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Abstract:  
 
In this paper we make a first attempt to link two subjects with a potentially useful, but as yet not 
conveniently explored, connection: the study of complexity and the (Leontief) input-output analysis. In 
this context, we consider economic complexity as interrelatedness between the different parts or sectors 
of an economy, as represented by an input-output system and one interesting question emerges, 
namely: should we expect to find a natural move to higher complexity as the economy grows and 
develops? And a related one: is a larger economy necessarily more complex than a smaller one? In a 
first attempt to answer these questions we propose a new measure of complexity as interrelatedness that 
combines a network effect and a dependency effect. In the empirical part of the paper we apply this 
measure of complexity to the inter-industry tables of several OECD countries, and discuss some 
interesting findings. 
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1. Introduction 
  

The main purpose of this paper is to make an explicit link between two subjects with a 

potentially useful, and yet in the relevant literature largely implicit, connection: the 

study of complexity and the (Leontief) input-output analysis.  

 

We don’t discuss here, but are aware of identification problems (Durlauf, 2003) and 

other difficulties related to the economic applications of the complexity notion 

(Rosser, 1999). 

 

Broadening the scope of analysis, we are also familiar with the difficulty, not to say 

impossibility, in obtaining a comprehensive and universal definition of this notion, so 

that a researcher can be confronted with a choice from this large (but not at all 

exhaustive) menu: computational, statistical, structural, functional, hierarchical, 

sequence, Kolmogorov, informational, effective, physical complexity 1. 

 

However, it appears to emerge as one of the most prominent characteristics of this 

concept, common in several systems (physical, biological, political, social or 

economical), the interaction between different components (or agents) of a whole. As 

Brian Arthur (1999, p. 107) puts it, “Common to all studies on complexity are 

systems with multiple elements adapting or reacting to the pattern these elements 

create”. 

 

From this perspective, it appears almost obvious the gain of studying economic 

complexity within an input-output framework. In fact, not yet sufficiently explored 

and certainly well before the phase of marginal diminishing returns, this area of 

research has recently been enriched with interesting contributions. Some examples: 

Sonis and Hewings (1998) define economic complexity as an emerging property of 

the process of network complication that can be studied by means of a structural path 

analysis; Dridi and Hewings(2002) make a decomposition of economic complexity 

into finite stages, using a data analysis technique known as dual scaling; Aroche-

                                                            
1 For a quick survey of some of these definitions, most of them proposed by physicists and biologists, 

see Adami (2002). 
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Reyes (2003) equates a growing economic complexity to an increasing number of 

important connections between industries, capturing these by means of increasingly 

complicated graphs of the economy, using the so-called Qualitative Input-Output 

Analysis (Campbell, 1975;  Schnable, 1994). 

 

Most of these studies are mainly concerned with an analysis of structural change2, the 

quantification of economic complexity being in a certain sense a secondary or by-

product result. 

 

The aim of this paper is to present a method for quantifying complexity, considering it 

explicitly as (the level of) interrelatedness between the parts or sectors of an economy, 

represented here by an input-output system.  

 

In section 2, we propose an index of complexity that combines two dimensions or 

effects in a linear system, a network effect and a dependency effect, distinguishing 

two possible ways of perception of complexity: one the inside view, that is the point 

of view of those that are immersed in the system and have only partial information 

about it; and the other the outside view of those that from the outside have all the 

relevant information about the system. 

 

This distinction is important to clarify the frequent confusion made in the literature 

about complexity of a system between these two different points of view: complexity 

is one thing to someone outside the system having all the relevant information about 

it; complexity is (or at least should be) another thing to someone immersed in the 

system and having only a limited information about it. 

 

From the first point of view we can say, for example, that a linear system is less 

complex than a non linear system with chaotic behaviour. From the second point of 

view things are not so clear. A system can have low complexity for those that look at 

it from the outside and great complexity for those inside that deal with  problems such 

as those that living beings (or firms) face in their  environment (or markets). 

                                                            
2 A pioneering and strong influential article for much of these studies and our own is Yan and Ames 
(1965). 
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This case, which is a source of much confusion in the literature, will be exemplified 

later in this paper. 

 

For those inside the system, complexity arises mainly from the inter-relations between 

the parts of the system, in the sense that the behaviour of a part can be strongly 

affected by the behaviour of many others. If this is the case, a rational agent inside the 

system who has information only about the part where he is located or about a limited 

neighbourhood of it lacks information about important factors affecting the behaviour 

of that part of the system. To behave rationally under such conditions becomes a very 

complex problem for this agent. 

