
1

A STRATEGY FOR PRODUCING HYBRID REGIONAL INPUT-OUTPUT TABLES*

June 1, 1998

Michael L. Lahr

Center for Urban Policy Research

33 Livingston Avenue, Suite 400

New Brunswick, NJ 08901-1982

                                                          
*Presented at the 39th annual North American Meetings of the Regional Science Association in Chicago, November
13, 1992, and the 12th International Conference on Input-Output Techniques, in New York City, May 21, 1998. I give
my thanks to Andy Bernat, Dick Conway, Ron Miller, Janusz Szyrmer, and Ben Stevens for comments on previous
versions of this paper. I also thank the Economic Research Service of the U.S. Department of Agriculture for the
time to work out and write early versions of this paper.



2

AN ALGORITHM FOR PRODUCING HYBRID REGIONAL INPUT-OUTPUT TABLES

ABSTRACT. In this paper, I argue that the most effective means for targeting portions of a

regional input-output model for superior data is to compare the sensitivity of the region’s

Leontief inverse to proportional changes in sector technology. Once a sector is identified as being

critical, I suggest that modelers seek superior data for a limited number of cells in the direct-

coefficients matrix associated with the sector. In particular, modelers should seek data on

intermediate inputs and outputs, labor income, and intrasectoral shipments. They should limit

additional gathering of regional technology data to that for cells identified as critical by a

weighted version of West’s (1981) measure. Following the insertion of superior data I propose

that modelers formally reconcile the various data sources that are used. This sequence of tasks

should be performed recursively until superior-data search resources are depleted or until all

major sectors are covered. The paper ends with a test using the 1972 Washington State input-

output table that repeats this sequence of tasks recursively through 13 of the 52 sectors. The

results show much promise.
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1. INTRODUCTION

Hybrid input-output models combine nonsurvey techniques for estimating regional direct

requirements tables with superior data, which are obtained from experts, surveys, and other

reliable sources (primary or secondary). Such data can be added at any stage of model

construction. To date, hybrid model production has been defined only in very general terms.

Elsewhere (Lahr, 1993), I have pointed out directions that could prove fruitful in developing a

more detailed approach.

In a search for an approach that recognizes critical portions of input-output models ripe

for superior data in a manner more compatible with survey work, I first review measures that

identify sectors that are most critical to the accuracy of the Leontief inverse. I then compare these

measures analytically for their ability to predict sectors critical to the 1972 Washington State

Input-Output Table.

In Section 3, I combine the findings of Sections 2 with that of other literature to develop a

quasi-complete superior-data search strategy for producing hybrid regional input-output tables. In

Section 4, I test the strategy by employing the 1972 Washington State input-output table. Tests

are of models both closed and open with respect to households. Following this, I conclude with

implications of the findings.

2. IDENTIFYING CRITICAL SECTORS FOR SUPERIOR-DATA COLLECTION

The best-known measure (Jensen and West, 1980; Hewings and Romanos, 1981; West,

1981; Hewings and Jensen, 1986) forming the basis of building hybrid regional input-output

models identifies cells that are most critical to the accuracy of output multipliers. For a recent

contribution and nearly complete review of this line of literature, please see Casler and Hadlock

(1997). There is some doubt, however, about the practicality of its cell-by-cell approach when

used as a superior-data search procedure. The rationale behind these objections is that it may not

be worth the effort to obtain superior data for a single cell in a given sector, data for a collection

of cells in another sector may be much more valuable and certainly take nearly the same amount

of effort to acquire. Furthermore, Isard and Langford (1971) inform us that data on regional

imports for individual cells are much more difficult to obtain than they are by sector (either

rowwise or columnwise). In addition, a set of literature (Miernyk, 1970; Bourque, 1971;

Conway, 1975; Afrasiabi and Casler 1991) has established that proper accounting of trade
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patterns is critical to the accuracy of regional input-output models. It, therefore, follows that

identifying sectors rather than individual cells as targets of survey work is likely to be more

fruitful.

By “important sector,” model constructors, generally mean sectors that are most critical to

model accuracy. The measures that traditionally have been used to identify such sectors are

known as “key sector” measures. Key sectors are sectors that have the most total linkages in an

economy. The most accepted key-sector measures are those that combine Leontief and Ghoshian

linkages and those focusing upon hypothetical extraction measures. In comparing these measures,

Lahr (1992) identifies the theoretical inadequacies and the empirical impracticalities of those that

combine Leontief and Ghoshian linkages (Jones, 1976; Beyers, 1976; Hübler, 1979; Lovisek,

1982). Hence, it appears that, of the two, hypothetical extraction (Paelinck et al., 1965; Miller,

1966; Meller and Marfàn, 1981; Cella, 1984; Szyrmer, 1992) should be favored. Hypothetical

extraction measures are calculated by finding the effects of eliminating a sector from the

economy. For more details, consult Lahr and Miller (1997). In addition, de Mesnard (1997) and

Dietzenbacher (1997) provide evidence that should rekindle interest in a Leontief/Ghoshian

hypothetical extraction approach.

