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A rectangular input-output table with N products and M industries is defined by production matrix 

X and intermediate consumption matrix Z with N rows and M columns both. The square matrices FF'= 

(X–Z)(X–Z)' of order N and F'F=(X–Z)'(X–Z) of order M are symmetric and have the same spectrum of 

nonzero real eigenvalues.  

The eigenvectors of matrix FF' form an orthonormal basis of N-dimensional vector space that 

could be considered as eigenbasis for rectangular input-output model at N>M (i.e., the number of 

products exceeds the number of industries as it often happens in statistical practice). Being transformed 

with respect to the eigenbasis, matrices X and Z have N–M lower rows coincided between each other 

(with zero final demand for the last N–M products). This property allows employing rectangular input-

output table written in the coordinates with respect to the eigenvectors of matrix FF' as operational 

demand-driven input-output model in which M components of final demand are exogenous variables and 

the other N–M components are set to zero. 

In turn, the eigenvectors of matrix F'F constitute an orthonormal basis of M-dimensional vector 

space that could serve as eigenbasis for rectangular input-output model at M>N (i.e., the number of 

industries exceeds the number of products). Being transformed with respect to this basis, matrices X and 

Z have M–N right columns coincided between each other (with zero value added in the last M–N 

industries). Thus, rectangular input-output table written in the coordinates with respect to the 

eigenvectors of matrix F'F can be used as operational supply-driven input-output model in which N 

components of value added are exogenous variables and the other M–N components are set to zero. 

The analytical opportunities of practical applying the proposed models are slightly limited because 

of explicit shortage of exogenous variables. Nevertheless, it is shown that the models appear to be a 

useful additional toolbox to regular computational schemes of input-output analysis. Their main 

advantage is direct handling the initial rectangular input-output table without obvious data distortion 

being entailed by transformations the table to symmetric format under various assumptions. 
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1.  Linear input-output model: a general formulation 

The general linear input-output model of an economy with N products (commodities) and M 

industries (sectors) for the certain time period leans on a pair of rectangular matrices, namely 
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supply (production) matrix X and use for intermediates (intermediate consumption) matrix Z of 

the same dimension N×M both. In mathematical notation, the model includes the vector equation 

for material balance of products’ intermediate and final uses, i.e., 

yZeXe += MM ,                                                         (1) 

and the following vector equation for financial balance of industries’ intermediate and primary 

(combined into value added) inputs: 

vZeXe ′+′=′ NN                                                           (2) 

where Ne  and Me  are N×1 and M×1 summation column vectors with unit elements, y is a 

column vector of net final demand with dimensions N×1, and v is a column vector of value 

added with dimensions M×1. Here putting a prime after vector’s (matrix’s) symbol denotes a 

transpose of this vector (matrix). 

The balance model (1), (2) contains N+M linear equations with 2NM + N+M scalar 

variables. Hence, for exact identifiability of the model it is required to include in it 2NM 

additional independent equations describing established, presumed and exogenous linkages 

between the variables. 

“One of the major uses of the information in an input-output model is to assess the effect 

on an economy of changes in elements that are exogenous to the model of that economy” (Miller 

and Blair, 2009, p. 243). To measure the changes mentioned above, in most practical cases there 

usually is the supply and use table for economy under consideration for some time period (say, 

period 0) compiled from available statistical data. This table includes the production matrix X0 

and intermediate consumption matrix Z0 with dimensions N×M, (N×1)-dimensional column 

vector of net final demand y0 , and (M×1)-dimensional column vector of value added v0 (see 

Eurostat, 2008). Note that the equations (1) and (2) are exactly met for the initial supply and use 

table components. The structure of initial supply and use table serves as an informational 

framework for constructing the additional linkage equations in general linear input-output model 

(1), (2). 

With accordance to the quotation above, one of the main aims of constructing input-output 

models is to assess an impact of the exogenous changes (either absolute or relative) in net final 

demand and, by virtue of evident symmetry in the balance equations under consideration, an 

impact of the exogenous changes in gross value added on simultaneous behavior of the economy 

as a whole and its industries.  