 

So, the interrelatedness between the parts of a system is certainly an essential feature 

of its complexity, from the insider point of view. As we are particularly interested in 

this point of view, the indicator we propose for measuring complexity is essentially an 

interrelatedness indicator.  

 

After the construction of our relevant index of ‘inter-industry complexity’, we apply it 

in section 3 to a set of countries using the OECD input-output database. We are 

particularly interested in measuring the evolution of ‘quantitative complexity’ as the 

countries develop and grow. 

 

Finally, we provide in section 4 some concluding remarks. 

 

 

2. A measure of (inter-industry) economic complexity 

 

In order to construct an index of complexity as interrelatedness, we must consider two 

effects: 

 

a) a “network” effect, that gives us the extent of direct and indirect connections 

of each part of the system with the other parts; more connections correspond 

to more complexity; 
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b) a “dependency” effect, that is, how much of the behaviour of each part of the 

system is determined by internal connections between the elements of that part 

– which means more autonomy and less dependency – and how much that 

behaviour is determined by external relations that is, relations with other parts 

of the system – which means less autonomy and more dependency. 

 

Both effects will be measured with an index of their own. We will begin constructing 

an index for the dependency effect, and then an index for the network effect. 

 

2.1 The degree of dependency 

 

Let us first consider a system represented by a square matrix A, of order N and with 

all values non negative. 

 

A part of the system of order m (m = 1, …, N-1), is a square block A* of order m 

which has its main diagonal formed by m elements of the main diagonal of A. 

 

Let A* be a part of the system. For example: 









=

2221

1211*
aa
aa

A . 

We can consider A* as a sub-system of the system A. This sub-system is the more 

autonomous (or, equivalently the less dependent) the greater the values of its elements 

( 11a , 12a , 21a , 22a )  are relative to the elements ( ja1 , ja2 , 1ja 2ja ), for all j>2. 

 

In order to measure the greater or lesser autonomy of the sub-system A*, we define 

the autonomy degree of A* as: 

 

(2.1) 
******

*
*)(

AAA
A

AGa ++
= , 

 

where M  means “sum of the elements of matrix M”, A** is the block of all the 

elements of the columns belonging to A* with the exception of the elements of A* 
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and A*** means the same for the rows. For example, if A* is the block defined 

above, we will have: 

)(** 21 jj aaA += ∑  and )(*** 21 jj aaA += ∑ for j = 3, 4, …, N. 

 

Based in the autonomy degree we can define a block dependency degree as: 

(2.2) *)(1*)( AGAG ad −= . 

 

We don’t consider blocks of A for which A*, A** and A*** are null matrices. In such 

an extreme case we would not even be able to define an autonomy degree and the 

block of A would be irrelevant.  

 

We call admissible a matrix A that has no irrelevant blocks. In all that follows, we 

consider only admissible matrices. And of course we loose nothing with this 

restriction, because a block of A that is irrelevant is not really a part of a system. 

 

It’s easy to see that in a matrix A of order N there are 2N – 2 blocks A* (because there 

are ( )∑ N
k  blocks A* with k = 1, ... , N-1). 

 

So, we can define the (raw) dependency degree of system A as: 

(2.3) .
22

)(
)(*

−
= ∑ N

k kd AG
AG  

for which k varies from 1 to 2N – 2 and Ak represents a square block that includes the 

main diagonal. 

 

It is also easy to see (Amaral, 1999) that: 

a) G*(kA) = G*(A) for k > 0 

b) 1)(*0 ≤≤ AG  

c) )(*)ˆ(* AGAG ≥ , where Â  is obtained from A, making null the main diagonal 

elements. 

d) G*(A) = 0, iff A is diagonal. 
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To reach our final definition of the degree of dependency we must correct the above 

one by a scaling factor that is a function of N. To see this we may note that, with N>2, 

no matrix A has G*(A) = 1. In fact, we can prove the following theorem: 

 

THEOREM 1: For any matrix A of order N, the maximum value of G*(A) is: 

22
122 2

−
−− −

N

NN

. 