In our specific case, however, by “important sector” we really mean a sector for which

superior data will significantly improve nonsurvey model accuracy. Sectors that have technology

that is at high variance with that represented in the nonsurvey model and that also have large total

linkages will be identified correctly by hypothetical extraction approaches. But what of sectors

with minimal technology variance and large total linkages or those with high technology variance

and medium-to-small total linkages? Unfortunately, hypothetical extraction approaches are not

designed to ascertain such differential importance of changing the technology of sectors. Instead,

they measure error only due to the total elimination of a sector, not increases or decreases in its

interconnectivity with the rest of the economy through differences in technology or trade

patterns.1 Therefore, we are seeking a measure that identifies the effect on the economy’s total

linkages of potential changes that manifest themselves through trade-pattern or technology

differences.

                                                          
1 Furthermore, linkages are highly nonlinear (West 1981, 1982). Hence, by eliminating an entire sector
we would undoubtably be miscalculating the measure that we need.



5

Additional assumptions of most regionalization techniques deal only with technology and

trade patterns. The most popular nonsurvey regionalization approaches strictly adjust for imports

by producing sector, working on rows of the national direct-requirements matrices, by assuming

that technology in the nation is spatially invariant. This set of assumptions has proven somewhat

accurate. Subsequently, when nonsurvey regional direct-requirements matrices are multiplied by

the diagonal matrix of outputs, reasonable estimates of intermediate outputs by sector result.

Through similar matrix operations, however, very reasonable estimates for intermediate inputs by

sector are not necessarily to be expected. This is because by regionalizing strictly across rows,

imported proportions of intermediate inputs are not well estimated. That is, the use of imports by

industry is likely to be badly estimated by most nonsurvey models. Consequently, the problem of

identifying “important sectors” for the most common situation is one of identifying sectors that

are likely to induce the largest changes in total linkages when survey data replaces nonsurvey

data for the sector’s direct requirements. Essentially then, we are interested in determining the

effects on the Leontief inverse of changes in a single sector’s direct requirements. This problem

is answered through a line of literature that started as early as Sherman and Morrison (1949,

1950) and Woodbury (1950).

Tolerable Limits to Intermediate Inputs

A large body of European literature as early as Yershof (1965) and as recently as Xu and

Madden (1991) has developed in input-output analysis on a topic known as the “tolerable limits

of change.” The tolerable-limits approach is based on the calculation of the amount that direct-

requirements must be perturbed in order to effect a one- percent change in output of a specified

sector. Jilek (1971) made the first advance for hybrid model development by showing

analytically and empirically that the magnitude of a direct-requirements coefficient is critical to

determining its ability to effect a sizable change in sectoral output. Sell (1980) extended this

work to show analytically that there is a strong relationship between the size of intermediate

inputs and the potential for a sector to generate error in its output multiplier. Realizing that “it is

often easier to collect a complete input (and/or output) pattern for selected industries” than it is to

collect information on individual inputs for various industries, Schintke and Staglin (1988)

extended Yershof’s measure of tolerable limits to investigate how much entire a sector’s
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technology needs to be perturbed to effect a pre-stipulated percentage change in the sector’s

output. They specified it as
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denote vectors of sector j’s columns in the direct- and total-requirements matrices, respectively.

This measure is unsatisfactory for the purposes here because in a sense it identifies the sector that

experiences the greatest change in output when its technology is changed by ρ. Instead, we seek

the effect of a perturbation across the entire economy, not just a single sector. Although a sector

with low tolerable limits likely greatly affects the entire economy when its technology is

changed, low tolerable limits is neither a necessary nor sufficient condition to affecting the entire

economy. This is because the effects of changing a sector’s technology may not be concentrated

in the sector itself and, in fact, may be fairly uniform across the sectors of the economy. That is,

when the effects are less concentrated, the sector that we wish to identify may not be that

identified by the tolerable-limits approach.

The Effects of Intermediate-Input Variation on the Leontief Inverse

A different direction of attack to this problem is provided by the combination of Sell

(1980) and West (1982). As mentioned before, Sell (1980) tells us that a strong direct

relationship exists between the magnitude of the proportion of intermediate inputs and the

potential of the sector to generate error in its output multiplier. This suggests that a measure

similar to that of West (1981) but extended to the vector of intermediate inputs would be

reasonable. Sell, using a national model, was working on the assumption that (near) perfect

information on imports and exports by producing sector is known. This assumption regarding

trade patterns is overly strong for prototypical hybrid regional models, generally nonsurvey

models are formed by the rows-only regionalization of national technology.

West’s (1981) cell-sensitivity formula includes a proportional perturbation factor. That is,

unlike the hypothetical extraction approach, it allows the analyst to adjust the proportion by
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which a cell is altered to effect a change in all output multipliers. By continuing the assumption

of spatially invariant national technology, these proportions can be viewed as the error in

coefficient estimates that are due to the mis-estimation of imports use. Therefore, if West’s

(1981) formula could be generalized in some way to apply to the column of each sector

(intermediate inputs), the solution to our problem would seem to have been found. Fortunately,

such a generalized formula was provided as early as Evans (1954) and Dwyer and Waugh (1953)

and as recently as Maaß (1980) and West (1982). The derivation of Evans’s (1954) version of the

formula is provided in the Appendix B. The final formulation of this variant is the most efficient

to calculate and can be expressed as

(2) E=[(I-BP)- 1-I]B

where B is the Leontief inverse, I is an identity matrix, and P is the matrix of perturbations of the

direct-requirements matrix.

