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A rectangular input-output table with N products and M industries is defined by production matrix
X and intermediate consumption matrix Z with N rows and M columns both. The square matrices FF'=
(X=2)(X-2)" of order N and F'F=(X-2Z)'(X-2Z) of order M are symmetric and have the same spectrum of
nonzero real eigenvalues.

The eigenvectors of matrix FF' form an orthonormal basis of N-dimensional vector space that
could be considered as eigenbasis for rectangular input-output model at N>M (i.e., the number of
products exceeds the number of industries as it often happens in statistical practice). Being transformed
with respect to the eigenbasis, matrices X and Z have N-M lower rows coincided between each other
(with zero final demand for the last N-M products). This property allows employing rectangular input-
output table written in the coordinates with respect to the eigenvectors of matrix FF' as operational
demand-driven input-output model in which M components of final demand are exogenous variables and
the other N-M components are set to zero.

In turn, the eigenvectors of matrix F'F constitute an orthonormal basis of M-dimensional vector
space that could serve as eigenbasis for rectangular input-output model at M>N (i.e., the number of
industries exceeds the number of products). Being transformed with respect to this basis, matrices X and
Z have M-N right columns coincided between each other (with zero value added in the last M-N
industries). Thus, rectangular input-output table written in the coordinates with respect to the
eigenvectors of matrix F'F can be used as operational supply-driven input-output model in which N
components of value added are exogenous variables and the other M—N components are set to zero.

The analytical opportunities of practical applying the proposed models are slightly limited because
of explicit shortage of exogenous variables. Nevertheless, it is shown that the models appear to be a
useful additional toolbox to regular computational schemes of input-output analysis. Their main
advantage is direct handling the initial rectangular input-output table without obvious data distortion

being entailed by transformations the table to symmetric format under various assumptions.
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1. Linear input-output model: a general formulation
The general linear input-output model of an economy with N products (commodities) and M

industries (sectors) for the certain time period leans on a pair of rectangular matrices, namely
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supply (production) matrix X and use for intermediates (intermediate consumption) matrix Z of
the same dimension NxM both. In mathematical notation, the model includes the vector equation
for material balance of products’ intermediate and final uses, i.e.,

Xey =Zey +Y, (1)
and the following vector equation for financial balance of industries’ intermediate and primary
(combined into value added) inputs:

eyX=eyZ+Vv (2)
where e, and e, are Nx1 and Mx1 summation column vectors with unit elements, y is a

column vector of net final demand with dimensions Nx1, and v is a column vector of value
added with dimensions Mx1. Here putting a prime after vector’s (matrix’s) symbol denotes a
transpose of this vector (matrix).

The balance model (1), (2) contains N+M linear equations with 2NM + N+M scalar
variables. Hence, for exact identifiability of the model it is required to include in it 2NM
additional independent equations describing established, presumed and exogenous linkages
between the variables.

“One of the major uses of the information in an input-output model is to assess the effect
on an economy of changes in elements that are exogenous to the model of that economy” (Miller
and Blair, 2009, p. 243). To measure the changes mentioned above, in most practical cases there
usually is the supply and use table for economy under consideration for some time period (say,
period 0) compiled from available statistical data. This table includes the production matrix X,
and intermediate consumption matrix Z, with dimensions NxM, (Nx1)-dimensional column
vector of net final demand y,, and (Mx1)-dimensional column vector of value added v, (see
Eurostat, 2008). Note that the equations (1) and (2) are exactly met for the initial supply and use
table components. The structure of initial supply and use table serves as an informational
framework for constructing the additional linkage equations in general linear input-output model
1), ).

With accordance to the quotation above, one of the main aims of constructing input-output
models is to assess an impact of the exogenous changes (either absolute or relative) in net final
demand and, by virtue of evident symmetry in the balance equations under consideration, an
impact of the exogenous changes in gross value added on simultaneous behavior of the economy

as a whole and its industries.