Proof: 

The proof proceeds in two steps. First, we verify that we have:  

(2.4) 
22

122)(*
2

−
−−

≤
−

N

NN

AG ,  

for any matrix A. Next, we will give an example of a matrix A of order N for which 

the equality applies. 

 

As we are dealing with the maximum of G*(A), by item c) above we can consider 

only matrices that have null main diagonal elements. 

 

Let i
kA  be a part (i) of A of order k. Then: 

(2.5) 
ikik

iki
kd nm

m
AG

+
−= 1)( ,  

where ikm  is the sum of all the elements of the block and ikn is the sum of all the 

elements of A that belong to one column or one row of the block but don’t belong to 

it. That is, 

(2.6) 
ikik

iki
kd nm

n
AG

+
=)( . 

If we add to the numerator and to the denominator of this expression the quantity pik, 

which is the sum of all the elements of A that are not terms of ikm  and ikn , we obtain, 

given that all the values are non negative, 

(2.7) 
ikik

ik

ikikik

ikik

nm
n

pnm
pn

+
≥

++
+

. 

 

As the left side denominator doesn’t change either with i or k, because it is the sum 

||A|| of all the elements of A, we can add in i for each k>1 (for k=1 each block of an 
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element, which is null, contributes with one unity for the degree of dependency of A) 

and then add for all the k > 1 to obtain: 

(2.8) NAG
A

pn
Ni kiikk −−≥

+∑∑ )(*)22(
)(

, 

in which N is the contribution to G*(A) of the N blocks composed of one single 

element only (null) in the main diagonal.  

 

For each k>1, each element of A not belonging to the main diagonal enters 









−
−

−







2
2

k
N

k
N

 times in the correspondent term of the summation, because it enters in 

all the terms of ∑i except in those corresponding to the blocks it belongs to. 

 

So, as the elements of the main diagonal are null the expression (2.8) can be written, 

for k from 2 to N-1, as: 

 

(2.9)  NAG
k
N

k
N N

k
−−≥








−
−

−






∑ )(*)22(
2
2

,   that is 

(2.10) NAGN NNN −−≥−−−− − )(*)22()12()22( 2 , and finally: 

(2.11) )(*
22

122 2

AGN

NN

≥
−

−− −

, as we wanted to prove.  

 

As the second step of the proof it will suffice to give an example of a matrix for which 

the maximum is attained. Consider the case of a matrix A such as: 

,0=ija  for i ≠ j, i > 1,  aii = 0 and 01 ≠ja  for j > 1.  

 

This is an admissible matrix that attains the maximum value of the dependency 

degree. And so the theorem is proved. ٱ 

 

With this theorem, we can finally define the dependency degree of an admissible 

matrix A. 
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Dependency degree G(A) of A is the number: 

 

(2.12) 
122

)(*)22()( 2 −−
−

= −NN

N AGAG . 

 

We have 1)(0 ≤≤ AG  and for any order N there are matrices A that have G(·) = 0 and 

G(·) = 1. Besides, it’s obvious that all the properties a) to d) above defined for G* also 

apply to G. 

 

Another interesting result, which we will use later on, arises from the following 

concept. Let A be a matrix of non negative elements such as 0>=+ kaa jiij for some 

pairs (i,j) and 0=+ jiij aa for the remaining pairs and some of the iia equal to k and 

others equal to 0. A matrix C is called congruent (m,k) with A if: 

0>=+ mcc jiij  for all the pairs (i,j) whose sum jiij aa +  is equal to k in matrix A, 

and 0=+ jiij cc for the remaining pairs, mcii =  if aii = k, and cii = 0 if aii = 0. 

 

THEOREM 2: Let A be a matrix satisfying the above conditions. Then, if C is 

congruent with A, G(C) = G(A). 

 

Proof: 

Let C be congruent (m,k) with A. Let us first multiply A by the value m/k. Then, we 

obtain a matrix A* such as G*(A*) = G*(A) and where maa jiij =+ **  or 0 and the 

same for the iia , A* being congruent (m,k) with A. On the other hand, since in the 

calculation of all the terms of G*(C), ijc  enters in the same terms as jic , if we sum 

the values of  the two we don’t change the value of G*(C) relatively to G*(A*) even  

for very different values of ijc or jic , since the sum of the two has the same value (m) 

as the corresponding sum in A*. Then, G*(C) = G*(A*) and as G*(A*) = G*(A) we 

have G*(C) = G*(A) and the same for G. ٱ 

 

We can now find an upper limit for the degree of dependency of a matrix A of order 

N. 
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The contribution for G(A) of each block Ai
k of A containing the corresponding 

elements of the main diagonal is: 

(2.13) 
ik

i
k

i
k

ik cA

A
G

+
−= 1 , 

where cik is the sum of the elements not belonging to i
kA  but belonging to a row or 

column of i
kA . 

