
6.1 Introduction

6.2 Multipliers and factor contents
An economy produces goods and services from factor inputs.  The net outputs of goods and services are organized in commodity vector y and the factor inputs in resource vector L.  Since there are more commodities than resources, vector y has a greater dimension than vector L.  In Marxian economics L is even reduced to a scalar, representing the available labor force.  This is a good point of departure.  Then productivity is the amount of net output producible per unit of labor input.  Hence productivity is the inverse of the amount of labor required per unit of net output.  These labor requirements are the labor contents of the commodities and can be determined using input-output analysis.  Productivity grows if the labor contents of the net outputs are reduced.  It is not necessary that the labor contents of each and every commodity are reduced. If the new vector of net outputs of an economy would not have been producible with the old technology—meaning that the labor contents based on the old input-output coefficients exceed the old labor force, productivity must have grown.  Productivity gains in some industries must have outweighed possible losses in others.  Some weighting of the outputs is involved and this chapter explicates it.  Because productivity growth is a feature of industries, which produce gross, not net outputs, input-output analysis is needed for the correct measurement.  Moreover, when we later expand L to a vector of resources, we also have a weighting issue on the input side of the economy.  There are different approaches and this chapter consolidates them.

The vector of gross outputs is denoted by x (with n components, the number of commodities).  This key variable connects the factor inputs, L, and the net output, y, by two equations.  The first equation features the row vector of labor coefficients, l; its components are the amounts of labor per units of gross output in the different industries.  The second equation features the input-output coefficients matrix A, by which gross output is reduced to net output.
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The economy maps factor inputs to net outputs, L → y, and productivity is the “amount” of net output y per “unit” of factor input L.  This mapping is not single-valued, because resource can produce alternative goods and services.  Assuming, for the time being, there is only one factor input, labor, the labor productivity can be determined for each net output by calculating the amount of labor required per unit of net output, as we will do next.
In (6.2)

, l and A list the factor input coefficients and the intermediate input coefficients, respectively.  This pair of coefficient tables represents technology.  Productivity growth can and will be ascribed to changes in the coefficients.  Factor inputs L and net outputs y enter and exit the economy, respectively, while gross output x is an intermediate construct that will be eliminated from the productivity calculation, but will reemerge in decomposition analysis.(6.1)

 and 
The first step to connect factor input and net output consists of solving equation (6.2)

:


[image: image3.wmf]1

()

xIAy

-

=-


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6.3)

where
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is the so-called Leontief inverse of matrix A.  Substituting equation (6.3)

 we see that net output y (or an increase in y) has a multiplier effect on gross output x:
(6.4)

 into 
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Equation (6.5)

 shows that gross output equals net output, plus the direct requirements of net output, plus the requirements of the latter, the indirect requirements.  This is why the Leontief inverse is the multiplier matrix.  The (i,j)th element of the multiplier matrix is the amount of gross output of commodity i that the economy must produce to deliver one unit of net output of commodity j.
The multiplier effects may not explode.  In a single-industry economy, with A a nonnegative scalar, this scalar better be less than one.  This condition, it must take less than a unit of the product to produce a unit of the product, otherwise the economy would not be productive, has a multi-industry variant.  If the A matrix is in dollars, column totals better be less than one: it must take less than a dollar of intermediate input to produce a dollar of output.  The condition that the column totals are less than one is indeed sufficient for the convergence of Leontief inverse expression (6.4)

, but not necessary.  If the price of product 1 becomes very expensive relative to product 2 and industry 2 uses product 1 as an intermediate input, the second column total will exceed one, but the existence and size of the multiplier effect is independent of such a price change.  The way to fix this is to define a slightly more general on the magnitude of columns.  Nonnegative square matrix A is profitable if pA < p for some price vector p ≥ 0.
Leontief inverse expression (6.4)

 are a geometric series.  Transforming back (predivision by pi and postmultiplication by pj) yields the Leontief inverse of A itself.  The proof of necessity is straightforward: If A has a Leontief inverse, then the vector of Leontief inverse column totals, p = (1 … 1)(I + A + A² + …), fulfills pA = (1 … 1)(A + A² + …) = p – (1 … 1) < p.(6.4)

