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ABSTRACT

In this paper we present a forma operationa model, based on the translog cost functional form, that allows for
simultaneous determination of factor demands and of technological change. Contrary to translog specifications most
commonly used to analyze total factor productivity growth, our specification allows both for smooth adjustment processes
and irreversibilities in input demands that might cause input demand rigidities. Estimating the demand equations allowing
for these rigidities enables us to separate measured total factor productivity growth into a cyclica and a structural
component. We apply this model to 9 sectors of economic activity belonging to the manufacturing sector of the US
economy. Our data span a period of 37 years, from 1958 to 1994.
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1. Introduction

In a paper that appeared in Economic Systems Research (Lesuis et al.,1996), we presented a formal
operational model based on the translog cost functional form that consists of a set of long term equilibrium
rel ationships which describe how factor demands and technological change depend on factor prices and time.
Because of informational and reactional delays in the adaptation of factor demands and technological change
to price changes, we proposed to combine the model with an adjustment process according to the error
correction mechanism (ECM).

According to Slade (1989) the commonly used specification of the equation that describes technological
change, that we adapted in our previous paper, has two drawbacks. First, a deterministic trend is used that
does not allow for thelevel and the slope to evolve slowly over time. Second, it does not allow for a cyclical
component in measured total factor productivity (TFP) that may arise due to input demand rigidities. Instead,
Slade introduces a specification in which aggregate output growth is used as a proxy for cyclical effects and
TFP growth is estimated as a latent variable. The latter is done by assuming that structural TFP growth
follows a stochastic trend, asintroduced by Harvey (1981).

In this paper we illustrate that Slade’ s stochastic specification of structural TFP growth boils down to the
conventional deterministic trend approach, when applied to annual data for 9 manufacturing sectors of the
US economy over the period 1958-1994. We therefore consider a generalization of Slade’ s specification that
allows for both a stochastic specification of the cyclical and the structural components in TFP growth. When
applied to our data, this approach yields much better results than those obtained with Slade’ s specification.

The structure of the paper is as follows. In Section 2, that consists of four parts, we derive the
econometric model. In the first part, we briefly review the standard cost share equations derived from the
trandog specification of the cost function. In the second part, we consider the equation that describes
technological change. We introduce our generalization of the time varying parameter approach used by Slade
and show how this specification also includes the standard model with deterministic trend. In the third part,
we write the model in the state space representation that enables us to apply the Kalman Filter techniques to
estimate the path of the (latent) structural and cyclical components in TFP growth. Finally, in the last part of
Section 2, we briefly describe the EM-algorithm and the Kalman Filtering techniques that are used to obtain
the maximum likelihood estimates of our parameters. Technical details can be found in Appendix 2. After a
brief discussion of our data, we compare the results obtained using Slade’s and our approach in Section 3.
We show that our generalization yields a more satisfactory explanation of structural TFP growth. Section 4
contains our conclusions and suggestions for further research.



2. Model Specification

In this section we will follow Slade (1989) and consider the cost share equations and the equation for
technological change implied by the following generalization of the translog unit cost function.
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where C; denotes the unit cost at timet (t=1...T), F(t,y) represents the Hicks-neutral portion of productivity
that is assumed to depend on time and on a vector of exogenous variables (y) and Py is the price of factor of
production i at time t. Twice continuous differentiability of InC; implies that

by =b; for i#j=1.n @)

2.1 Cost share equations

By virtue of Shephard’slemma, we can derive instantaneous conditional factor demand equations at timet in
terms of cost shares, s, by logarithmic differentiation of I(.’I_.)lwith respect to InPy;:

s, =a +cit+Zb”.|nPtj i=1..n (3)
&

Since the cost shares have to add up to one by definition, the parameters have to satisfy the following

additivity restrictions
Zqzland Zci:Zbij:O (4)

Obvioudly, equations'(Z)' and @'imply that

n
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i.e. the cost share equations are homogeneous of degree zero in prices and can thus be written in terms of
relative prices in the following way

n-1
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&

where p; istherelative price of factor i in terms of factor n, i.e. p;=Py/Py.