2. The price and quantity transformations of the model variables 

In principle, any finite variations in exogenous elements of the input-output model (1), (2) lead to 
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the changes of price and quantity proportions in the resulting (i.e., disturbed) supply and use 

table. The most general way to describe an impact of these changes on matrices X and Z is as 

follows: 

0XQPX XX = ,               0ZQPZ ZZ =  

where XP  and ZP  are N×M-dimensional matrices of the relative price indices for products, XQ  

and ZQ  are N×M matrices of the relative quantity (physical volume) indices for industries of the 

economy, and the character “ ° ” denotes the Hadamard’s (element-wise) product of two matrices 

with the same dimensions.  

Following Motorin (2017), one can assume that in market economy PPP ZX == , and 

QQQ ZX ==  on the current level of production. Besides, it is quite natural to propose also that 

the price on certain product does not vary along the row of producing-and-consuming industries, 

i.e., nnm pp =  for all m = 1÷M at n = 1÷N where the character “ ÷ ” between the lower and upper 

bounds of index’s changing range means that the index sequentially runs all integer values in the 

specified range, and, moreover, that the production quantity index for the certain industry’s 

output and intermediate consumption is keeping invariable through all products produced and 

consumed, namely, mnm qq =  for all n = 1÷N at m = 1÷M .  

Thus, matrices P and Q can be represented respectively as MepP ′⊗=  and qeQ ′⊗= N  

where p is a column vector of the relative price indices on products with dimensions N×1, q is a 

column vector of the relative quantity indices for industries with dimensions M×1, and the 

character “ ⊗ ” denotes the Kronecker product for two matrices. 

Transforming the above statements into regular matrix notation gives two nonlinear 

multiplicative patterns 

qXpX ˆˆ 0= ,                 qZpZ ˆˆ 0=                                                    (3) 

where putting a “hat” over vector’s symbol (or angled bracketing around it) denotes a diagonal 

matrix with the vector on its main diagonal and zeros elsewhere (see Miller and Blair, 2009, 

p. 697). The patterns (3) provide the combined price and quantity description of an economy 

response to exogenous changes in the input-output model’s variables, inter alia, in net final 

demand and in gross value added.  

The nonlinear multiplicative patterns (3) generate a nonlinear problem of input-output 

analysis as follows: 

yqZpqXp += 00 ˆˆ ,           vqZpqXp ′+′=′ ˆˆ 00 . 

Note that here the unknown vectors p and q cannot be estimated unambiguously as the functions 
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of exogenous vectors y and v because the multiplicative patterns (3) are hyperbolically 

homogeneous, since 0XqpX ′= , 0ZqpZ ′= , and cc qpqp ′⋅=′  for any nonzero scalar c. 

Nevertheless, evaluating of input-output model (1), (2) in terms of the production quantity 

changing at constant prices on the products and/or in terms of price changing at constant level of 

production in the industries is of great theoretical and practical interest.  

3. The general linear input-output models at constant prices and at constant production level  

In a case of constant prices on products we have NEp =ˆ  and Nep = where EN is identity matrix 

of order N, and Ne  is N×1 summation column vector, as earlier, so the nonlinear multiplicative 

patterns (3) can be rewritten in linear form, namely 

qXX ˆ0= ,                 qZZ ˆ0= .                                                 (4) 

Substituting multiplicative patterns (4) in the equations of input-output model (1), (2), we 

obtain 

( ) yqZX =− 00 ,                                                           (5) 

( ) vqZXe =−′ 00N                                                          (6) 

respectively.  

Assessing the input-output model (1), (2) at constant level of production in the industries 

(at MEq =ˆ  and Meq =  where EM is identity matrix of order M, and Me  is M×1 summation 

column vector, as earlier) leads to following linear patterns 

0ˆXpX = ,                 0ˆZpZ = .                                                  (7) 

Finally, substituting multiplicative patterns (7) in the equations of input-output model (1), 

(2), we have 

( ) ypeZX =− M00 ,                                                     (8) 

( ) vpZX =′−′ 00                                                            (9) 

respectively. 

4. Exploring a general linear input-output model at constant prices 

Consider some operational opportunities in obtaining solutions for the input-output model (5), 

(6) in the cases of evaluating a response of the economy to exogenous changes in the net final 

demand vector 0yyy ≠= ∗  with dimensions N×1 or in the value added vector 0vvv ≠= ∗  with 

dimensions M×1 at constant prices. Here it is assumed that “disturbed” vectors ∗y  and ∗v  do not 

have any zero components. 