 exists if and only if input-output coefficients matrix A is profitable.  This is Theorem 2.1 of ten Raa (2005).  He proves the sufficiency part of this result by defining the associated input-output coefficients matrix in dollar terms, with typical element piaij/pj.  This matrix has column totals less than one, and, therefore, a Leontief inverse, because the column totals of the terms in series 
Nonnegative square matrix A is productive if Ax < x for some quantity vector x ≥ 0.  This means that the input-output coefficients are small enough to sustain the production of some net output y, namely y = x – Ax.  This is an alternative necessary and sufficient condition for the existence of the Leontief inverse.  The proof of this second result is simple.  If A is productive, then its transposed matrix is profitable and, by the first result, has a Leontief inverse.  Transposing the latter yields the Leontief inverse of A itself.  This is the sufficiency part.  Necessity is straightforward again.  If A has a Leontief inverse, then the vector of its row totals fulfills x < Ax, i.e. A is productive.
In practice one tests if an input-output coefficients matrix has column totals less than one.  If so, the Leontief inverse exists and the road is paved for multiplier analysis.  A less practical but general test is the positivity of the principal minors of A (Hawkins and Simon, 1949).
The second step to connect factor input and net output consists of the substitution of solution x, that is equation (6.1)

:(6.5)

, into equation (6.3)

 or 
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Equation (6.6)

 reveals a linear relationship between commodity net output y and factor input L.  The coefficients in this linear relationship are denoted by labor contents
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The amount of labor required per unit of net output of commodity j is lj plus l1a1j + … + lnanj plus the jth component of the third and further terms.  While l is the vector of direct labor coefficients, labor contents λ is the vector of total labor coefficients.  Equation (6.7)

 shows that total coefficients are the product of direct coefficients and multiplier coefficients.  This relationship holds when more factor inputs are introduced, by adding rows to row vector l and, similarly, to row vector λ, making both rectangular matrices.
We are now prepared to launch the first productivity concept.  Because commodity i has labor contents λi we may conclude that one unit of labor can produce 1/λi units of net output of commodity i.  This is the labor productivity of the economy in producing net output i.  From equation (6.7)

 we see that the labor productivity in producing net output can increase because the direct labor coefficient li is reduced, or an intermediate input coefficient is reduced, or another direct labor coefficient is reduced.  Indeed, if industry j produces an intermediate input for industry i and saves labor, then the labor content of commodity i will be reduced and, therefore, the economy becomes more productive producing commodity i, even if all coefficients in industry i remain constant.  As a consequence, the imputation of productivity growth to industries is nontrivial.
Let net output grow from y to y + dy and labor input from L to L + dL.  The initial coefficients are A, l and λ, for intermediate inputs, direct labor and total labor, respectively.  If the labor requirements of the new net output based on the initial coefficients exceed the new labor input, that is
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then there must be productivity growth.  Subtracting equation (6.8)

 reads
(6.7)

, productivity growth condition (6.6)

, using equation 
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On the left hand side of inequality (6.7)

 yields (6.9)

 we have a weighted net output growth measure, with weights given by the initial labor requirements, while on the right hand side we have the actual factor input growth.  The weights, the labor contents λi, can also be considered  competitive prices, under which all industries break even, as we show now.  Equation 
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The left hand side of equation (6.10)

 represents factor cost, while the right hand side represents value added, both per unit of gross output, if the prices are w = 1 for labor and p = λ, the labor contents, for the commodities.  Under these prices profit, i.e. the difference between value added and factor cost, is zero for each product.
6.3 The input-output framework of productivity

Productivity condition 
(6.7)

, we see that (λdy – dL)/L is a weighted average of the growth rates of the labor productivities in producing the different commodities, namely (6.6)

 and (6.9)

 suggests we define labor productivity growth as the labor saving per unit of labor, (λdy – dL)/L.  This is an aggregate labor productivity measure indeed, as will be shown now.  From λy = L, an immediate consequence of equations  GOTOBUTTON ZEqnNum407554  \* MERGEFORMAT  where 
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 are the growth rates of labor productivities 1/λ1, …, 1/λn.  An immediate consequence of λy = L is that labor productivity growth reads 
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 that is the residual between net output growth and labor input growth, with the net output components weighted by the competitive value shares, λ1y1/λy, …, λnyn/λy.  