2.2 Technological change

In this part we consider the equation for technological change, i.e. the percentage change of unit costs over
time. Following Lesuis and de Boer (1994) we will denote this by tc. Partia differentiation of |(_'I__).|with
respect to t yields
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Using the additivity restriction IQand defining f(t,y) = d:(;t’ y) this equation can be rewritten to
n-1
tc, = f(t'y)+ZCi|npti (6)
1=

In this equation f(t,y) represents the Hicks neutral part of technological change and the last term representsits
non-neutral part. In the following we will focus on the specification of f(t,y).

When introduced by Christensen et al. (1973) the translog model was specified as an arbitrary second
order approximation of the logarithm of the unit cost function. This specification implied the conventional
model where

1 2
F(t’ y) =8 Fant +5Chut

leading to
f (t, y) =gt Cn+lt (7)

Hence, according to this specification the Hicks neutral part of technological change, or TFP growth contains
adeterministic trend. This implies that, when the length of the period considered goes to infinity, and ¢,.1#0,
the TFP growth becomes unbounded.

Slade (1989) argues that when tc, is measured according to the commonly used Tornqvist index, see for
example Lesuis and de Boer (1994, page 362), equati on@suffers from two problems. First, the Térngvist
index might contain a procyclical bias because in reality firms might face input demand rigidities, whereas
the index is derived assuming fully flexible input demands. Secondly, it would be preferable to alow for TFP
growth to slowly fluctuate over time, instead of it being completely deterministic.

In order to overcome the former, she proposes to include aggregate output growth as a proxy for input
demand rigidities in the specification of f(t,y). She proposes to solve the latter problem by allowing for atime
varying trend, as used by for example Harvey (1981). Letting Ay; represent the growth rate of aggregate
output, the specification proposed by Slade (1989) reads

t(t,y) = avy, + 4
He = Mg +Big +y (8)
B =81+

where 04y, represents the cyclical component and L, the structural component of TFP growth. S is the time
varying trend parameter. )y and )y, are assumed to be independently normally distributed white noise with
variances q; and g, respectively. It can be easily seen that when there is no cyclical effect, i.e. =0, and when
the trend is not time varying, i.e. ;=q,=0, @ reduces to the deterministic specification EI Although this
specification allows for more flexible TFP growth and for a cyclical component, it still suffers from the fact
that the structural component of TFP growth is till estimated by a process with a unit root, implying



unbounded growth as t goes to infinity. Furthermore, as we will show in the next section this specification
will actually yield results for which gq;=q,=0 and J is insignificant. It would therefore be worthwhile to
consider a specification that alows for a stationary, mean reverting, process.

Since the latent growth rate in our data seems to be stationary, as can be seen from the figures that we
will present in the next section, we propose to generalize specification @ by allowing L to be an arbitrary
AR(1)-process with a possible non-unit root and atime varying mean. That is, we propose to use

t(ty) = ay, +u
M = Pthg + B+ 9)
B =B84+

where we consider [3/2 1. Thus, in principle we allow for y to contain a unit root but in practice we will
find that it is stationary with [g/7<1.
For the relevant case that (3] <1 specificati on@ implies

lim Ef gt = § = fp (10)
Hence, at time s the expected structural growth rate depends only on s and p. Like Slade (1989) we allow
structural TFP growth to evolve slowly over time and, just like in equation we use a martingale
specification for the parameter fluctuation. Therefore in @we alow S to follow a random walk. Thus, in
specification @ L represents latent TFP growth and B/(1-p) its structural component. However,
specification @ has one drawback. It can be easily seen that it is not identified for p=0, which actually turns
out not to be arelevant case when applying the model in Section 3.

2.3 State space representation and ECM model

In this part we will rewrite the model in terms of a state space representation, see Hamilton (1994), which is
used for the application of the Kalman Filter. This representation consists of two parts. The first part, known
as the measurement equation, consists of the conventional share equations and the equation for technological
change derived in the previous section. The second part, known as the state equation, describes the dynamic
transition of the latent variables u; and 3.