To find out the effect that a percentage change in a sector’s information has on the rest of

the economy, all cells of P should be to zero except for the column and row for which we want

to test sensitivity to imports and calculate E. By letting P=[pijai,] (where the aij’s are the elements

of the direct-requirements matrix), the values of the nonzero pij’s can be set to proportions that

represent likely deviations of each of the sector’s direct-requirement coefficient from its true

value.

One disadvantage of E is its matrix form. Comparing the E matrices for each sector is

likely to be extremely difficult. If each sector’s error matrix could be expressed as a scalar,

comparison of the importance of sectors would be much simpler. A means of creating such a

scalar would be to premultiply Ei, the error matrix for sector i, by a transposed vector of ones, 1,

and to postmultiply by a vector of regional outputs (value added), x, or some other set of

economic weights like final demand, earnings, or employment

(3) Ei=1 �Eix
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3. A SIMPLE EMPIRICAL TEST OF THE MEASURE’S VALIDITY

Although the measure in the last section has appeal, there is no evidence that it can be

valuable in targeting sectors for superior-data collection when estimated from a nonsurvey

model. Furthermore, although it seems conceptually sound to assume that column-only

perturbations will provide reasonable sectoral rankings, I have not offered evidence to show that

the addition of row perturbations of the same sector will not provide significantly more accurate

rankings. Hence, I decided to test how well sectors can be targeted with the measure by

comparing the results of the measure using data strictly from a nonsurvey model to those of the

total linkage difference2 between the nonsurvey and survey-based models. Naturally, sectors with

the largest total linkage differences between survey-based and nonsurvey models are those that

should be targeted for superior-data collection efforts. Consequently, if we find that by using E in

Equation (3) we can obtain a ranking of sectors that is very similar to that arrived through an

intersectoral comparison of the total linkage difference between the survey-based and nonsurvey

models, we should deem E useful.

I used the 1972 Washington State Input-Output Table closed to households plus its

equivalent nonsurvey data from the Regional Science Research Institute (but using survey-based

household and labor information). The RSRI model was aggregated from the 494-sector level to

the 52 sectors of the Washington State survey-based model using regional weights and by

applying RPCs prior to aggregation. Since according to Table 1, E reproduces well the sectoral

ranking of the total linkage difference,3 I deem the measure to be useful. I come to the conclusion

that it “reproduces well” the sectoral rankings of total linkages by examining the rank

correlations reported using both Spearman’s P and Kendall’s τ. Pearson’s correlation coefficient

is estimated for comparison purposes. Pearson’s correlation coefficient measures the correlation

of the actual values of the linkage measures, not just the ranks.

The fit of the rankings for the two measures is even better for the top-ranked sectors.

Since we should be most interested in surveying such sectors first, these findings reveal even

more promise for E.

In the above test, I strictly perturbed the columns of each sector by 30 percent. This

amount was somewhat arbitrarily chosen, being the maximum that any sector could be perturbed

                                                          
2 Lahr (1992) has determined that for situations such as this the total linkage measure developed by Meller and
Marfàn (1981) is most appropriate. The Goshian equivalent or some combuination thereof could also be used.
3The absolute value of the difference between the total earnings linkages produced by the survey-based and
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without having its column in the direct-requirements matrix sum to greater than unity. But what

if the 30 percent value was too large? And what if the assumption that rowwise imports estimates

are reasonable is incorrect? In answer to the first question, I estimated E five times reducing the

column perturbations by 4 percent each time. The rankings were identical to those obtained

through the original 30 percent perturbation. By perturbing row coefficients as well as those in

columns and by varying each set of coefficients by 5 percent, I did obtain different sectoral

rankings, however. The highest Spearman’s ρ and Pearson’s correlation coefficient (.943 and

.816, respectively) were achieved when the row elements of the direct-requirements table were

perturbed by 10 percent and the column elements were simultaneously perturbed by 30 percent.

Hence, as assumed, the RPCs used were relatively accurate (off by an average of only 10

percent). In fact, when the ranked list of sectors from this table was compared to one that did not

vary the row elements at all (only perturbing the column coefficients by 30 percent), no

significant difference between them was found (the ρ and Pearson’ correlation coefficients were

.987 and .914, respectively). For simplicity, I therefore stuck to using column-only perturbation

of 30 percent.

Unsure of the set of weights to use for the tests, I used three: survey-based final demand,

nonsurvey output, and employment. Table 1 shows the results of these tests and compares them

to the total linkage difference between the survey-based and nonsurvey model weighted by final

demand. Surprisingly, employment weights reveal the best results with a Spearman rank

correlation coefficient of .75 and Kendall’s τ is .57. These reveal significant association between

the two sets of data. Moreover, nine of the highest-ranked sectors using E weighted by

employment are among the top ten that should be actually targeted for superior data based on

absolute total linkage difference. Results using the other two weights fare only marginally less

well. Hence, from this example it would appear that nonsurvey tables do a reasonable job in

identifying sectors that are most important to target for superior-data collection.