The inclusion of other factor inputs in productivity growth now suggests itself.  Factor input L becomes a vector, with one component for every resource.  Let the factor prices be given by row vector w (instead of the number 1 in the labor-only case) and the commodity prices row vector p (instead of λ in the labor-only case).  Then total factor productivity growth is defined as the residual between net output growth and factor input growth, both measured as weighted averages of component growth rates, with the weights equal to value shares:
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This measure accounts for factor input savings.  Mind that the prices are competitive, making the industries break even, a property we discuss now in some more detail.  Following equation (6.10)

 and the ensuing discussion, where the prices of labor and the commodities were seen to be w = 1 and p = λ, the break-even condition now reads
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with l an m×n-dimensional matrix of factor input coefficients, featuring a row for each factor input, and w an m-dimensional row vector of factor input prices.  Given factor input prices w one can determine the commodity prices by taking the Leontief inverse, p = wl(I – A)-1.  These commodity prices are called production prices and are used to compute TFP.  The basic connection between production prices and TFP was first spelled out by Solow (1957).
Solow determined the factor input prices in productivity measurement using a simple model with two factor inputs (labor and capital), one output and no intermediate inputs.  A function relates the inputs to the output, in his notation Y = F(L, K, t) where t represents time and shifts the production function.  Differentiating totally, using subscripts for partial derivatives, dY = FLdL + FKdK + Ft.  Hence 
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  This equation shows that if we use as factor input prices the marginal products FL and FK, then TFP (the residual between output and input growth) measures technical change (the shift of the production function on the right hand side).
Solow (1957) and Wolff (1985) use observed value shares for 
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.  The implicit assumption is that the economy is perfectly competitive with firms hiring up to the point that marginal cost equals marginal revenue, so that factor rewards equal marginal productivities.  The assumption of perfect competition also explains why in Solow’s model all productivity growth is due to technical change.  Imperfect economies may tap other sources of growth as well, such as a better distribution of output between industries.
Following Hulten (1978) and Wolff (1994) the input-output framework for productivity measurement can be developed by substituting the input-output relations in the definition of TFP.  As a preliminary, note that the denominators in equation (6.12)

.  This is the input-output variant of Solow’s result that TFP measures technical change. The shift of technology shows as reductions of input-output coefficients.  Reinserting numerator py, we obtain(6.2)

 this change residual becomes pd(x – Ax) – wd(lx) = [pd(I – A) + wdl]x + [p(I – A) – wl]dx = -(pdA + wdl)x by equation  (6.1)

 and (6.11)

 are (canceling the y1’s in the first term, etc.) p1dy1 + … + pndyn – w1dL1 – … – wmdLm = pdy – wdL.  This is the residual between net output change and factor input change, with all components priced.  Substituting equations (6.1)

.  This is the well-known identity between national product and national income.  The numerators in equation (6.12)

 and (6.1)

, (6.11)

 are equal: py = wL, because either side is equal to p(I – A)x in view of 
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In equation (6.13)