Measurement eguation

In order to be able to write the measurement equation in matrix notation we introduce the following
notation

Wy =[s(1,...,sm,tct]
& = [IJt By aIJt—l]

Xt' = [l,t,|n ptl""'ln ptn—l'Ayt]

and the parameter matrix
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. : : : H
r’ : D . . . D
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Furthermore we define
., 0, 0,0
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This enables us to write the share equations E)' and the equation for technological progress, i.e. (6) in
which the first equation of @ has been substituted, as

w, =" +Hi& (11)
Following Lesuis et al. (1996), we will consider the ECM specification of @ which is of the form
w~wey = (%~ %) #Hi(& ~& o} +w{rxs tHE L -w ) e (12)
where @ and W are (n+1xn+ 1)-matrices of adjustment parameters and where

€ =(etl""’etn+l)’ ~ IN(On+11R)

It is assumed that & is not only independent over time but also independent from ny and .. As explained
in Lesuis et a (1996), due to the constant term appearing in @ and the additivity restrictions, thereis a
perfect multicollinearity between the explanatory variables and the matrix R is singular. They show that
these problems can be solved by defining
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where @ and ¥, denote the ith columns of @ and W respectively®. Furthermore, we use the result derived
by Barten (1969) and delete an arbitrary share equation, in our case equation n. In the following the
superscript (n) denotes that the n™ row, or in case of avector the n" element, has been deleted. Defining

' Opy Opal ' Opy Opal
0 _ Y1 Y Una 0 _ Y1 Y Una
H2" =01 o -1 H¥IAMT =06 o 1 F

we Ccan use

HO (& -2,) = HP'g,

Hl(n) 1 = Hén) &
to rewrite@as

n n ~(n n n a (N n n n a n
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In order to introduce the state space representation of the ECM model in matrix notation, we define
the following matrices

r

A,:§~D<n)r(n)' | -l _c.;(n)é

r
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such that we can write
AWt(n) = A’Zt + HIEt + et(n) (13)
In our empirical application we resort the a simplification: we impose the restriction that the matrices

of adjustment parameters are diagonal. As shown by Lesuis et a. (1996) the adjustment matrices then
reduce to

~ -1 Opg ~
_%a)cl)’nl nlDand L'J(n):%lullln‘l On_l%
0%-1  $hal 001 Ynu0
Moreover, because we aready impose a dynamic structure on the equation describing structural

technological change, i.e. E)_l we fix g1 and gh.1 a 1, implying a static specification.

2|t can be shown, see Lesuis et al. (1996) that the first n elements of the columns of ® and ¥ add up to zero.



Sate equation

We define
@, O OO
ni =20 and @=F @, of
H 0 0f
and the transition matrix
1 00
F=tb 1 of
H 0 0
so that we can rewrite the last two equations of EJ)' as
& = Féiq +n, (14)

which is the state equation that combined with the measurement equation derived in |(_'L_3)|yields the state
space representation used in Hamilton (1994) to derive the Kalman Filter.

2.4 Estimation

In appendix 2 we describe the Kalman filter and the maximum likelihood procedures that were applied to
obtain the results presented in the following section. The appendix consists of three parts. In the first part we
review the Kalman filter equations that can be used to obtain forecasts of the state variable, &, conditional on
previous and current information. Furthermore, we also review the Kalman smoother that calcul ates forecasts
of the state variable, &, conditional on all the data available. In the second part, we introduce the likelihood
function and describe how the Kalman filter and smoother can be used in conjunction with the EM agorithm,
first introduced by Dempster et a. (1977) and applied to state space models by Shumway and Stoffer (1982),
to obtain maximum likelihood estimates of the unknown parameters in the model. The EM algorithm iterates
over two steps; the expectation step (E-step) and the maximization step (M-step). Shumway and Stoffer
(1982) show that for the state space model considered here in the E-step the missing data, in our case the
latent variable &, are replaced by their sufficient statistics, which are in our case obtained from the Kalman
smoother. In the second step new parameter estimates are then obtained by maximizing the conditional
expection of the likelihood for the model that is derived assuming that all variables, including & are
observed. This expectation is evaluated conditional on the available data. The M-step thus yields updated
parameter estimates that can again be used in the Kalman smoother in the E-step. Finally, in the third part, we
consider the practical implementation of the maximization step (M-step) of the EM algorithm.