4. A STRATEGY FOR BUILDING A HYBRID REGIONAL INPUT-OUTPUT TABLE

Many of the steps in the procedure that I suggest here are very different from West

(1990), who has laid out the best outline to date. First, by following the advice of Stevens and

Lahr (1992) aggregation error inherent in West (1990) is avoided. Second, I forward the notion

                                                                                                                                                                                          
nonsurvey tables.
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that hybrid model constructors should use the most accurate means of regionalizing that they

have available and that they use the most accurate technology data available for their region. If a

dated detailed survey-based model is available for the region, it should be used as the base model

from which superior-data collection strategies should stem. Third, as discussed in the previous

section, I assert that sensitivity analysis of sectors to variation in imports be performed to identify

sectors (i.e., row-column combinations), not cells, that should obtain superior data. Finally, the

use of different data sources means varying data reliabilities, the combination of survey data with

nonsurvey data is no exception. Consequently, I also assert that formal reconciliation of the

various data sources is imperative. The following paragraphs describe a detailed set of

procedures that can be used to develop a hybrid regional input-output model.

Step 1, Preparation of Initial Nonsurvey Regional Direct Requirements.

This step comprises the first two in West (1990): developing a technology table and

adjusting it to account for regional trade patterns. In developing the technology table, West

(1990) lists the following important steps: selecting a base technology table, updating the

technology (if necessary), and adjusting the updated table so that international trade is accounted

for in a manner that is consistent with the regionalization technique.

The main difference between this step and the two in West (1990) is the regionalization

approach. Instead of using the modified location quotient approach described in West (1980),

which is perhaps appropriate for the Australian setting in which West and his associates work, I

suggest employing a regionalization scheme that allows for cross-hauling, which is the norm in

interregional trade rather than the exception.

Step 2, Identifying Sectors for Superior-data Collection.

By omitting aggregation, we can immediately produce a prototype model. The first step in

this process is to identify the sectors that should gain superior data. If the technology table is one

“borrowed” from the national input-output table and if the region being modeled comprises only

a small proportion of the total economy of the nation, then several sets of sectors should be given

top consideration for superior-data collection. They are the household-labor sector, resource

production sectors (e.g., agriculture, forestry, fishing, and mining) and any aggregate sectors such

as those denoted as “miscellaneous” or “not elsewhere classified” or others which, due to
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regional data problems, are severely aggregated. If funds for data collection are severely limited,

however, only one or a few of these sectors will get needed superior data.

If national technology is used, the sectors mentioned in the above paragraph should first

be targeted for superior-data collection. But if data-collection funds are severely limited, which

of these sectors should be targeted for survey work? Also, if funds are more than sufficient to

enable collection of data in all of these sectors or if regional technology is otherwise obtained for

these sectors, which sectors should receive superior data using the remaining resources?

Since it has long been established that a prime factor in the instability of regional direct

requirements coefficients is regional trade, I have opted to focus on this as a means for

identifying sectors for superior data. By using the combined-coefficient sensitivity concept of

West (1982) as described in the last section, sectors that make the regional table most sensitive to

changes in trade can be easily identified. Since rankings of the sectors using this approach are

altered with any coefficient correction (West, 1982), the process of identifying sectors should be

performed recursively after the model has been enhanced by each sector’s survey data.

Step 3, Identifying Individual Cells for Data Collection.

To keep data-collection costs for each sector to a minimum and yet maintain accuracy, I

have identified (Lahr, 1993) several pieces of information should be obtained for all targeted

sectors. These are intermediate inputs and outputs as a proportion of total regional sector output,

intrasectoral flows as a proportion of total regional sector output, total regional sector output, and

regional labor income. Intermediate input proportions and total regional sector output are

necessary to produce regional input proportions, which are essential to proper regionalization

(Lahr, 1992). Szyrmer and Lahr (1992) show that intermediate output and total regional output

are necessary to estimate properly the RPCs. In addition, Phibbs and Holsman (1981) find that

intrasectoral flows generally are one of the larger sets of flows into any given sector. Since

Jensen and West (1980) also find that large cells tend to the most critical to model accuracy, I

decided to make the cells on the diagonal of the technology matrix targets for superior data since

they tend to be the largest cells in indirect requirements matrices of high order. Finally, it is now

well-established (Stevens and Trainer, 1976; Giarratani and Garhart, 1987) that accuracy in the

measurement of the household-labor sector is also critical. Hence, if such data are not available
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at a sufficiently disaggregate areal level from state or local government sources, they should be

obtained via survey work.

For targeting cells of a sector for superior data, I used a measure introduced by West

(1981). Of course, the measure was applied to every cell in a selected sector’s row and column

since a firm should be able to furnish such information. I weighted West’s (1981) single-

coefficient change estimates by information using value-added as suggested by Jackson (1991).

I suggest only estimating West’s (1981) measure for a selected sector’s column and row

as opposed to all cells of the direct-requirements matrix, as was previously suggested (West,

1990), for algorithm efficiency. The reasoning here is that calculations must be made for each

cell. In a typical regional input-output mode, this amounts to at least several hundred calculations

for a single sector’s row and column.

Step 4, Insertion of Superior Data. ‘

The data for cells identified in Step 3 are inserted into the region’s technology table (not

the regionalized version). Values for cells that are not survey-based are proportionally adjusted

so that each sector’s intermediate known input and output levels are met.

Step 5, Biproportional Regionalization.