 the ith term shows the reductions in the input coefficients of product i,  or industry TFP growth rate
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Overall TFP is a sort of a weighted average of the industry TFPis, with weights 
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.  I say “sort of,” because these weights do not add to one, but to a greater number, namely the gross/net output ratio, px/py, also called the Domar ratio of the economy.  This correction must be involved because the industry TFP growth rates are relative to the industry outputs.  Industry output is a gross concept, hence big, and this yields a numerator effect that renders industry TFP growth small.  One might circumvent this numerator effect at the industry level—redefining industry TFP using net output instead of gross output—but such an approach would be tricky.  For example, the business services industry produces a high share of gross output, but contributes zero to net output (all its produce is for intermediate demand) and it is not allowed to divide by zero.  For this reason industry TFP is defined with industry output as the base, including what is produced to fulfill intermediate demand.
The factor inputs are represented by elements of endowment vector L and the respective elements of factor input coefficients vectors l•1 of industry 1, and similar for the other industries.  Labor and capital are the two main factor inputs and the framework accommodates disaggregation by type and augmentation with other factor inputs.  There can be multiple factor inputs and the capital input can have several components (such as buildings, machinery and equipment) which, in turn, can be modeled as produced commodities.  These observations yield some variants of TFP, discussed by Aulin-Ahmavaara (1999).  The treatment of capital as a produced good is achieved by introducing an industry, n + 1, which produces the capital.  Augmented to the A matrix is a row with the amounts of capital stock replaced per unit of industry output and a column showing the intermediate inputs required per unit of replacement capital.  The vector of inputs required for all replacement capital is deducted from net output vector y, reducing gross domestic product to net domestic product.  Gross output vector x is augmented with replacement capital.
Cas and Rymes (1991) criticize the industry TFP growth measures on the ground that they measure input reductions at fixed prices.  Technical change reduces produced input prices and, these authors express produced inputs in factor contents, to account for these indirect effects.  The m factor input coefficients of the n industries are organized in m×n-dimensional matrix l.  The factor contents are organized in m×n-dimensional matrix π fulfilling
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By equation (6.15)

 the factor contents are obtained by applying the Leontief inverse to the factor input coefficients matrix.  Industry i has the factor contents given by the ith column of this matrix, π•i, and its “effective” industry TFP growth rate is defined as follows:
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Thus, Rymes’ effective industry TFP growth rates measure the reductions in factor contents.
However, the two decompositions of TFP growth will be shown to be consistent, an argument that goes back to Hulten (1978).  Both standard and effective TFP measures add to the same economy-wide TFP, provided the “addition” of standard industry TFP growth rates involves Domar weights and the addition effective rates involves final demand value shares:
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The proof of consistency result 
(6.16)

  and eliminating the denominators py and the minus signs, (6.14)

 and (6.17)

 requires some work.  To establish its validity we must show that, substituting definitions (6.13)

, but the proof of the second equality in (6.17)

 runs as follows.  The first equality is easy, it copies equation  GOTOBUTTON ZEqnNum482664  \* MERGEFORMAT or, canceling prices and using matrix notation, that (pdA + wdl)x = w(dπ)y.  Now on the right hand side of the latter equation, by definition (6.17)

.(6.12)

, and this matches the left hand side indeed, completing the proof of equation (6.3)

 and (6.15)

, π = lB, where B is the Leontief inverse of matrix A, which fulfills (I – A)B = I.  Differentiating, (I – A)dB – (dA)B = 0, or dB = B(dA)B.  It follows that the right hand side reduces to w(dπ)y = w[d(lB)]y = w[ldB + (dl)B]y = w[lB(dA)B + (dl)B]y = (pdA + wdl)x using equations 
Equation (6.17)

, holds in the aggregate, but not term by term, at the industry level.  An industry may have constant direct input coefficients, a•i and l•i, and yet save resources due to upstream technical change.  This example illustrates that Solow’s connection between technical change and TFP growth holds at the industry level if we use the standard TFP measure, but not if we use the effective TFP measure, which also accounts for upstream technical change.(6.17)

 shows that the effective industry TFP growth rates exceed the standard industry TFP growth rates.  On average, the ratio of the effective to the standard rates equals the Domar ratio, py/px.  The effective rates account for the input embodied cost savings, while the standard industry TFP growth rates do not, but the use of Domar weights offsets the accounting gap.  The relationship between effective and standard industry TFP growth rates, equation 
6.4 Technical change and efficiency change