We have: 

(2.14) 
ik

i
k

ik
ik cA

c
G

+
= . 

Adding to the numerator and to the denominator all the other elements of A we have 

(2.15) 
A

dAtraceA
G ik

i
k

ik

−−
≤

)(
, 

where dik is the sum of the elements of the block i
kA  that are not elements of the main 

diagonal. 

Summing for each k and each i (that is, for 2N – 2 terms) the denominator doesn’t 

change either with k or i, so that we get: 

(2.16) 
A

AtraceAAtraceA
AG

NNN ))()(12()()12()22(
)(*

21 −−−−−−
≤

−−

 

Explanation for the term (2N-1 – 1) trace (A): each element aii of the main diagonal 

enters only once in a (1 x 1) block and 







−
−

1
1

m
N

times in an (m x m) block for m = N-1.  

 

The other term that needs explanation is (2N-2 -1) (║A║ - trace(A)). 

Each term of dik, for instance ajl (j≠l) enters once in the block of order 2 formed with 

lines or columns j and l; then enters 







−
−

2
2

m
N

 times in blocks of order m (m = 3, …, 

N-1).  

 

Therefore, for each term ajl of dik the sum gives for m = 2, ..., N-1: 

( )∑ −
−

2
2

N
m , that is (2N-2 –1)ajl.  
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From (2.16) we get: 

(2.17) 
A

AtraceA
AG

NNNN )()22()122(
)(*

122 −−− −+−−
≤ , so that: 

 

(2.18) 










−−
−

−≤ −

−−

A
AtraceAG NN

NN )(
122

221)( 2

21

. 

For high values of N, this upper limit is approximately: 

A
Atrace )(

3
11−≈  

  

After considering the dependency effect we introduce next an index for the network 

effect.  

 

 

2.2 The network effect 

 

First of all, it is convenient to note that we limit the definition of this indicator to non 

negative, admissible matrices that satisfy the following condition: 

∑ ≤
i

ija 1, with the inequality strictly verified, for at least one j. Matrices under these 

conditions are called productive matrices. 

 

In order to define the network indicator for a productive matrix we need to recall the 

concept of a decomposable matrix. A is a decomposable matrix if and only if by 

permutations of rows and columns it can be put as: 









=

3

21

0 A
AA

A , in which A1 and A3 are square blocks (not necessarily of the same 

order) and 0 is a block of zeros. 

 

In matrix theory it can be proved that for a productive, indecomposable matrix A, the 

inverse (I-A)-1 exists and all its elements are positive. A decomposable matrix also 

have the corresponding non-negative (I-A)-1 matrix, although not all of its elements 

are positive.  
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When the system is represented by an A matrix such as X = AX + Y, as the Leontief 

model is, then the fact that the matrix A is indecomposable means that all the sectors 

are connected directly or indirectly. The sectors may be not directly connected, that is, 

we can have some elements aij null, despite the fact that A is indecomposable. 

However, we know for sure that if A is indecomposable, a variation in any component 

of vector Y causes a variation in all the components of vector X. 

 

This brings us to the definition of decomposability degree of the productive matrix 

A, h(A): 

(2.20) 
NN
 Z(A)  h(A) 2 −

= , in which Z(A) is the number of zeros of matrix (I-A)-1. 

 

It is easy to prove that h(A) is equal to zero if and only if A is indecomposable and it 

is equal to one if and only if A is a diagonal matrix with the elements of the main 

diagonal satisfying the condition of a productive matrix. In the other cases h(A) is 

between zero and one. 

 

The network effect indicator, H(A) will be: 

 

(2.21) H(A) = 1 – h(A). 

 

When all the sectors are directly or indirectly connected (matrix A indecomposable) 

the network effect will be maximum (H(A) =1). When they are not connected, either 

directly or indirectly (matrix A diagonal) the network effect will be minimum (H(A) = 

0). 

 

However, to make this indicator useful, we need to verify if for every positive k that 

keeps the condition of productive matrix,  that is, for every positive 
∑

<

i
ijj a

k
max

1 , 

we have H(kA) = H(A). 