2. The price and quantity transformations of the model variables

In principle, any finite variations in exogenous elements of the input-output model (1), (2) lead to
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the changes of price and quantity proportions in the resulting (i.e., disturbed) supply and use
table. The most general way to describe an impact of these changes on matrices X and Z is as
follows:
X =Py 0Qy 0 Xy, Z=P,0Q,0Z,

where Py and P, are NxM-dimensional matrices of the relative price indices for products, Qy
and Q, are NxM matrices of the relative quantity (physical volume) indices for industries of the
economy, and the character “ o ” denotes the Hadamard’s (element-wise) product of two matrices
with the same dimensions.

Following Motorin (2017), one can assume that in market economyP, =P, =P, and
Q4 =Q, =Q on the current level of production. Besides, it is quite natural to propose also that
the price on certain product does not vary along the row of producing-and-consuming industries,

I.e., pym =P, forall m=1+M at n = 1+N where the character “ -+ between the lower and upper

bounds of index’s changing range means that the index sequentially runs all integer values in the
specified range, and, moreover, that the production quantity index for the certain industry’s
output and intermediate consumption is keeping invariable through all products produced and

consumed, namely, q,,=q, foralln=1+Natm=1+M.
Thus, matrices P and Q can be represented respectively as P=p®e}, and Q=e, ®q'

where p is a column vector of the relative price indices on products with dimensions Nx1, q is a
column vector of the relative quantity indices for industries with dimensions Mx1, and the
character “ ® ” denotes the Kronecker product for two matrices.

Transforming the above statements into regular matrix notation gives two nonlinear
multiplicative patterns

X=pXq, Z=pZy 3)

where putting a “hat” over vector’s symbol (or angled bracketing around it) denotes a diagonal
matrix with the vector on its main diagonal and zeros elsewhere (see Miller and Blair, 2009,
p. 697). The patterns (3) provide the combined price and quantity description of an economy
response to exogenous changes in the input-output model’s variables, inter alia, in net final
demand and in gross value added.

The nonlinear multiplicative patterns (3) generate a nonlinear problem of input-output

analysis as follows:
PXoa=pZ,q+Y, PXd=pZG+V'.

Note that here the unknown vectors p and g cannot be estimated unambiguously as the functions
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of exogenous vectors y and v because the multiplicative patterns (3) are hyperbolically
homogeneous, since X =pq'eX,, Z=pq'~Z,, and pg'=cp-q’'/c for any nonzero scalar c.

Nevertheless, evaluating of input-output model (1), (2) in terms of the production quantity
changing at constant prices on the products and/or in terms of price changing at constant level of

production in the industries is of great theoretical and practical interest.

3. The general linear input-output models at constant prices and at constant production level
In a case of constant prices on products we have p=E, and p=e, where Ey is identity matrix
of order N, and e, is Nx1 summation column vector, as earlier, so the nonlinear multiplicative
patterns (3) can be rewritten in linear form, namely
X=X, Z=24. (4)
Substituting multiplicative patterns (4) in the equations of input-output model (1), (2), we

obtain
(Xo—=2Zo)a=y, (5)
(eh(Xo=Zo)a=v (6)
respectively.
Assessing the input-output model (1), (2) at constant level of production in the industries
(at g=E,, and g=e, where Ey is identity matrix of order M, and e,, is Mx1 summation

column vector, as earlier) leads to following linear patterns

X=pXo, Z=pZ,. (7)
Finally, substituting multiplicative patterns (7) in the equations of input-output model (1),
(2), we have
<(XO_ZO)eM>p:y' (8)
(Xo—Z5)p=v )

respectively.

4. Exploring a general linear input-output model at constant prices
Consider some operational opportunities in obtaining solutions for the input-output model (5),

(6) in the cases of evaluating a response of the economy to exogenous changes in the net final
demand vector Y=Y, # Yy, with dimensions Nx1 or in the value added vector v =v, # Vv, with
dimensions Mx1 at constant prices. Here it is assumed that “disturbed” vectors Yy, and v, do not

have any zero components.