An important new development in input-output analysis is the recognition and accommodation of other sources of productivity growth but technical change.  Since productivity is essentially the net output to factor input ratio of the economy, and, therefore, productivity growth is the residual between net output growth and factor input growth, a concept associated with Solow (1957), but traced back to Tinbergen (1942) by Griliches (1995), productivity can also grow by better organization of industries or better allocation of resources between industries, in short by efficiency change.  This source of growth has long been overlooked by input-output economists, who tend to think of input-output coefficients as engineering statistics.  Input-output coefficients, however, are averages over firms within industries, including the ones which use outdated production techniques.  State-of-the-art technology is adopted only by best-practice firms and productivity may grow either by technical change or by the replacement of old technology firms by new technology firms.  The latter component is a form of efficiency change, namely at the industry level, called technical efficiency change.  Moreover, the pattern of specialization of an economy may be suboptimal.  If so, there is also scope for allocative efficiency change.  These ideas are known in the productivity literature, but their implementation to national economies requires an input-output analysis, if only to properly deal with interindustry deliveries.
A framework for productivity growth measurement that captures intra- and interindustry efficiency changes has been developed by ten Raa and Shestalova (2011).  The framework encompasses and will interrelate the four main approaches to the measurement of total factor productivity growth: (i) Solow's aggregate production function model, (ii) Index Numbers, (iii) Data Envelopment Analysis (DEA), and (iv) the Domar aggregation approach, which is associated with input-output analysis.  A conceptual difference between these approaches is the treatment of prices.  Traditional productivity indices use observed prices and rest on the assumption that the observed prices are competitive, so that factors are paid their marginal products.  Under this assumption observed value shares are indeed the appropriate weights for the aggregation of the factor productivities into TFP.  In the parametric literature adjustments are made for mark-ups and returns to scale (Diewert and Fox, 2008).  Frontier approaches, particularly DEA, make no behavioral assumption.  Its TFP-growth measure, the so-called Malmquist index, is based on production statistics only and the value shares are generated by the shadow prices of the linear program that determines the production possibility frontier.  The input-output analytical framework is on either side of the fence.  As is well known, it accounts for interindustry linkages and yields a TFP measure that is conceptually close to the macro-economic residual.  However, v can accommodate the shadow prices from a general equilibrium model, which moves its TFP-growth measure close to the DEA's.  Since shadow prices reflect marginal product values at the optimum, their use in computation does not conflict with the assumption of competitive pricing required by methods operating with observed prices.  Hence, it is possible to reunite both these methodologies in one framework, capable of working with either of these prices.

Another difference lies in the assumption of optimizing behavior.  The assumption provides economic justification to index numbers such as Törnqvist and Fisher's, but has the drawback that it bars inefficiencies.  The TFP-growth measure arising in DEA makes no such assumption and has the capacity to ascribe TFP growth to not only technical change but also efficiency change.  In order to incorporate this attractive feature, we must relax the assumption of optimizing behavior.

The framework consists of (i) the technology, which in some cases is defined by means of a linear program; (ii) data on inputs, net outputs, and either observed or shadow prices; and (iii) rather general behavioral assumptions, such as the assumption on prices to reflect marginal products.  The latter assumption is weaker that the assumption of profit maximizing behavior and allows for inefficiency.  This is why, similarly to DEA, TFP growth will capture both technical change and efficiency change.  The former represents a shift of the production frontier and resembles the Solow residual as defined under the assumption of optimizing behavior, and the latter corresponds to a movement towards the frontier.

The measurement of TFP involves data, technological assumptions and possibly behavioral assumptions.  We begin describing each of them in turn and then define the general concept of TFP growth.

· Data.  We assume that for each point of time t we observe of firms (industries or economies) the factor inputs L and the (net) outputs y, column vectors of different dimensions.  We denote the prices of the outputs and the inputs by row vectors p and w, respectively.  The prices can be either data or shadow prices of a maximization problem used to estimate technology.

· Technology.  In each point of time the production possibility set is a subset in the commodity space of nonnegative factor inputs and unsigned net outputs, denoted by Pt = {(L, y) : Φ(L, y, t) ≤ 0}.  The frontier is given by Φ(L, y, t) = 0.  We assume Φ to be continuous, piece-wise differentiable and convex in (L, y). A simple example, namely Φ(L, y, t) = y – tL, illustrates why marginal products will be given by -∂Φ/∂L and the shift of the production function by -∂Φ/∂t, both including a minus sign.  We assume that the data are possible in the sense that all factor input-net output combinations (L(t), y(t)) belong to Pt.