 

This is obviously true for an indecomposable matrix, because kA is also an 

indecomposable matrix. If A is decomposable it can be verified in the following way. 
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Let A be a decomposable matrix such that by an appropriated permutation of rows 

and columns the blocks A1 and A2 are indecomposable. Then, using block inversion 

we have: 

 










−
−−−

=−
−

−−−
−

1
3

1
32

1
1

1
1

)(0
)()()(

)(
AI

AIAAIAI
AI , and 

 










−
−−−

=−
−

−−−
−

1
3

1
32

1
1

1
1

)(0
)()()(

)(
kAI

kAIkAkAIkAI
kAI  

 

Since 1
1)( −− kAI  and 1

3)( −− kAI  have only positive values, the only null elements if 

any present in both inverses, 1)( −− AI  and 1)( −− kAI , besides the null blocks, are 

those related to the case of A2 being null in both cases. Therefore, the multiplication 

by k doesn’t change the decomposability degree. 

 

In case A1 or A3 are decomposable we can proceed the same way, successively until 

needed, that is, until we find two sub-blocks indecomposable within a decomposable 

sub-block. This means that this decomposable sub-block preserves the zeros of the 

inverses from the case A to the case kA, so we can conclude that the decomposable 

sub-block containing this one also preserves it and so on until we reach the blocks of 

the matrices A and kA. So, H(kA) = H(A), which is of course a desirable property for 

the index. 

 

We have at last all we need in order to define the complexity index that includes both 

the dependency and the network effects. 

 

 

2.3. The complexity index 

 

The complexity indicator, in the sense of the intensity of interrelatedness between the 

parts of productive matrix A is: 

(2.22) I(A) = G(A) x H(A) 
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As can be easily seen by what was said before, 0 ≤ I(A) ≤ 1; I(A) = 0 if and only if A 

is diagonal; I(kA) = I(A) for all k positive that keep the condition of productive 

matrix. 

 

On the other side, I(A) can reach the value one, but only when the matrix A is 

indecomposable (although the inverse is not true). An example is the matrix A defined 

by: ,011 =a  aji = 0, (j≠1 and i ≠1), ,1 ba j = ba j =1 , with 
1

1
−

<
N

b , which is 

indecomposable (so that H(A) = 1) and  has G(A) = 1, since a matrix A* such that 

,1*
1 =ja 0*

11 =a  and 0* =ija for i > 1  is admissible and congruent (1, 2b ) with A (see 

theorem 2), and has G(A*) = 1 (see page 8). 

 

This calls also our attention to an important issue when we deal with complexity. A 

system that has a structural matrix such that matrix A above has the maximum of 

complexity: each part suffers the influence of the others (network effect) and this 

influence is a relatively high one (dependency effect). The complexity of the system, 

viewed as interrelatedness between its parts is, therefore, very high. And, 

notwithstanding, the matrix describing the system is very simple. 

 

We have here an example of what we said in the introduction about the difference 

between complexity for someone outside the system and having all the relevant 

information about it and complexity for those inside the system. This is, we think, an 

important point: not always the simplicity of the functional describing a system for 

someone outside it is a good indicator of its complexity for those immersed in it.      

 

 

3. An application to the OECD countries 
 

In this section we apply our measure of complexity as interrelatedness ( I ) to a 

number of OECD countries for which data on input-output matrices were available on 

a comparable basis. The original industries are listed in Appendix 1. In order to 

increase the comparability of data and to avoid a prohibitive number of computations, 

we aggregated the original data to a smaller number of industries. The list of 
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seventeen industries used in most of this section is presented in Appendix 2. All the 

computations are made using domestic input-output matrices in current prices. 

  

Let us first consider the case of the United States. The results of our index of 

complexity for this country are presented in table 1, for different level of aggregation 

and from 1972 to 1990. Given the high level of aggregation, for both the USA and the 

other countries considered in this paper, the network effect is equal to unity, and so 

doesn’t influence, in this case, the complexity index. 