In order to regionalize using RAS, the intermediate inputs total must sum to intermediate

outputs total. Convergence of the nonlinear RAS technique is achieved when estimated margin

totals are within a “reasonable” measure of tolerance. I suggest that the bases for these tolerances

be the relative reliabilities of the corresponding margin data for the row/column. Survey data are

the most reliable. Superior data used to estimate intermediate outputs are generally next most

reliable. Superior data on intermediate inputs somewhat less reliable. Nonsurvey estimates are

considered to be highly unreliable. Using this ranking of reliability, sales and purchases data are

reconciled simultaneously with the different data sources.

The process continues by iterating through Step 2 to 5 until funds for superior-data

collection are depleted or the difference between the survey and nonsurvey results appears to

consistently be very small. The matrix that is obtained from the last use of Step 5 is the ultimate

matrix to be used for impact or other input-output-based analysis.
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For my examples, I set the tolerance limits that terminate the RAS procedure as follows:

(1) if I used data from the survey-based model, I assigned tolerances of 1 unit (in my case million

dollars of shipments) to intermediate inputs and outputs; (2) if the sector had no survey-based

data and it was a manufacturing sector, I assigned intermediate outputs a tolerance of 30 percent

of their initial estimate (the RPC estimates that I used are more accurate for manufacturing

sectors); (3) if the sector had no survey-based data and it was a manufacturing sector,

intermediate inputs were given a  tolerance of 100 percent of the initial estimate; and (4) if the

sector had no survey-based data and it was not a manufacturing sector, I set the tolerance for

intermediate inputs and outputs to 100 percent of the initial estimate.

In the case of my examples, I “surveyed” 13 sectors (the number was arbitrarily set at 25

percent of the number of sectors in the model). I tested the approach against the model both open

and closed with respect to households. A discussion of the matrix comparison measures—Mean

Absolute Deviation (MAD), Weighted Absolute Deviation (WAD), Standardized Total

Percentage Error (STPE), r, Root Mean Squared Error (RMSE), and Thiel’s U—is included in

Appendix C.

5. INTERPRETATION OF RESULTS

I hypothesize (1) that error should monotonically decrease as more sectors get superior

data and (2) that the percent change in error should approach zero as more sectors get superior

data. That is, the two hypotheses are (1) each additional sector “surveyed” reduces error and (2)

there are decreasing marginal returns to accuracy from superior data.

Figures 1 to 3 show test results when the model is closed with respect to households and

Figures 4 to 6 show the open-model results. It appears that the first hypothesis holds: error is

reduced by additional partial survey work. This hypothesis is violated most in technology

matrices (Figures 1 and 4) and second most in Leontief inverses (Figures 2 and 5). In these cases,

by examining only the WAD measure, which weighs error in larger coefficients

disproportionately [as suggested by Jensen and West (1980)], not only are fewer violations

observed but those that still exist are less severe. The WAD measure is not as appropriate as

some of the other measures for examining error in multipliers (Figures 3 and 6), because no

rationale exists for specifying that results for larger sectors need to have lower proportions of

error than those for smaller sectors. Hence, the WAD results for multipliers should be ignored;
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incidentally Figure 3 shows that WAD error change takes a radically different direction than that

of other measures.

The second hypothesis (diminishing marginal returns to superior data) appears to hold

well for the model closed to households (Figures 1 to 3). That these figures reveal a vacillating

diminishing trend to the change in error is no surprise; there may be little difference between the

“survey” data that is inserted and the nonsurvey data it is replacing. The results shown in Figures

4 and 5 are somewhat disappointing, however. These figures reveal an early five-sector period

(the third through seventh sectors chosen) with little or no decrease in hybrid model error. It is

disappointing to learn that the funds needed to obtain such data could yield so little partitive

accuracy.

The results for open-model multipliers (Figure 6) are more favorable with error change

consistently less than zero. Regardless of the model type, however, “surveys” for only four

sectors were required to reduce error to 50 percent (an STPE error of 24 to about 11 in the closed

model) of its original value. For the closed model these sectors were: FIRE, Trade, Services, and

Construction; all of which are very aggregate sectors. Aluminum replaced Construction as a

major error-reducing sector in the open model.

How do these results compare to the case where, in each successive round of survey

work, the sector with the greatest absolute deviation in total linkages between the closed survey-

based and nonsurvey models is known? Figures 7 through 9 reveal that, in general, similar

results are obtained. The absolute amount of error remaining for each successive sector surveyed

is constantly less for all measures than it was in the for the measures supporting Figures 1

through 3, however. Surveys of only two sectors—FIRE and Construction—were required to

reduce error for multipliers to about 36 percent of its original value (to an STPE error of about

5.5). The two late downward spikes in Figures 7 and 8 are from technology changes in Dairy

Products and Logging. The trade adjustments in Aluminum account for the largest downward

spike for output multipliers in Figure Table 2 is a comparison of the open- and closed-model

sectors that my approach suggests should be “surveyed” (not including the household labor

sector in the 52-sector model, which is the top-ranked sector). These should be compared with

the sectors that would be modeled if the recursive superior-data collection technique had been

employed with perfect information on the differences between the survey-based and nonsurvey

models (see Table 2, bottom). In both cases, the nonsurvey model identifies 7 of the top 13
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sectors to be targeted. On the other hand, several critical sectors not identified by my approach

are resource-based sectors: Fisheries, Mining, Vegetables and Fruits, and Forestry. I earlier made

the point that such sectors should automatically be considered for receiving superior data since

they have technology that is likely to very different from the national average technology

represented in the nonsurvey model. I chose not to do so because of the severe aggregation in the

survey-based Washington State model, which would have left few sectors to test the approach

presented here.

