
	Terms , which

characterize the type of intersectoral relationships
	The definitional domain of the fuzzy variable
	The expectation of the membership function for the fuzzy variable


	1
	«Very Strong»
	0.141323
	0.312829
	0.223000

	2
	«Strong»
	0.047598
	0.146627
	0.090000

	3
	«Above Medium»
	0.031549
	0.049786
	0.040000

	4
	«Medium»
	0.019202
	0.031972
	0.025000

	5
	«Below Medium»
	0.009113
	0.019395
	0.014000

	6
	«Weak»
	0.002771
	0.009341
	0.005590

	7
	«Very Weak |»
	0.000000
	0.002800
	0.000988


Using Table x, we replace the elements of the matrix of technical coefficients by the expectation of the membership function for appropriate fuzzy variable. 
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