3. Data and empirical results

In this section we present our empirical results for the US economy using data from the NBER
Manufacturing Productivity Database for the period 1958-1994. A more detailed description of the data can
be found in Bartelsman and Gray (1996). In this paper we use three categories of production factors, i.e.
capital, labor and materials. Our TFP growth measure , based on the three input case, perfectly matches the



Table 1. Estimation resultsfor turbine sector (3511)

Restricted Unrestricted

a 289 (.020) 288  (.020)
a 245 (013 244 (.014)
C1 005  (.002) 005  (.002
C -005  (.002) -005 (002
b1 131 (.070) 133 (.074)
b, -.069 (.038) -.063  (.035)
by, .078  (.048) .082  (.050)
o 289  (.175) 357 (.321)
o 1.203  (.604) 1215  (.626)
Y 44 (o7 143 (072
o} 1.000 -.098

o .000 327

O .000 370

" g, and g, have to multiplied by 107,
standard errors between parentheses

NBER measure that is calculated for the five input case. Capital income is treated as a value added residual.
A rental price of capital was obtained implicitly by dividing capital income by the real capital stock figures
available in the database. Likewise a wage deflator was obtained implicitly from the total payroll and the
number of employees.

The discussion of our detailed results in this section will be limited to the Turbine and Turbine Generator
Sets industry (SIC 3511). The complete estimation results for all sectors are presented in Appendix 1, m
B and Table 3.

m lists the parameter estimates for both Slade’s (1989) specification, denoted by “Restricted”, and
our generalization, denoted by “Unrestricted”. Two things are immediately apparent. First, the parameter
estimates for the state equations do not differ much for both specifications. Furthermore, the coefficient for
the proxy for irreversibilities, i.e. , turns out to be insignificant, as judged by the "two-sigma" rule of thumb
. Aslisted in Appendix 1, the results concerning the parameter estimates for the state equations seem to be
robust across the sectors considered. Significant cyclical effects however are present in the sectors
Furniture (SIC 2511), Newspapers (SIC 2711), Stedl mills (SIC 3312) and Car bodies (SIC 3711) for both
type of specifications.

The peculiarity of the results obtained with Slade’'s specification are most clear when considering
estimated structural and measured TFP growth. Fromm it can be seen that, in case of the restricted
specification, ¢; and g, are both estimated equal to zero. This implies that Slade’s (1989) specification, for
our data, yields the same result as the conventional Translog model with a deterministic trend, i.e. as



specification 5[ That is, it fits structural TFP growth as a deterministic trend. That this specification leads to
apoor fit isimmediately clear when one considers figure 1, which depicts measured and estimated structural
TFP growth. Where measured TPF growth, i.e. the Torngvist index, seems to be a mean reverting process,
estimated structural TFP growth is a slightly positive deterministic trend.

g

1980 1965 1870 1975 196 L 1555} 1504

figure 1. Estimated and measured TFP growth, restricted specification
solid: estimated structural TFP growth (L), dashed: Tdrngvist index.

This fit contrasts sharply with the fit obtained with our specification. From figure 2 it can be easily seen
that our model yields a much better fit for TFP-growth. More importantly, instead of being a positive
deterministic trend as obtained with Slade's (1989) specification estimated structural TFP growth, as
depicted in figure 3, seems to be fluctuating much more. As expected, the outliers for the oilcrises in 1974
and subsequently 1979, are mainly attributed to cyclical effects. More importantly, where the results obtained
with the restricted specification suggest that the growth rate of TFP will eventually be infinite, because of the
deterministic trend, the results of the unrestricted specification suggest that structural TFP growth peaked
especialy after the oilcrisisin 1975 and in 1979.

10
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figure 2. Estimated and measured TFP growth, unrestricted specification
solid: estimated latent Hicks-neutral TFP growth (i), dashed: Torngvist index.
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figure 3. Estimated and measured TFP growth, unrestricted specification
solid: Estimated structural TFP growth (3:../(1-p)), dashed: Tornqgvist index.
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5. Concluding remarks

In this paper we have extended Slade’s (1989) ideato allow for the estimation of structural TFP-growth as a
latent variable. We have shown that, using datafor 9 sectors for the US economy, Slade’s specification boils
down to the conventional Translog model in which structural TFP growth is modeled as a deterministic trend.
Our specification allows for both structural aswell as cyclical TFP growth being latent variables.