6. CONCLUSIONS

It appears that the algorithm developed in this paper is successful in drastically improving

both the partitive and holistic accuracy of nonsurvey tables. In particular, there was evidence

vindicating a priority to the collection of superior data for the household/labor sector, resource

production sectors, and any aggregate goods-producing sectors denoted as “miscellaneous” or

“not elsewhere classified.” Perhaps because of loose tolerances for sectors that did not get

superior data in the RAS procedure, it turns out the hypotheses that (1) each additional sector

“surveyed” reduces error and (2) there are decreasing marginal returns to superior data are not

found to be strictly true. The results did not necessarily prove the two hypotheses to be wrong, on

the other hand. For example, error did not tend to increase as more sectors were “surveyed,” and

there were general improvements in the various components of the tables as the process

proceeded. Hence, there is hope that similar approaches, (e.g., alternatives with more stringent

RAS tolerances) might favor the hypotheses. In any case, more testing must be performed to

validate variations of the procedure outlined in this paper.
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TABLE 1: Rankings of Sectors for Survey Work: Actual Versus Estimates

Total Linkage West’s (1982) Sensitivity by Weight Type
Difference Final Demand Output Employment

Industry # Measure Rank Measure Rank Measure Rank Measure Rank
1. 323 9 290 10 1,107 8 188 11
2. 124 22 239 14 291 19 263 7
3. 163 17 264 11 1,246 7 219 10
4. 15 44 33 43 53 40 26 36
5. 72 34 35 41 143 30 24 38
6. 155 18 178 20 562 12 117 16
7. 66 36 132 25 383 15 88 19
8. 128 21 224 17 300 18 78 22
9. 14 45 74 33 161 28 24 39
10. 13 46 101 29 129 32 39 31
11. 57 37 150 22 341 16 84 20
12. 12 47 7 51 8 52 3 52
13. 48 39 50 37 42 43 21 43
14. 129 20 57 36 183 25 39 32
15. 220 13 19 49 82 35 18 45
16. 143 19 263 12 506 13 121 15
17. 113 25 505 9 586 11 163 13
18. 5 49 225 16 172 27 71 24
19. 50 38 141 24 138 31 43 29
20. 15 43 30 45 56 37 22 41
21. 112 26 141 23 192 24 38 33
22. 78 33 181 19 209 22 66 25
23. 114 24 173 21 158 29 52 28
24. 243 12 73 34 217 21 99 17
25. 78 32 124 27 181 26 53 26
26. 29 41 8 50 26 46 7 50
27. 177 14 130 26 203 23 52 27
28. 33 40 4 52 10 51 5 51
29. 90 28 108 28 324 17 76 23
30. 117 23 24 47 37 44 21 42
31. 11 48 32 44 113 34 16 48
32. 567 7 562 8 454 14 97 18
33. 168 16 38 39 33 45 26 35
34. 66 35 33 42 54 39 17 46
35. 2 51 35 40 12 50 14 49
36. 90 29 23 48 18 48 24 40
37. 1 52 62 35 25 47 27 34
38. 2 50 42 38 17 49 16 47
39. 549 8 734 7 128 33 240 9
40. 82 31 100 30 44 42 25 37
41. 112 27 225 15 51 41 144 14
42. 22 42 82 32 55 38 39 30
43. 1,416 6 1,311 6 2,536 6 1,085 6
44. 273 11 221 18 678 10 168 12
45. 85 30 26 46 79 36 19 44
46. 173 15 92 31 278 20 80 21
47. 294 10 248 13 747 9 240 8
48. 3,389 3 4,399 2 6,017 5 1,939 5
49. 2,963 4 3,406 3 8,006 3 3,202 2
50. 3,905 2 2,768 4 9,903 2 2,526 4
51. 2,027 5 2,614 5 7,989 4 3,145 3
52. 4,634 1 9,399 1 25,245 1 6,249 1

ρ .6538 (7.9) .7237 (9.7) .7487 (10.6)
τ .4949 (27.0) .5477 (29.9) .5688 (39.0)
r .9293 .9244 .9052

Notes: Numbers in parentheses after Spearman’s ρ is its t statistic and that after Kendall’s τ is its z score. Both test the hypothesis that there is no
relationship between the subject measure and the linkage difference measure. The linkage difference measure is the absolute difference between
the total linkages for the survey-based and nonsurvey models, with total linkages as in Meller and Marfàn (1981).