The material balance model (5) contains N linear equations with M unknown scalar
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variables q, whereas the financial balance model (6) includes M linear equations with the same M
unknowns. Hence, in most general case N >= <M one can assess a response of the economy

only to exogenous change in the value added vector v =V, # Vv, by resolving the equation (6)

written as (e}, (X, — Z,)) 0 = Vg = v, with respect to the column vector of the relative quantity
indices for industries, namely

q="0g'v,. (10)

It should be noted that the solution (10) is valid at any numbers of products and industries

in the economy. Nevertheless, this common solution is trivial because a response of input-output

model (5), (6) to the disturbance v =V, # Vv, comes to the alternate multiplying the columns of

production and intermediate consumption matrices X, and Z, on the growth indices of value
added through all industries at constant prices on the products.

However, at N =M =J the choice of alternative exogenous condition is also feasible in
finding a supplementary solution for the model (5), (6). Under the exogenous final demand

condition y=Yy, #Y,, the equation (5) written as (X, —Z,)q=Y. can be resolved with

respect to the column vector of the relative quantity indices for industries, namely

a=(Xo-2Zo)"y., (11)
of course, provided that inverse of the square matrix X, —Z, of order K exists as it is expected

to be. (Note that initial production matrix X, usually has the dominant main diagonal, so one can
assume it nondegenerate.) The supplementary solution (11) is valid only if the values of N and M
coincide, but it is not trivial in contrast to common solution (10).

The model (5), (6) with its supplementary solution (11) at N = M = J describes an impact of
exogenous changes in final demand in terms of a production quantity changing at constant prices
on the products and can be considered as a generalized version of well-known Leontief demand-
driven model (see Miller and Blair, 2009, Section 2.2.2). In accordance with the multiplicative
patterns (4), the total requirements matrix, which links the vector of product outputs with the

final demand vector, can be derived as follows:
_ 1K1 1\1
Xe; =Xg= xo(xo - Zo) ly* = [(Xo - ZO)X01T Y.= (EJ - Zoxol) Y. (12)
Note that generalized form of Leontief technical coefficients Z,X;" have been explored by

Jansen and ten Raa (1990) and other authors in the context of constructing symmetric input-
output tables; this form of technical coefficients is known as commodity technology model.
Thus, any transformation of the square input-output model at constant prices implies an input-

output data changing within a product technology paradigm (see Model A in Eurostat, 2008; see



also Motorin, 2019).

5. Exploring a general linear input-output model at constant production level
In its turn, consider operational opportunities in getting solutions for the input-output model (8),
(9) in the cases of evaluating a response of the economy to exogenous changes in the final
demand vector y=Y,#Y, or in the value added vector v=v, #V, at constant level of
production.

The material balance model (8) contains N linear equations with N unknown scalar

variables p, whereas the financial balance model (9) includes M linear equations with the same N

unknowns. Hence, in a general case N > = < M one can evaluate a response of the economy only

to exogenous change in the final demand vector y =Yy, # Y, by resolving the equation (8) written

as <(X0 —Zo)eM >p =VY,P =Y, with respect to the column vector of the relative price indices

on products, namely

P=Y5Y.. (13)
The solution (13) is valid at any numbers of products and industries in the economy.
Nevertheless, this common solution is trivial because a response of input-output model (8), (9) to

the disturbance y=Yy, #y, comes to the alternate multiplying the rows of production and
intermediate consumption matrices Xq and Z, on the value indices of final demand through all
products at constant level of production in the industries.

However, at N =M =J the choice of alternative exogenous condition is also feasible in
finding a supplementary solution for the model (8), (9). Under the exogenous value added
condition v=v, #V,, the equation (9) written as (X{) —Zg)p:v* can be resolved with
respect to the column vector of the relative price indices on products, namely

p=(Xo—-2Z5) V., (14)
of course, provided that inverse of the square (at N = M = J) matrix X{ —Z; exists. (Recall that

initial production matrix X, usually has the dominant main diagonal.) The supplementary
solution (14) is valid only if the values of N and M coincide, but in contrast to the common
solution (13), it is not trivial.