 

Table 1. Index of Complexity for the United States 

   Number of industries  

  3 10 15 20 

1972 0.588 0.675 0.712 0.723 

1977 0.618 0.681 0.718 0.731 

1982 0.639 0.704 0.732 0.739 

1985 0.637 0.709 0.742 0.751 

1990 0.614 0.699 0.731 0.740 
 

The results in table 1 suggest two broad comments. First, complexity increases, in 

general, with the level of disaggregation, that is, the number of industries considered 

in the input-output matrices. For example, if we compare the results for three with 

those for twenty industries, in the last case the index augments by around twenty per 

cent. Second, the evolution during the last twenty years is not linear: while there is an 

increase in complexity until mid-eighties or so, the index for 1990 is always below the 

level in 1985. 

 

The results for the ten OECD countries, for seventeen industries, are presented in 

table 2. The years available are not exactly the same for all the countries and the 

appendix 3 shows the available year in each case. 

 

In what concerns evolution the results are mixed. While there are cases, like the 

United States, where the index increased from early seventies to 1990, there are also 

cases (Japan and Canada) with a reduction in the measured complexity during these 

two dates.  
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Table 2. Complexity index, 17 industries 

  Early-70's Mid-70's Early-80's Mid-80's Early-90's 

Australia 0.747 0.731  0.756 0.767 

Canada 0.779 0.778 0.765 0.766 0.765 

Denmark 0.786 0.792 0.787 0.795 0.791 

France 0.737 0.741 0.758 0.757 0.748 

Germany   0.732  0.742 0.753 

Italy     0.764  

Japan 0.740 0.740 0.742 0.723 0.719 

Netherlands 0.754 0.769 0.777 0.782  

United Kingdom 0.729 0.770  0.751 0.737 

United States 0.712 0.720 0.731 0.741 0.732 

 

The index obtained for the ten countries is not dramatically different from one to 

another. The lower value is obtained for the United States in 1972 and the higher 

value is for Denmark in 1985. That is, the largest country in our database tends to 

have the lowest index of complexity. And the smallest country tends to have the 

highest value. Is there a negative correlation between dimension and complexity of an 

economy?  

 

While the countries in our sample are not dramatically different in terms of level of 

development, we made a very simple exercise, regressing the index of complexity on 

the dimension and the level of development (as measured by per capita income). The 

results are presented in table 3 and they do suggest a negative correlation between 

complexity and dimension of an economy. Our results are robust to alternative 

specifications for the dimension variable: population, current GNP or even (not shown 

in the table) GNP in terms of purchasing power parity (constant prices). 
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Table 3. Regression of  I on dimension and development 
              (log-log  model) 

log(POP) -0.021 * -0.021 *   

     

       

log(GNP)     -0.013 * 

       

       

log(GNP/POP) 0.00782      

       

       

N 42  42  42  

R2 0.695  0.664  0.394  
* significant at the 5% level 

 

In section 2 we presented un upper limit for G(A), in terms of the trace of matrix A. 

When, as it is the case here, the network effect is equal to one, this is also a limit for 

our complexity index. However, given real data, we can, in principle, give a more 

accurate relation between the two concepts. We further investigate this issue here, for 

our sample of OECD countries. 

 

So, lets define T* as: 

A
AtraceT )(* = . 

 

The approximation found for G(A) (that is, our index of complexity (I) with unitary 

network effect), when the number of industries is very high, is given by: 

 *
3
11 TI −≈ .  

This may be a relatively rude approximation in certain cases. For example, when we 

have a diagonal matrix, the approximation gives 
3
2  since T*=1. However, we know 

that, for a diagonal matrix, the correct value is zero. 
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In our case, the following figure plots our index of complexity against T*, with 42 

observations (Germany has an additional year 1988) and for the case of seventeen 

industries. 
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We get an almost perfect negative relationship between the two variables, with a 

correlation coefficient of –0.998. 

 

A simple regression of I on T* gave the following results (standard errors in 

parenthesis), 

 

997.0;42
)0062.0()0016.0(
*694.093.0ˆ

2 ==

−=

RN

TI
 

 

Imposing the restriction that T*=1 implies I=0, we obtain, 

 

8.0;42
)0019.0(
*1.00162T-1.00162ˆ

2 ==

=

RN

I
 

 



 19

and, with this condition, but allowing for a quadratic term we have,  

 

001.0ˆ;998.0
)0071.0()0018.0(

*309.1*407.0902.0ˆ

2

2

==

−+=

σR

TTI
 

 

In any case, the normalized trace gives a good predictor for our index, principally for 

high number of industries where its calculation becomes computationally prohibitive 

but is very ease to obtain using T*. Table 4 shows how the correlation coefficient 

changes with the number of industries in our sample. 