Industries are defined in Appendix B.
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TABLE 2: Sectors Targeted for Survey Work

The Recursive Search Technique

Open Model Closed Model
1. Construction FIRE
2. FIRE Trade
3. Trade Services
4. Services Construction
5. Aluminum Transportation Services
6. Sawmills Aerospace
7. Transportation Services Meat Products
8. Meat Products Communications
9. Livestock and Products Livestock and Products
10. Aerospace Sawmills
11. Logging Logging
12. Canning and Preserving Field and Seed Crops
13. Paperboard and Other Paper Products Aluminum

Maximum Absolute Deviation in Total Linkages

Closed Model

1. FIRE
2. Construction
3. Fisheries
4. Trade
5. Livestock and Products
6. Aluminum
7. Mining
8. Vegetables and Fruits
9. Services
10. Petroleum
11. Dairy Products
12. Forestry
13. Logging
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APPENDIX A

STRUCTURAL MATRIX ERRORS IN INTERINDUSTRY RELATIONS ESTIMATES:

A DERIVATION OF EVANS’S (1954) FORMULA

Using A and I  to represent the n-order direct-requirements and identity matrices, respectively,

consider a new matrix that is formed by a perturbation of A that is expressed as

A*  =A-P, where P=[pijaij]. Then,

(I -A* ) = (I -A)-P

which when letting B=(I -A)-l and B*=(I -A* )-l leads to either of the following:

B*= -B(I -PB) -l

= (I -BP) -l B

Subsequently, the matrix of errors produced in a Leontief inverse, E=B* -B, by a perturbation in a

direct-requirements matrix is

E= -B[I -(I -PB) -l]

= [(I -BP) -l -I ]B

This is equivalent to that derived by West (1982), who showed that

E= (I -BP) -l BPB

and that by Dwyer and Waugh (1953), who showed that

E=-BPB(I+PB) -l

That there are two fewer matrix multiplications to be performed makes the Evans’s formula more

practical.
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APPENDIX B

INDUSTRIES IN THE 1972 WASHINGTON INPUT-OUTPUT STUDY

# Industry Name U.S. Standard Industrial Classification Code(s)
1. Field and Seed Crops
2. Vegetables and Fruits
3. Livestock and Products
4. Other Agriculture
5. Fisheries
6. Meat Products
7. Dairy Products
8. Canning and Preserving
9. Grain Mill Products
10. Beverages
11. Other Foods
12. Textiles
13. Apparel

011, 013 (except 0133), pt. 019
0133, 016, 017, pt. 019
02 (except 027), 075
018, 027, 07 (except 074, 075)
09 (except 097)
201
202
203, 2091, 2092
204
208
205-207, 2095-2099
22
23

14. Mining 10-14
15. Forestry 08, includes national and state forests
16. Logging 241
17. Sawmills 242
18. Plywood 2435, 2436
19. Other Wood Products 2431, 2434, 2439, 244-249
20. Furniture and Fixtures 25
21. Pulp Mills 261
22. Paper Mills 262
23. Paperboard & 0th. Paper Prod. 263-266
24. Printing and Publishing 27
25. Industrial Chemicals 281, 286-289
26. Other Chemicals 282-285
27. Petroleum 29
28. Glass Products 321-323
29. Cement, Stone, and Clay 324-329
30. Iron and Steel 331, 332, 3398, 3399
31. Other Nonferrous Metals All other 33
32. Aluminum 3334, 3353-3355, 3361
33. Structural Metal Products 344
34. Other Fabricated Metals 34 (except 344)
35. Nonelectrical Motive Equip. 351-353
36. Machine Tools and Shops 354, 359
37. Nonelectrical Ind. Equip. 355-358
38. Electrical Machinery 36
39. Aerospace 372, 276
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40. Motor Vehicles 371, 374, 375, 379
41. Ship and Boat Building 373, incl. Puget Sound Naval shipyard
42. Other Manufacturing 30, 31, 38, 39
43. Transportation Services 40-47, inc. Post. Serv. & public transportation
44. Electric Companies 491, pt. 493, incl. government enterprises
45. Gas Companies 492, pt. 493, incl. government enterprises
46. Other Utilities pt. 493, 494-497, includes government enterprises.
47. Communications 48
48. Construction 15-17
49. Trade 50-59, includes state liquor stores
50. FIRE 60-67
51. Services 074, 097, 70-89 (excl. publicly owned schools & hospitals)
52. Households/Labor
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APPENDIX C

SOME MEASURES FOR COMPARING INPUT-OUTPUT MATRICES

C1. INTRODUCTION

Despite extensive evaluation of tables regional input-output derived via the various

nonsurvey methods, there is still some question regarding the relative accuracy of the various

techniques when compared to survey-based tables (Miernyk, 1976, p.54). In part, this is due to

the age-old problem in regional analysis—the lack of proper and sufficient survey data to which

estimates can be compared (Polenske, 1989; Miernyk, 1976, p. 54). In addition, even provided

proper and sufficient “superior” data, comparisons are generally made using measures whose

properties have not been investigated. That is, there is no proven strict relationship between the

value of the measures and the amount of error inherent in an estimate, especially in the case of

the application of input-output tables. Thus, the results of the comparisons have been, at best,

inconclusive with regard to the goodness-of-fit of the estimates.

Measures of distance and association serve two purposes, (1) to measure the ability of

models to produce accurate results and (2) to determine the statistical significance of the

difference between the actual and estimated data (Knudsen and Fotheringham, 1986) [henceforth,

K-F]. Unfortunately, other than K-F few researches have ever thoroughly studied measures of

distance or association for matrix comparison problems. And, certainly, no one else has

considered and compared a battery of such measures in a scientific way.

In total, Lahr (1992) found 14 different measures that have been used to determine the

accuracy of I-O models. The reason so many have been used is that the tables, themselves, are

unlike many other matrix-based models. The structure of I-O tables and the possible uses toward

which they can be applied require a very stringent set of properties for a general-use comparison

measure. Hence, researchers have chosen a measure they have used in other statistical

applications or have used measures used by other I-O analysts, despite their possible impropriety.