The material balance model (5) contains N linear equations with M unknown scalar 
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variables q, whereas the financial balance model (6) includes M linear equations with the same M 

unknowns. Hence, in most general case N > = < M one can assess a response of the economy 

only to exogenous change in the value added vector 0vvv ≠= ∗  by resolving the equation (6) 

written as ( ) ∗==−′ vqvqZXe 000 ˆN  with respect to the column vector of the relative quantity 

indices for industries, namely 

∗
−= vvq 1
0ˆ .                                                               (10) 

It should be noted that the solution (10) is valid at any numbers of products and industries 

in the economy. Nevertheless, this common solution is trivial because a response of input-output 

model (5), (6) to the disturbance 0vvv ≠= ∗  comes to the alternate multiplying the columns of 

production and intermediate consumption matrices X0 and Z0 on the growth indices of value 

added through all industries at constant prices on the products. 

However, at N = M = J the choice of alternative exogenous condition is also feasible in 

finding a supplementary solution for the model (5), (6). Under the exogenous final demand 

condition 0yyy ≠= ∗ , the equation (5) written as ( ) ∗=− yqZX 00  can be resolved with 

respect to the column vector of the relative quantity indices for industries, namely 

( ) ∗
−−= yZXq 1

00 ,                                                      (11) 

of course, provided that inverse of the square matrix 00 ZX −  of order K exists as it is expected 

to be. (Note that initial production matrix X0 usually has the dominant main diagonal, so one can 

assume it nondegenerate.) The supplementary solution (11) is valid only if the values of N and M 

coincide, but it is not trivial in contrast to common solution (10). 

The model (5), (6) with its supplementary solution (11) at N = M = J describes an impact of 

exogenous changes in final demand in terms of a production quantity changing at constant prices 

on the products and can be considered as a generalized version of well-known Leontief demand-

driven model (see Miller and Blair, 2009, Section 2.2.2). In accordance with the multiplicative 

patterns (4), the total requirements matrix, which links the vector of product outputs with the 

final demand vector, can be derived as follows: 

( ) ( )[ ] ( ) ∗

−−
∗

−−
∗

− −=−=−== yXZEyXZXyZXXqXXe 11
00

11
000

1
0000 JJ .       (12) 

Note that generalized form of Leontief technical coefficients 1
00
−XZ  have been explored by 

Jansen and ten Raa (1990) and other authors in the context of constructing symmetric input-

output tables; this form of technical coefficients is known as commodity technology model. 

Thus, any transformation of the square input-output model at constant prices implies an input-

output data changing within a product technology paradigm (see Model A in Eurostat, 2008; see 
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also Motorin, 2019). 

5. Exploring a general linear input-output model at constant production level  

In its turn, consider operational opportunities in getting solutions for the input-output model (8), 

(9) in the cases of evaluating a response of the economy to exogenous changes in the final 

demand vector 0yyy ≠= ∗  or in the value added vector 0vvv ≠= ∗  at constant level of 

production. 

The material balance model (8) contains N linear equations with N unknown scalar 

variables p, whereas the financial balance model (9) includes M linear equations with the same N 

unknowns. Hence, in a general case N > = < M one can evaluate a response of the economy only 

to exogenous change in the final demand vector 0yyy ≠= ∗  by resolving the equation (8) written 

as ( ) ∗==− ypypeZX 000 ˆM  with respect to the column vector of the relative price indices 

on products, namely 

∗
−= yyp 1
0ˆ .                                                            (13) 

The solution (13) is valid at any numbers of products and industries in the economy. 

Nevertheless, this common solution is trivial because a response of input-output model (8), (9) to 

the disturbance 0yyy ≠= ∗  comes to the alternate multiplying the rows of production and 

intermediate consumption matrices X0 and Z0 on the value indices of final demand through all 

products at constant level of production in the industries. 