The model (8), (9) with its supplementary solution (14) describes an impact of exogenous
changes in value added in terms of a price changing at constant level of production in the
industries and can be classified as a generalized version of Ghosh supply-driven model (see

Miller and Blair, 2009, Section 12.1). According to the multiplicative patterns (4), Ghosh
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analogue of total requirements matrix, which links the vector of industry outputs with the value

added vector, can be derived as follows:
Xte, =Xip = Xp(Xs ~ Zo) 'v. = (X3 - Z0)(x0) [ v. = [E, - Zo (o) [ v, a9)
This generalized form of Ghosh allocation coefficients is dual to commodity technology
model. Besides, it is interesting here to pay attention to the fact that models (5), (6) and (8), (9)
do demonstrate remarkable duality properties in pairwise comparison of the common solutions
(10) and (13) at any values N and M as well as the supplementary solution (11) with total
requirements matrix (12) and the supplementary solution (14) with total requirements matrix (15)

at N = M = J, respectively.

6. Further opportunities for analytical employing the general linear input-output models
It is shown above that general input-output models (5), (6) and (8), (9) have trivial common
solutions and nontrivial solutions in particular case N =M =J. Then the quite natural question
arises: is it possible to provide an operational use of these models for the purposes of input-
output analysis in any other cases and how to do it?

Note that the key equations (5) and (9) of the general input-output models at constant prices
and at constant production level can be written in unified form, namely

Fa=y., Fp=v,

where F=X,—-Z, is rectangular matrix with dimensions NxM. Let us introduce into
consideration the square matrix FF'= (X, —Z,)(X,—Z,)" of order N and the square matrix
F'F=(X,-2Z,)'(X,—-2Z,) of order M. It can be easily shown that they both are symmetric and
have the same spectrum of nonzero real eigenvalues.

Let D, and D, be the square matrices of orders K =max {N, M} and L =min {N, M},
respectively, defined as follows:

FF, if K=M; FF. if L=N. (16)

FF', if K=N,; F'F, ifL=M,;
K — D, =
It is easy to see that both matrices are of the same rank L < K, so matrix D, of higher order K is
degenerate.
Symmetric matrix D, of order L <K has L nonzero real eigenvalues that could be
assembled into (Lx1)-dimensional column vector A,. In turn, symmetric matrix D, has the same

L nonzero real eigenvalues and also K — L zero eigenvalues. Thus, (1xK)-dimensional row vector

of D,’s eigenvalues is equal to A, =(|,0}_, ) where 0, , is the null row vector with



dimensions 1x(K - L).

The eigenvectors of symmetric matrix D, form an orthonormal basis of K-dimensional
vector space. Let S, be a square matrix of order K whose columns coincide with the
eigenvectors of matrix D . They are pairwise orthogonal to each other, i.e. S| S, = E,. Hence,

the inverse of S, can be derived as S, =S (in linear algebra such matrices are called

orthogonal). By definition of an eigenvector we have D, S, = SKiK from which
S/.D Sy = Ay (17)
If the number of products exceeds the number of industries as it often happens in statistical
practice (i.e., at K =N > M), it follows from (16) thatD, = FF' = (X, —Z,)(X, —Z,)". The
eigenvectors of matrix FF' form an orthonormal basis of N-dimensional vector space that could

be considered as eigenbasis for rectangular input-output model at constant prices. Transformed

into the coordinates with respect to this eigenbasis, matrices X, and Z, become S| X,and

SkZ, and according to (17) have N-M lower rows coincided between each other (with zero

final demand for the last N-M products). This property allows employing rectangular input-
output table written in the coordinates with respect to the eigenvectors of matrix FF' as
operational demand-driven input-output model in which M components of final demand are
exogenous variables and the other N-M components are set to zero.