· Behavioral assumptions.  If observed prices are used, they are assumed to reflect the marginal products on the production frontier.  This assumption is weaker than those of cost minimization or profit maximization.  In particular, productive and allocative inefficiencies are admitted.  It should be mentioned that if price data are not used, shadow prices may fill the gap and will automatically reflect marginal products.

· Definition of TFP.  TFP growth TFP is defined as the residual between the output and input growth rates, expressed by Divisia indices:
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Here the symbol ^ denotes the growth rate of a variable, for example, 
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  The weights in equation (6.18)

 may come from external value share data or from endogenous calculations.  The distinction delineates the alternative approaches of TFP analysis.
We will now demonstrate that under rather general assumptions TFP defined in equation (6.18)

 can be decomposed into technical change and efficiency change.  The first term measures the shift of the frontier by the partial derivative of the production frontier with respect to time. The second term measures the movement in the distance to the frontier.  For this purpose an input distance function is used.  For (non)frontier observations we have Φ(L, y, t) (<) = 0 and we contract factor input L by a factor D so that y remains just producible from input DL.  By construction, for any producible (L, y) at time t there is 0 ≤ D(L, y, t) ≤ 1 such that
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Following Debreu (1951) distance function D is here defined by
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Under constant returns to scale—meaning Φ is linearly homogeneous in (L, y)—and if prices reflect marginal products—meaning all relative prices are marginal rates of transformation, 
[image: image30.wmf]/

/

jj

ii

py

wL

¶F¶

=-

¶F¶

—TFP decomposes into technical change and efficiency change: 
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The proof of equation (6.18)

.  The details are in ten Raa and Shestalova (2011, pp. 72-73).(6.19)

 with respect to time and Euler’s equation.  Substitution of the assumption that relative prices are ratios of marginal rates of transformation yields TFP as defined in (6.21)

 is by total differentiation of equation 
6.5 Three mainstream approaches to TFP measurement

The first three approaches to TFP measurement are the following.

(i) Solow’s (1957) residual is presented in a macro-economic model with one output and two inputs, capital and labor, interrelated by a production function, F.  This situation can be derived from the framework by imposing a particular form on Φ, namely Φ(K, L, Y, t) = Y – F(K, L, t), and assuming no slack in production and proportionality between prices and marginal products.  These assumptions were made by Solow (1957), imply production efficiency, D = 1, and reduce equation 
(6.21)

 to  GOTOBUTTON ZEqnNum737268  \* MERGEFORMAT    This replicates Solow's result that TFP growth measures the shift of the aggregate production function under his assumptions.
(ii) Index numbers are discrete time approximations to the Divisia index.   Applications require that the derivatives in the definition of the Divisia index, formula 
(6.18)

, are replaced by difference quotients and there are alternative ways of doing this.  Prime examples are the discrete time Törnqvist index,  GOTOBUTTON ZEqnNum277467  \* MERGEFORMAT  (Christensen and Jorgenson, 1970) and the Fisher index, 
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 (Diewert, 1976).  These indices require observable price information.  If there is no slack and the prices reflect marginal products, TFP growth is reduced to technical change.  Under the stronger assumption of price-taking profit maximization Diewert has shown that both indices are exact for certain functional forms.  The Törnqvist index is exact for the translog production function and, therefore, Diewert (1976) calls it the translog index.  The Fisher index is exact for a rather flexible functional form (a second order approximation to an arbitrary twice continuously differentiable aggregator function), a property Diewert (1976, p.117) calls `superlative.'  Although the Törnqvist and Fisher productivity indices are exact for different production functions, most practical time-series applications yield similar numerical values; see Black et al. (2003).
(iii) Data envelopment analysis (DEA) constructs frontier function Φ by the piece-wise linear envelopment of the available observations on inputs and outputs. Under constant returns to scale, the production possibility set represents a convex hull.  There is no need to impose behavioral assumptions; DEA does not require them.  The data requirement is reduced to outputs and inputs; DEA does not use the observed prices but shadow prices that reflect marginal values on the production frontier.  The DEA approach naturally evolves in yet another TFP measure, namely the Malmquist index.  A closer look at the distance function demonstrates this.  Assuming free input disposability—defined by the condition that 
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—the production possibility set can be reparametrized using 1 – 1/D instead of Φ (ten Raa and Shestalova, 2011, Proposition 2).  This substitution, invoking constant returns to scale, changes equation (6.21)

 into the following  (ten Raa and Shestalova, 2011, equation (9)):
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In discrete time the right hand side of this expression is approximated by 
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  Evaluating this expression at t and t+1, taking the average of the two ln’s, and exponentiating, one obtains the Malmquist productivity index:
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The explicit price information in the expression of the Solow residual is replaced by the implicit shadow price information, derived from the shape of the frontier; see Coelli and Rao (2001).