However, at N = M = J the choice of alternative exogenous condition is also feasible in 

finding a supplementary solution for the model (8), (9). Under the exogenous value added 

condition 0vvv ≠= ∗ , the equation (9) written as ( ) ∗=′−′ vpZX 00  can be resolved with 

respect to the column vector of the relative price indices on products, namely 

( ) ∗
−′−′= vZXp 1

00 ,                                                  (14) 

of course, provided that inverse of the square (at N = M = J) matrix 00 ZX ′−′  exists. (Recall that 

initial production matrix X0 usually has the dominant main diagonal.) The supplementary 

solution (14) is valid only if the values of N and M coincide, but in contrast to the common 

solution (13), it is not trivial. 

The model (8), (9) with its supplementary solution (14) describes an impact of exogenous 

changes in value added in terms of a price changing at constant level of production in the 

industries and can be classified as a generalized version of Ghosh supply-driven model (see 

Miller and Blair, 2009, Section 12.1). According to the multiplicative patterns (4), Ghosh 



7 
 
analogue of total requirements matrix, which links the vector of industry outputs with the value 

added vector, can be derived as follows: 

( ) ( )( )[ ] ( )[ ] ∗

−−
∗

−−
∗

− ′′−=′′−′=′−′′=′=′ vXZEvXZXvZXXpXeX
11

00

11
000

1
0000 JJ .    (15) 

This generalized form of Ghosh allocation coefficients is dual to commodity technology 

model. Besides, it is interesting here to pay attention to the fact that models (5), (6) and (8), (9) 

do demonstrate remarkable duality properties in pairwise comparison of the common solutions 

(10) and (13) at any values N and M as well as the supplementary solution (11) with total 

requirements matrix (12) and the supplementary solution (14) with total requirements matrix (15) 

at N = M = J, respectively. 

6. Further opportunities for analytical employing the general linear input-output models  

It is shown above that general input-output models (5), (6) and (8), (9) have trivial common 

solutions and nontrivial solutions in particular case N = M = J. Then the quite natural question 

arises: is it possible to provide an operational use of these models for the purposes of input-

output analysis in any other cases and how to do it? 

Note that the key equations (5) and (9) of the general input-output models at constant prices 

and at constant production level can be written in unified form, namely 

∗= yFq  ,                      ∗=′ vpF  

where 00 ZXF −=  is rectangular matrix with dimensions N×M. Let us introduce into 

consideration the square matrix ))(( 0000 ′−−=′ ZXZXFF  of order N and the square matrix 

)()( 0000 ZXZXFF −′−=′  of order M. It can be easily shown that they both are symmetric and 

have the same spectrum of nonzero real eigenvalues. 

Let KD  and LD  be the square matrices of orders K = max {N, M} and L = min {N, M}, 

respectively, defined as follows: 





=′
=′

=




=′
=′

=
.if,
;if,

;if,
;if,

NL
ML

MK
NK

LK FF
FF

D
FF
FF

D                     (16) 

It is easy to see that both matrices are of the same rank L < K, so matrix KD  of higher order K is 

degenerate.  

Symmetric matrix LD  of order L < K has L nonzero real eigenvalues that could be 

assembled into (L×1)-dimensional column vector Lλ . In turn, symmetric matrix KD  has the same 

L nonzero real eigenvalues and also K – L zero eigenvalues. Thus, (1×K)-dimensional row vector 

of KD ’s eigenvalues is equal to ( )LKLK −′′=′ 0λλ ,  where LK−′0  is the null row vector with 
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dimensions 1×(K – L). 

The eigenvectors of symmetric matrix KD  form an orthonormal basis of K-dimensional 

vector space. Let KS  be a square matrix of order K whose columns coincide with the 

eigenvectors of matrix KD . They are pairwise orthogonal to each other, i.e. KKK ESS =′ . Hence, 

the inverse of KS  can be derived as KK SS ′=−1  (in linear algebra such matrices are called 

orthogonal). By definition of an eigenvector we have KKKK λSSD ˆ= from which 

KKKK λSDS ˆ=′ .                                                       (17) 

If the number of products exceeds the number of industries as it often happens in statistical 

practice (i.e., at K = N > M), it follows from (16) that ))(( 0000 ′−−=′= ZXZXFFDK . The 

eigenvectors of matrix FF' form an orthonormal basis of N-dimensional vector space that could 

be considered as eigenbasis for rectangular input-output model at constant prices. Transformed 

into the coordinates with respect to this eigenbasis, matrices 0X  and 0Z  become 0XSK′  and 

0ZSK′  and according to (17) have N–M lower rows coincided between each other (with zero 

final demand for the last N–M products). This property allows employing rectangular input-

output table written in the coordinates with respect to the eigenvectors of matrix FF' as 

operational demand-driven input-output model in which M components of final demand are 

exogenous variables and the other N–M components are set to zero. 