In turn, if the number of industries exceeds the number of products (i.e., at K=M > N),
formula (16) gives D, =FF=(X,—-2Z,)'(X,—2Z,). The eigenvectors of matrix FF
constitute an orthonormal basis of M-dimensional vector space that could serve as eigenbasis for
rectangular input-output model at constant level of production. Transformed into the coordinates

with respect to this eigenbasis, matrices X, and Z,become X, S, and Z,S, and according to

(17) have M-N right columns coincided between each other (with zero value added for the last
M-N industries). Thus, rectangular input-output table written in the coordinates with respect to
the eigenvectors of matrix F'F can be used as operational supply-driven input-output model in
which N components of value added are exogenous variables and the other M—N components are

set to zero.

7. Numerical example for the linear input-output model at constant prices
To illustrate a proposed approach to analytical employing the general linear input-output model at
constant prices, consider the following initial supply and use table for the economy with N =5

products and M = 3 industries (at K = N > M):



ZO Zoes XO X0e3 yO
20 0 10 30 60 0 0 60 30
34 152 72 258 80 230 0 310 52
0 50 0 50 0 60 30 90 40
36 188 98 322 0 190 210 400 78
10 15 0 25 0 10 30 40 15
erZ, 100 405 180 685 erX, 140 490 270 900 215
A 40 85 90 215

Here K=max {5,3}=5,L=min {5,3} =3 and

[ 1700 2560 -300 -2560 -700 |
2560 13384 -1380 -9564 - 3010
D =FF =(X,-Z,)(X,—2Z,) =| -300 -1380 1000 3380 850
2560 -9564 3380 13384 3710
| -700 -3010 850 3710 1025 |

5112 3566 - 8044 25254.218
D _,=FF=(X,-2Z,)(X,—Z,) =| 3566 6213 -5242 |, A 5 =| 4549.455 |
-8044 -5242 19628 1149.327

[25254.218] [-0.154795 | 0.048728 | 0.971194 | 0.161103 | 0.067017 |
4549.455 -0.659364 | 0.722569 | -0.159281 | 0.126081 | - 0.043208

A5 =| 1149327 | Sy g =| 0.143082 | 0.314440 | 0.169888 | -0.903579 | -0.187983
0 0.694066 | 0.607323 | 0.016691 | 0.266171 | 0.279832

. 0 | | 0197681 | 0.088354 | 0.047654 | 0.266171 | -0.938082 |

It is easy to check that equation (17) is met, namely, S’}<:5DK:5=):K:5S’K:5.
Transforming initial supply and use table into the coordinates with respect to eigenbasis

(constituted by columns of matrix S,_;) gives the following supply and use table:

SksZo Sk-sZs Sk-sXo SksXe€s  (Yo)es
1.45 40.38 19.00 60.83 62.04 922 15598 | 84.72 23.89
48.29 241.05 112.03 401.37 60.73 301.33 139.62 501.68 100.31
15.09 -11.86 -0.12 3.10 45.53 -22.79 10.03 32.77 29.67
19.75 28.02 36.77 84.54 19.75 28.02 36.77 84.54 0.00
0.56 22.57 24.98 48.12 0.56 22.57 24.98 48.12 0.00
eSiZ,| 85.14 320.16 192.66 597.96 eSS, X,| 64.54 319.91 367.39 751.83 153.87
(Vo)es | -20.60 -0.25 174.72 | 153.87

Indeed, matrices Sy X, and Sy _Z, have N-M=5-3=2 lower rows coincided between each

other (with zero final demand for the last N-M=2 products); in the table these rows are slightly

darkened. (Besides, subscript “EB” in (Y,)g and (V,)gs Means the initial final demand and
value added vectors Yy, and Vv; written in the coordinates with respect to eigenbasis.)