 

Table 4. Correlation between I and T* for 

different number of industries 

 Number of industries corr(T*,I) 

2 -0.947 

3 -0.988 

5 -0.989 

10 -0.997 

17 -0.998 

 

This link between complexity and the trace of an input-output matrix is in agreement 

with our definition, since increasing dependency augments complexity and increasing 

“autarky” reduces it. Apparently, there is a tendency for larger countries to have less 

specialized sectors than smaller ones for countries with similar level of development.  

 

 

4. Concluding Remarks 
 

In recent years there has been in many fields of research a growing interest in 

studying complexity. 

 



 20

Complexity is an important feature of most of the dynamic systems, physical, 

biological and social. 

 

Although a universally acceptable definition of complexity is still lacking it emerges 

as one of the most prominent characteristics of this concept the mutual dependency 

and interaction between different agents or elements of a whole. That is why by its 

very nature, the Leontief input-output analysis is a convenient framework for the 

study of complexity of economic systems. Most of the contributions in this tradition 

however are mainly concerned with quantifying structural change at the sectoral level 

and deal with complexity only in an implicit way. 

 

This paper treats economic complexity explicitly, discussing an important issue 

largely ignored in the relevant literature: the distinction between complexity to 

someone outside the system having all the relevant information about it (outside 

perspective), and complexity to someone immersed in the system and having only 

limited information about it (inside perspective). The main contribution of the paper is 

to propose a measure of (inter-industry) complexity as interrelatedness, particularly 

suited to quantifications related to the inside perspective. 

 

We present in the paper an empirical application of this measure of complexity to 

several countries based on the OECD input-output database. Apparently, there is a 

tendency for diminishing complexity as the economies grow, and small countries tend 

to show a grater complexity than large ones. This surprising result may be explained 

considering differences in the pattern of sectoral specialization and the evolution of 

intra-sectoral trade, but this conjecture needs further research. 
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Appendix 1 
 

Industries in the OECD input-output matrices 
1 Agriculture, forestry & fishing 
2 Mining & quarrying 
3 Food, beverages & tobacco 
4 Textiles, apparel & leather 
5 Wood products & furniture 
6 Paper, paper products & printing 
7 Industrial chemicals 
8 Drugs & medicines 
9 Petroleum & coal products 
10 Rubber & plastic products 
11 Non-metallic mineral products 
12 Iron & steel 
13 Non-ferrous metals 
14 Metal products 
15 Non-electrical machinery 
16 Office & computing machinery 
17 Electrical apparatus, nec 
18 Radio, TV & communication equipment 
19 Shipbuilding & repairing 
20 Other transport 
21 Motor vehicles 
22 Aircraft 
23 Professional goods 
24 Other manufacturing 
25 Electricity, gas & water 
26 Construction 
27 Wholesale & retail trade 
28 Restaurants & hotels 
29 Transport & storage 
30 Communication 
31 Finance & insurance 
32 Real estate & business services 
33 Community, social & personal services 
34 Producers of government services 
35 Other producers 
36 Statistical discrepancy 
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Appendix 2  

 

Aggregation of OECD input-output matrices for 
17 industries 

1 Agriculture, mining & quarrying 

2 Food, beverages & tobacco 

3 Textiles, apparel & leather 

4 Wood and paper 

5 Chemicals, drugs, oil and plastics 

6 Minerals and metals 

7 Electrical and non-elect. equipment 

8 Transport equipment 

9 Other manufacturing 

10 Electricity, gas & water 

11 Construction 

12 Wholesale & retail trade 

13 Restaurants & hotels 

14 Transport & storage 

15 Communication 

16 Finance & insurance 

17 Other sectors 
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Appendix 3 
 

 

 

OECD Input-Output database coverage    

  Early-70's Mid-70's Early-80's Mid-80's Early-90's 

Australia 1968 1974  1986 1989 

Canada 1971 1976 1981 1986 1990 

Denmark 1972 1977 1980 1985 1990 

France 1972 1977 1980 1985 1990 

Germany   1978  1986 1990 

Italy     1985  

Japan 1970 1975 1980 1985 1990 

Netherlands 1972 1977 1981 1986  

United Kingdom 1968 1979  1984 1990 

United States 1972 1977 1982 1985 1990 

 