Two results from the DEA literature provide a link between the Malmquist index and the Törnqvist and Fisher indices.  First, Caves et al. (1982) have shown that the Malmquist index becomes a Törnqvist productivity index provided that the distance functions are of translog form with identical second order coefficients, and that the prices are those supporting cost minimization and profit maximization.  Second, Färe and Grosskopf (1992) proved that under the assumption of profit maximizing behavior the Malmquist index is approximately equal to the Fisher productivity index.  In both cases the assumption that prices support cost minimizing and profit maximizing behavior is crucial.  Balk (1998) reviews comprehensively, including non-constant returns to scale.
6.6 The input-output framework with efficiency change
For obvious reasons we devote a separate section to approach (iv) to the measurement of total factor productivity growth announced in section 6.3, the input-output approach.  It will be grounded in the mainstream framework exposited in section 6.4, with the advantage that efficiency change can be accommodated.  We present the functional form of Φ which reflects the input-output model.
Factor input-net output combination (L, y) is feasible at time t if there exists a gross output vector x with l(t)x ≤ L and x – A(x) ≥ y.  The distance function of the input-output model measures by how much the factor input can be reduced and is given by the following program:
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The technology function Φ can now given by Φ(L, y, t) = max{l(t)[I – A(t)]-1y – L}, where the maximum is taken with respect to factor input components.  Because inputs are freely disposable in model 
(6.21)

 reduces to (6.24)

, the production possibility set can be reparametrized using 1 – 1/D instead of Φ (ten Raa and Shestalova, 2011, Proposition 2), and, therefore, the technical change term in equation  GOTOBUTTON ZEqnNum215064  \* MERGEFORMAT   This expression can be seen to be equal to Domar formula (6.24)

 and the prices are the shadow prices of the constraints (ten Raa and Shestalova, 2011, Proposition 3).(6.13)

 under the assumption of technically efficient production and provided the production levels solve program 
The relationship between input-output productivity analysis (Domar aggregation) and DEA (involving efficiency measurement) can now be completed. The principal difference between the two approaches lies in the data requirements and the behavioral assumptions. As we do not impose general restrictions on these factors, there is scope for synthesis. Our approach is to allow slack in the structural approach and to replace the observed prices by shadow prices. The obtained measure of TFP is based on the fundamentals of the economy, namely technology and preferences. The model draws from ten Raa and Mohnen (2001, 2002) and Shestalova (2001), but replaces their utility based output distance function by the input distance function used in this paper and, for simplicity, takes the one-country closed economy variant. Employing distance function program (6.21)

, we obtain the next result, which accommodates technical inefficiency in the input-output model and shows how to measure it:(6.13)

 into equation (6.24)

 and substituting the just achieved result that technical change reduces to formula 
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Equation (6.24)

. While in DEA the potential for efficiency is determined by cross-sectional or intertemporal best practices, in this combined model the available production technology is represented by the observed technical coefficients and inefficiency stems from the suboptimal allocation of production within the system, or from underutilization of resources in industries.
(6.25)