Let (Ay)gs =(1,1,1)" be the column vector of the unit changes of final demand on product
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1, 2 and 3 in the new classification (blue box in the latter table) so that

23.89 1 24.89
(y*)EB :(yO)EB+(Ay)EB: 100.31 | +|1|=]|101.31
29.67 1 30.67

Applying supplementary solution (11) for 3-dimensional square demand-driven input-output

model (5), (6) at constant prices (see green boxes in the latter table) we obtain the quantity index

vector
-62.04 922 15598 | |145  40.38  19.00 24.89 1026709
O =| | 6073 30133 139.62 |—|48.29  241.05 112.03 101.31 | = 1.001776
4553 2279 1003 | |1509 -11.86 -0.12 3067 ] | 1020322
and disturbed supply and use table (written over eigenbasis)
Sk-sZo0es Sk-sXo0es (Y.)es
1488 40452 19382 | 61.322 -63.694  -9.236 159.146 | 86.217 | 24.895
49579  241.482 114.307 | 405.368 62.351  301.867 142.459 | 506.677 | 101.310
15489  -11.885 -0.123 | 3.481 46.745  -22.834 10.235 | 34.146 | 30.665
20280  28.068 37.521 | 85.869 20280  28.068 37.521 | 85.869 0.000
0579 22610 25490 | 48.680 0.579 22.610 25490 | 48.680 0.000
87.415  320.728 196.577 | 604.720 66.262  320.475 374.852 | 761.590  156.870
(V) | -21.152 0253  178.275 | 156.870
Disturbed supply and use table (written over natural basis) is
ZanB ZOqEB XOQEB XOqEB y
20534 0000  10.203 | 30.737 61.603  0.000  0.000 | 61.603 | 30.865
34908  152.270  73.463 | 260.641 82.137 230.408  0.000 | 312.545 | 51.904
0000  50.089  0.000 | 50.089 0.000  60.107 30.610 | 90.716 | 40.627
36.962  188.334  99.992 | 325.287 0000 190.337 214.268 | 404.605 | 79.318
10267 15027  0.000 | 25.294 0.000  10.018  30.610 | 40.627 | 15.334
eyZoOcs | 102671 405719 183.658 | 692.048 ey X, (g | 143.739 490.870 275.487 | 910.096 218.048
v/ 41.068 85151  91.829 | 218.048

8. Numerical example for the linear input-output model at constant production level

To illustrate a proposed approach to analytical employing the general linear input-output model at

constant level of production, consider the following initial supply and use table for the economy
with N = 3 products and M =5 industries (at K =M > N):

ZO Zoes XO X0e5 yO

20 34 0 36 10 100 60 80 0 0 0 140 40

0 152 50 188 15 405 230 60 190 10 490 85

10 72 0 98 0 180 0 30 210 30 270 90

30 258 50 322 25 685 60 310 90 400 40 900 215
Vo 30 52 40 78 15 215

Here K=max {3,5}=5,L=min {3,5} =3 and
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[ 1700 2560 -300 -2560 -700 |
2560 13384 -1380 -9564 - 3010
De:=FF=(X,-2Z,)(X,—Z,)=]| -300 -1380 1000 3380 850
-2560 -9564 3380 13384 3710
| -700 -3010 850 3710 1025 |

5112 3566 -8044 25254.218
D ,=FF =(X,—-Z,)(X,—2Z,) =| 3566 6213 -5242 |, A _, =| 4549.455 |
-8044 -5242 19628 1149.327
[ 25254.218 ] [~ 0.154795 | 0.048728 | 0.971194 | 0.161103 | 0.067017 |
4549.455 -0.659364 | 0.722569 | -0.159281 | 0.126081 | - 0.043208
Agos =| 1149.327 | S«_s =| 0.143082 | 0.314440 | 0.169888 | -0.903579 | -0.187983
0 0.694066 | 0.607323 | 0.016691 | 0.266171 | 0.279832
0 | 0107681 | 0.088354 | 0.047654 | 0.266171 | -0.938082 |

It is easy to check that equation (17) is met, namely, D, _S._; =SK:57:K:5 nearly
resembling as it was done in previous example. Transforming initial supply and use table into the
coordinates with respect to eigenbasis (constituted by columns of matrix S,_) gives the

following supply and use table:

ZOSK:S ZOSK:585 XOSK:S XOSK:SeS (yO)EB

1.45 48.29  15.09 || 19.75 0.56 85.14 -62.04  60.73 4553 || 19.75  0.56 64.54 -20.60
40.38 241.05 -11.86 || 28.02 22.57 | 320.16 -9.22  301.33 -22.79 || 28.02 2257 | 319.91 -0.25
19.00 112.03 -0.12 || 36.77 2498 | 192.66 | 15598 139.62 10.03 | 36.77 24.98 | 367.39 | 174.72

60.83 401.37 3.10 8454 4812 | 597.96 | 84.72 501.68 3277 8454 4812 | 751.83 153.87

(Vo)s 23.89 100.31 29.67 0.00 0.00 153.87

Indeed, matrices XSy ; and Z,S,_ have M-N=5-3=2 right columns coincided between
each other (with zero value added for the last M—N =2 industries); in the table these columns are
slightly darkened. (As earlier, subscript “EB” in (Y,)g and (V,)gz means the initial final
demand and value added vectors y, and Vv, written in the coordinates with respect to
eigenbasis.)

Let (AV)gs =(1,1,1) be the row vector of the unit changes of value added in industry 1, 2

and 3 in the new classification (blue box in the latter table) so that

2389 | (1] | 24.89
(V.)es = (Vg)eg + (AV) g =| 20031 [+| 1| =] 10131
2967 | |1]| | 3067

Applying supplementary solution (14) for 3-dimensional square supply-driven input-output
model (8), (9) at constant level of production (see green boxes in the latter table) we obtain the

price index vector
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-62.04 60.73  45.53 1.45 48.29  15.09 24.89 1.026709

Pegg =||-922 30133 -2279| —|40.38 24105 -11.86 101.31 | = 1.001776

15598 139.62 10.03 1900 11203 -0.12 30.67 | | 1.020322

and disturbed supply and use table (written over eigenbasis)

ﬁEBZOSK:S ﬁEBXOSK:S (y)EB

1.488 49.579 15.489 20.280 0.579 [87.415| -63.694 62.351 46.745 20.280 0.579 | 66.262 |-21.152
40.452  241.482 -11.885 28.068 22.610|320.728| -9.236  301.867 -22.834 28.068 22.610( 320.475 | -0.253
19.382 114307 -0.123 37.521 25.490 [196.577| 159.146 142.459 10.235 37.521 25.490| 374.852 |178.275

61.322  405.368 3.481 85.869 48.680 |604.720| 86.217 506.677 34.146 85.869 48.680| 761.590 156.870

(V.)es 24895 101.310 30.665 0.000 0.000 | 156.870

Disturbed supply and use table (written over natural basis) is

|5EBZO ﬁEBXO y

20.534 34908 0.000 36.962 10.267(102.671| 61.603  82.137 0.000 0.000 0.000 | 143.739 | 41.068
0.000  152.270 50.089 188.334 15.027|405.719] 0.000 230.408 60.107 190.337 10.018| 490.870 | 85.151
10.208  73.463 0.000 99.992 0.000 |183.658| 0.000 0.000 30.610 214.268 30.610| 275.487 | 91.829

30.737  260.641 50.089 325.287 25.294 (692.048| 61.603 312.545 90.716 404.605 40.627| 910.096 218.048

V' 30.865 51904 40.627 79.318 15.334| 218.048

9. Concluding remarks

The opportunities of practical applying the proposed approach to analytical employing the general
linear input-output models at constant prices and at constant level of production are slightly
limited because of explicit shortage of exogenous variables. Nevertheless, it is shown that the
models appear to be a useful additional toolbox to regular computational schemes of input-output
analysis. Their main advantage is direct handling the initial rectangular input-output table
without obvious data distortion being entailed by transformations the table to symmetric format

under various assumptions.
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	where  and  are N(M-dimensional matrices of the relative price indices for products,  and  are N(M matrices of the relative quantity (physical volume) indices for industries of the economy, and the character “ ( ” denotes the Hadamard’s (element-wise)...