In turn, if the number of industries exceeds the number of products (i.e., at K = M > N), 

formula (16) gives )()( 0000 ZXZXFFD −′−=′=K . The eigenvectors of matrix F'F 

constitute an orthonormal basis of M-dimensional vector space that could serve as eigenbasis for 

rectangular input-output model at constant level of production. Transformed into the coordinates 

with respect to this eigenbasis, matrices 0X  and 0Z  become KSX0  and KSZ0  and according to 

(17) have M–N right columns coincided between each other (with zero value added for the last 

M–N industries). Thus, rectangular input-output table written in the coordinates with respect to 

the eigenvectors of matrix F'F can be used as operational supply-driven input-output model in 

which N components of value added are exogenous variables and the other M–N components are 

set to zero. 

7. Numerical example for the linear input-output model at constant prices   

To illustrate a proposed approach to analytical employing the general linear input-output model at 

constant prices, consider the following initial supply and use table for the economy with N = 5 

products and M = 3 industries (at K = N > M): 
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 0Z    50eZ   0X    30eX  
0y  

 20 0 10 30  60 0 0 60 30 
 34 152 72 258  80 230 0 310 52 
 0 50 0 50  0 60 30 90 40 
 36 188 98 322  0 190 210 400 78 
 10 15 0 25  0 10 30 40 15 

05Ze′  100 405 180 685 05Xe′  140 490 270 900 215 
     0v′  40 85 90 215  

Here K = max {5, 3} = 5, L = min {5, 3} = 3 and 



















=′−−=′==

102537108503010-700-
37101338433809564-2560-
850338010001380-300-
3010-9564-1380-133842560
700-2560-300-25601700

))(( 00005 ZXZXFFDK , 












=−′−=′==

196285242-8044-
5242-62133566
8044-35665112

)()( 00003 ZXZXFFDL ,            











==

1149.327
4549.455

25254.218

3Lλ , 























==

0
0

1149.327

4549.455

25254.218

5Kλ ,       























==

0.938082-0.2661710.0476540.0883540.197681

0.2798320.2661710.0166910.6073230.694066

0.187983-0.903579-0.1698880.3144400.143082

0.043208-0.1260810.159281-0.7225690.659364-

0.0670170.1611030.9711940.0487280.154795-

5KS  

It is easy to check that equation (17) is met, namely, 5555
ˆ

==== ′=′ KKKK SλDS . 

Transforming initial supply and use table into the coordinates with respect to eigenbasis 

(constituted by columns of matrix 5=KS ) gives the following supply and use table: 

 05ZS =′K    305 eZS =′K   05XS =′K    305 eXS =′K  
EB0 )(y  

 1.45 40.38 19.00 60.83  -62.04 -9.22 155.98 84.72 23.89 
 48.29 241.05 112.03 401.37  60.73 301.33 139.62 501.68 100.31 
 15.09 -11.86 -0.12 3.10  45.53 -22.79 10.03 32.77 29.67 

 19.75 28.02 36.77 84.54  19.75 28.02 36.77 84.54 0.00 
 0.56 22.57 24.98 48.12  0.56 22.57 24.98 48.12 0.00 

055 ZSe =′′ K
 85.14 320.16 192.66 597.96 055 XSe =′′ K

 64.54 319.91 367.39 751.83 153.87 
     EB0 )( ′v  -20.60 -0.25 174.72 153.87  

Indeed, matrices 05XS −′K  and 05ZS =′K  have N–M=5–3=2 lower rows coincided between each 

other (with zero final demand for the last N–M=2 products); in the table these rows are slightly 

darkened. (Besides, subscript “EB” in EB0 )(y  and EB0 )( ′v  means the initial final demand and 

value added vectors 0y  and 0v′  written in the coordinates with respect to eigenbasis.) 