In the literature, at most 6 of the 14 measures have been discussed and/or tested with

regard to the validity of a few of their properties. Not even all desired traits have been discussed

in these few measures. In fact, testing of the measures was only evident in one paper, Miller and

Blair (1982). Rather those measures not perceived as being well-suited to a particular application

are either altered slightly (creating a new measure) or are omitted from use. Hence, despite



27

passage of over two decades, it is difficult to disagree with Miernyk (1975, p.34) “that there is

some ambiguity in the measurement of projection error” and that “there is an opportunity for an

innovative statistician to make an important contribution here.” I suspect, however, that it also

may take work along the lines of that by Asami and Smith (1995), who used an axiomatic

approach to identify appropriate measures.

C2. NOTATION

At this point, I set out the notation that will be used throughout this appendix. Following

the notation of Miller and Blair (1985), aij, is the ith element down the jth column of matrix A,

the technology matrix, A, which has an estimate Å with elements designated åij. Likewise, µ and

µ  are the vectors of actual and estimated multipliers, and µi  and µi  are the respective multipliers

of a specific sector i.  Throughout I have not separately designated the formulae for transactions

or total requirements matrices which, besides mere variable-notation changes, have formulae

identical to those of the technology matrix.

C3. THE ERROR MEASURES

Standardized Total Percent Error

Of the measures used in this paper, the first to be used in I-O applications was the

weighted average percentage error measure (Leontief, 1966, p. 244). Somehow Leontief’s use of

the measure was forgotten, because it was not used again until Sawyer and Miller (1983), where

it was apparently reinvented as the mean absolute deviation as a percentage of the mean

coefficient (MPMC), and Miller and Blair (1982, 1983) where it was given its most commonly

used, current name—standard total percentage error (STPE). In an unpublished, paper Szyrmer

(1984) used this measure under yet another name, mean normalized deviation. It has the formula

100
a a

a

ij ij
ij

ijij

−∑∑
∑∑

o

Its only major drawback is that it may not be exceptionally sensitive to high-valued cells.
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Correlation Coefficient (r)

The correlation coefficient, r, isolated from the rest of the regression parameters and

statistics has been used as a measure of association. To make it a distance measure, Szyrmer

(1984) transformed it into what he called the disparity index, defining this “new” measure as

50(1r). Hence, at perfect correlation its value is 0, at no correlation its value is 50 and at perfect

negative correlation its value is -50. To keep the direction of the values of r in line with those of

the other measures, I have merely subtracted its value from 1.

Mean Absolute Difference

In 1974, Smith and Morrison, and Morrison and Smith introduced the use of the mean

absolute difference (MAD) measure to I-O analysis. Its formula is

As with many other measures, there is no penalty in this measure for having error in high-valued

coefficients as opposed to low-valued ones. In addition, its magnitude changes with the order

(size) of the I-O tables being evaluated. In answer to the first of these two problems, I developed

the weighted absolute difference (WAD), which is discussed later.

Index of Inequality (Theil’s U)

A measure originally developed in Theil et al. (1966) was first used in the input-output

literature by Stevens and Trainer (1976). This measure, commonly called Theil’s index of

inequality (U), can be broadly interpreted as a standardized root mean squared error. (The root

mean squared error measure is discussed later in this appendix.) If multiplied by 100 percent has

an interpretation that is very similar to that of the STPE measure. It has the advantage of yielding

an overall distance proportion as well as three other proportions: bias (U), variance (U), and

covariance (U ). These extra error proportions are valuable in showing the researcher the patterns

of the differences between two matrices. The formula for index of inequality is

100 2

a a

q

ij ij
ij

−∑∑
o
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This measure is probably used to its full potential in a paper by Stevens, Treyz, and Lahr

(1989), where the authors examine the accuracy of various RPC-estimating techniques. Stevens,

Treyz and Lahr, however, do not look at any of the I-O tables or their components that are being

analyzed in this study. Its main drawback is that, as with most of the other measures, it does not

penalize more heavily for error in higher-valued coefficients.

Root Mean Squared Error (RSME)

The Root Mean Squared Error or Euclidean Metric Distance is defined as

a a

q

ij ij−�
�
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�

�
! 

"
$#∑∑

o

2 5

2

.

Harrigan, McGilvray, and McNicoll (1980) introduced this well-known measure to the I-O

literature. As with others such as MAD, this measure does not yield any idea of the relative

difference between two matrices, but rather only the average total difference. Hence, one cannot

really determine how bad or good an estimated matrix is when compared to the actual. To correct

for the latter problem, Theil et al. (1966) developed the index of inequality, which was discussed

earlier.

Weighted Absolute Difference (WAD)

To my knowledge Lahr (1992) is the first to use the WAD. It is designed to make up for

the problems of most of the other measures. Its formula is

That is, the (aij-åij)-term weights the absolute difference term so that the errors of large cells are

emphasized. In this way the measure is extremely sensitive to error in large cells, something that,

a a a a

a a
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so Jensen and West (1980) have told us, is critical. The advantage of this measure is that if either

of the matrices is nonzero for a cell, the measure’s value is not undefined. There is one problem

with this measure, it does not necessarily express proportional error as do STPE or Theil’s U.
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