 intermingles the Domar approach with the DEA decomposition in technical and efficiency change, where the technical change term is expressed in the Domar aggregation form taken at shadow prices and optimal production levels from the linear program 
In the case of an open economy, international trade represents another source of TFP growth. An extension of the above model to the case of an open economy allows us to incorporate the productivity effect of a change in the terms-of-trade, alluded to by Diewert and Morrison (1986). This effect has been scrutinized by ten Raa and Mohnen (2001, 2002) for the case of a small open economy—with a sizeable magnitude for the Canadian economy—and by Shestalova (2001) for the case of three large open economies.
6.7 Are input-output coefficients technical coefficients?
We have seen that even when input-output coefficients tables are taken for granted, with all their rigidities, the optimization framework of efficiency analysis is applicable, facilitating an efficiency component of TFP.  The framework becomes much richer when the micro data underlying the input-output coefficients are employed without the statistical offices filter that essentially adds inputs and outputs across firms and then takes ratios in the construction of coefficients.  The idea of input-output economists that technical coefficients are engineering statistics, the core of a production function, is better served if we single out best practices rather than average out across firms.  This is achieved by applying efficiency analysis to the input and output data of the firms.
The raw use and supply tables, U and V, are of dimension products by firms.  Since there are more firms than products, these tables are horizontally rectangular.  The factor inputs table, L, is of dimension factors by firms.  Total absorption of factor inputs is obtained by aggregation over firms, Le, where e is the unit column vector, with all entries equal to 1.  The net output of the economy is y = (V – U)e.  However, a reallocation of the factor inputs may produce a higher level of net output, say y/ε, where ε < 1 measures the efficiency of the economy.  A reallocation is a vector s with one component for each firm.  If, for example, s1 = 1.1, then firm 1’s activity level is increased by 10%.  And if, for example, s2 = 0, then firm 2 is shut down, releasing its factor inputs.  The observed allocation corresponds with s = e. The efficiency program finds potential net output by maximizing 1/ε (the new level of the net output vector), subject to the factor inputs constraint, Ls ≤ Le, and the material balance constraint, (V – U)s ≥ y/ε.  This program selects the efficient firms for the production of net output, which in turn determine the technical coefficients A* and l* (ten Raa, 2007, formula (5)).  These coefficients represent the best practices instead of average input-output proportions.
The input and output statistics can be monitored through time and the efficiency will go up or down, contributing to or reducing TFP.  By means of the dual program ten Raa (2007) derives the following relationship:
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This equation shows that TFP (the residual on the left hand side) equals technical change (the first term on the right hand side) plus efficiency change (the last term).  The prices of the products and the factor inputs (p and w, respectively) are the shadow prices of the material balance and factor constraints in the efficiency program.  Equation (6.13)

 in reductions in (best practice) technical coefficients and an efficiency movement towards the best practice.(6.26)

 disentangles the reductions of the standard input-output coefficients in TFP expression 
6.8 Use observed prices or shadow prices?
We have seen that different price systems are used in productivity measurement, namely observed prices, production prices, and shadow prices.  Perfectly competitive economies let no light between the three price systems, but that is an ideal.  Real economies show a wedge between the three and the question is which price system to use.  To an extent this is determined by data availability.  Since productivity is (net) output per (factor) input, the minimally required data are factor inputs and net outputs.  That is not enough.  For example, the net output of the business services industry is zero, since all its output fulfills intermediate demand; more information is needed to measure its productivity.  Additional information can be price information, input-output statistics, or micro statistics.  If price information is available, it can be used to weigh inputs and to weigh outputs, in order to measure total productivity.  The implicit assumption, however, is that input prices are equal to marginal products and that output prices are cost based.  If input-output statistics are available, shadow prices can be calculated, circumventing the implicit assumption.  A limitation, however, is that there must be substitutability to pin them down.  Open economies feature this substitutability—products can be replaced by imports.  A drawback is that the shadow prices will be sensitive with respect to the specification of the model.  If micro statistics are available, substitutability is automatic, namely between competing production units, and more robust shadow prices are within reach.
All approaches lead to the same productivity measures if there is perfect competition.  If this is not the case and one has the luxury to choose, shadow prices are the preferred ones, validating productivity (de)compositions, but market prices remain useful.  The main use is that the excess of market prices, relative to shadow prices, can be used to measure the departure from perfect competition, in the form of market power.  This, in turn, can be used to analyze if competition is good or bad for productivity, a key political economy issue.  Neoclassical economists argue that competition is good, it weeds out slack, especially managerial, but also other inefficiencies, thus yielding more output per input.  “The best of all monopoly profits is a quiet life.” (Hicks, 1935)  However, Schumpeter 
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