 Let )1,1,1()( EB ′=∆y  be the column vector of the unit changes of final demand on product 
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1, 2 and 3 in the new classification (blue box in the latter table) so that 












=












+












=∆+=∗

67.30
31.101
89.24

1
1
1

67.29
31.100
89.23

EBEB0EB )()()( yyy  

Applying supplementary solution (11) for 3-dimensional square demand-driven input-output 

model (5), (6) at constant prices (see green boxes in the latter table) we obtain the quantity index 

vector 












=












































−
















=

−

1.020322
1.001776
1.026709

67.30
31.101
89.24

-0.12-11.8615.09

112.03241.0548.29

19.0040.381.45

10.03-22.7945.53

139.62301.3360.73

155.98-9.2262.04-
1

EBq  

and disturbed supply and use table (written over eigenbasis) 

 EB05 q̂ZS =′K      EB05 q̂XS =′K     EB)( ∗y  
 1.488 40.452 19.382 61.322  -63.694 -9.236 159.146 86.217 24.895 
 49.579 241.482 114.307 405.368  62.351 301.867 142.459 506.677 101.310 
 15.489 -11.885 -0.123 3.481  46.745 -22.834 10.235 34.146 30.665 
 20.280 28.068 37.521 85.869  20.280 28.068 37.521 85.869 0.000 
 0.579 22.610 25.490 48.680  0.579 22.610 25.490 48.680 0.000 
 87.415 320.728 196.577 604.720  66.262 320.475 374.852 761.590 156.870 
     EB)( ′v  -21.152 -0.253 178.275 156.870  

Disturbed supply and use table (written over natural basis) is 

 EB0q̂Z    EB0qZ   EB0q̂X    EB0qX  y  
 20.534 0.000 10.203 30.737  61.603 0.000 0.000 61.603 30.865 
 34.908 152.270 73.463 260.641  82.137 230.408 0.000 312.545 51.904 
 0.000 50.089 0.000 50.089  0.000 60.107 30.610 90.716 40.627 
 36.962 188.334 99.992 325.287  0.000 190.337 214.268 404.605 79.318 
 10.267 15.027 0.000 25.294  0.000 10.018 30.610 40.627 15.334 

EB0q̂ZeN′  102.671 405.719 183.658 692.048 EB0q̂XeN′  143.739 490.870 275.487 910.096 218.048 
     v′  41.068 85.151 91.829 218.048  

8. Numerical example for the linear input-output model at constant production level 

To illustrate a proposed approach to analytical employing the general linear input-output model at 

constant level of production, consider the following initial supply and use table for the economy 

with N = 3 products and M = 5 industries (at K = M > N): 

0Z      50eZ  
0X      50eX  

0y  
20 34 0 36 10 100 60 80 0 0 0 140 40 
0 152 50 188 15 405 0 230 60 190 10 490 85 

10 72 0 98 0 180 0 0 30 210 30 270 90 
30 258 50 322 25 685 60 310 90 400 40 900 215 

     
0v′  30 52 40 78 15 215  

Here K = max {3, 5} = 5, L = min {3, 5} = 3 and 
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

















=−′−=′==

102537108503010-700-
37101338433809564-2560-
850338010001380-300-
3010-9564-1380-133842560
700-2560-300-25601700

)()( 00005 ZXZXFFDK , 












=′−−=′==

196285242-8044-
5242-62133566
8044-35665112

))(( 00003 ZXZXFFDL ,            











==

1149.327
4549.455

25254.218

3Lλ , 























==

0
0

1149.327

4549.455

25254.218

5Kλ ,       























==

0.938082-0.2661710.0476540.0883540.197681

0.2798320.2661710.0166910.6073230.694066

0.187983-0.903579-0.1698880.3144400.143082

0.043208-0.1260810.159281-0.7225690.659364-

0.0670170.1611030.9711940.0487280.154795-

5KS  

It is easy to check that equation (17) is met, namely, 5555
ˆ

==== = KKKK λSSD nearly 

resembling as it was done in previous example. Transforming initial supply and use table into the 

coordinates with respect to eigenbasis (constituted by columns of matrix 5=KS ) gives the 

following supply and use table: 

50 =KSZ      550 eSZ =K
 

50 =KSX      550 eSX =K
 

EB0 )(y  
1.45 48.29 15.09 19.75 0.56 85.14 -62.04 60.73 45.53 19.75 0.56 64.54 -20.60 

40.38 241.05 -11.86 28.02 22.57 320.16 -9.22 301.33 -22.79 28.02 22.57 319.91 -0.25 
19.00 112.03 -0.12 36.77 24.98 192.66 155.98 139.62 10.03 36.77 24.98 367.39 174.72 

60.83 401.37 3.10 84.54 48.12 597.96 84.72 501.68 32.77 84.54 48.12 751.83 153.87 
     

EB0 )( ′v  23.89 100.31 29.67 0.00 0.00 153.87  

Indeed, matrices 50 −KSX  and 50 =KSZ  have M–N=5–3=2 right columns coincided between 

each other (with zero value added for the last M–N =2 industries); in the table these columns are 

slightly darkened. (As earlier, subscript “EB” in EB0 )(y  and EB0 )( ′v  means the initial final 

demand and value added vectors 0y  and 0v′  written in the coordinates with respect to 

eigenbasis.) 

Let )1,1,1()( EB =′∆v  be the row vector of the unit changes of value added in industry 1, 2 

and 3 in the new classification (blue box in the latter table) so that 












=












+












=∆+=∗

67.30
31.101
89.24

1
1
1

67.29
31.100
89.23

EBEB0EB )()()( vvv  

Applying supplementary solution (14) for 3-dimensional square supply-driven input-output 

model (8), (9) at constant level of production (see green boxes in the latter table) we obtain the 

price index vector 
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










=





























 ′
















−

′
















=

−

1.020322
1.001776
1.026709

67.30
31.101
89.24

-0.12112.0319.00

-11.86241.0540.38

15.0948.291.45

10.03139.62155.98

-22.79301.339.22-

45.5360.7362.04-
1

EBp  

and disturbed supply and use table (written over eigenbasis) 

50EBˆ =KSZp       50EBˆ =KSXp       EB)(y  
1.488 49.579 15.489 20.280 0.579 87.415 -63.694 62.351 46.745 20.280 0.579 66.262 -21.152 

40.452 241.482 -11.885 28.068 22.610 320.728 -9.236 301.867 -22.834 28.068 22.610 320.475 -0.253 
19.382 114.307 -0.123 37.521 25.490 196.577 159.146 142.459 10.235 37.521 25.490 374.852 178.275 
61.322 405.368 3.481 85.869 48.680 604.720 86.217 506.677 34.146 85.869 48.680 761.590 156.870 

     
EB)( ′∗v  24.895 101.310 30.665 0.000 0.000 156.870  

Disturbed supply and use table (written over natural basis) is 

0EBˆ Zp       0EBˆ Xp       y  
20.534 34.908 0.000 36.962 10.267 102.671 61.603 82.137 0.000 0.000 0.000 143.739 41.068 
0.000 152.270 50.089 188.334 15.027 405.719 0.000 230.408 60.107 190.337 10.018 490.870 85.151 

10.203 73.463 0.000 99.992 0.000 183.658 0.000 0.000 30.610 214.268 30.610 275.487 91.829 
30.737 260.641 50.089 325.287 25.294 692.048 61.603 312.545 90.716 404.605 40.627 910.096 218.048 

     v′  30.865 51.904 40.627 79.318 15.334 218.048  

9. Concluding remarks 

The opportunities of practical applying the proposed approach to analytical employing the general 

linear input-output models at constant prices and at constant level of production are slightly 

limited because of explicit shortage of exogenous variables. Nevertheless, it is shown that the 

models appear to be a useful additional toolbox to regular computational schemes of input-output 

analysis. Their main advantage is direct handling the initial rectangular input-output table 

without obvious data distortion being entailed by transformations the table to symmetric format 

under various assumptions. 
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	where  and  are N(M-dimensional matrices of the relative price indices for products,  and  are N(M matrices of the relative quantity (physical volume) indices for industries of the economy, and the character “ ( ” denotes the Hadamard’s (element-wise)...