Our results suggest that structural TFP growth does not follow any deterministic pattern at all but,
instead, fluctuates significantly over time. Furthermore, contrary to Slade's specification, which predicts that
the structural component of the productivity growth rate will grow beyond bounds, the results obtained with
our generalized specification do not seem to suggest any trend in the growth rate of TFP.

Many extensions of the analysis that we presented in this paper are possible. Two of them are especially
worthwhile mentioning. First, one could consider a specification of the state equation that does not suffer
from an identification problem for certain parameter values, as is the case in our specification when p=0.
Second, one could substitute the deterministic trend in the share equations by the latent TFP growth variable.
One thing should be clear from the results presented in this paper: Any specification of TFP growth as a
latent variable should allow for it to follow a general stochastic process that can preferably be divided in a
structural and cyclical component.

12
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Appendix 1: Complete estimation results

Table 2. Estimation results: restricted model

Measurement equation state equation

Sector & a C1 Cc b by by 0 @ Y _ pH B G

2011Meatpacking .071 .059 .0005 -.0011 .031 -002 .023 .215 2014 .158 1. .000 .000
.003 009 0003  .0003 019 002 014 081 1190  .061

2511 Furniture 270 259 .0024 -.0026 .035 -.028 .055 596 2.007 .324 1. .000 .000
013 012 0004  .0003 025 021 .040 091 1350  .104

2711Newspapers 478 .300 .0079 -.0041 .154 -077 .105 .312 1.012 .098 1. .000 .000
054 029 0018  .0009 077 039 .054 064 491 044

2911 Petroleumre  .106 .025 .0018 -.0005 .078 -003 .019 .313 1.214 .091 1. .000 .000
018 005 0016  .0005 031 002 .008 138 461 .046

3111 L eather 181 176 .0004 -.0039 .036 -.017 .035 -240 2256 .151 1. .000 .000
016 097  .0018  .0011 057 028 .006 215 3511 081

3312 Steel mills 206 .184 .0018 -.0034 .048 -029 .050 .567 1.770 .202 1. .000 .000
.001 015 0008  .0005 022 013 024 120 768 .065

3511 Turbines 289 245 .0053 -.0047 .131 -069 .078 .289 1.203 .144 1. .000 .000
020 013 0023  .0018 070 038 048 175 604 .07

3711 Car bodies 190 .080 -.0011 -.0021 .057 -.007 -.018 .679 .996 .337 1. .000 .000
.008 005 0009  .0007 013 .006 025 100 187  .090

3911 Precious met. 255 187 .0024 -.0034 .074 -054 .043 .343 1623 .164 1. .000 .000

.020 .022 .0011 .0008 .040 .028 .022 316 .800 .067

" g, and g, have to be multiplied by 102
#preset at value 1
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Appendix 1: Complete estimation results (continued)

Table 3. Estimation results: unrestricted model

2011

2511

2711

2911

3111

3312

3511

3711

3911

Sector

Meatpacking

Furniture

Newspapers

Petroleum ref

Leather

Steel mills

Turbines

Car bodies

Precious met

measurement equati on

state equation

*

a a C1 Cy by b1, b, 0 (] yn P Ch* gz
.070 .057 .005 -.0011 .036 -.002 .027 .239 1.745 .147 -060 .088 .081
.004 008  .0004  .0003 021 .002 016 162 .989 .063
268 .262 .0023 -.0025 .033 -.023 .049 .604 2265 .312 -017 .140 .224
.016 .015 .0004 .0003 .027 .019 .041 233 1.730 .103
478 .300 .0076 -.0040 .151 -078 .102 .332 1.050 .108 -239 050 .103
.046 025 0016  .0008 .070 .036 .048 .145 468 .045
113 .030 .0011 -.0007 .051 -.002 .014 .255 1862 .121 -2056 220 .312
.016 .006 .0012 .0004 .032 .001 .009 277 1.129 .057
JA87  .149 .0015 -.0036 .054 -.023 .067 -.210 1.487 .298 -100 .603 .578
011 012  .0009  .0007 .028 014 .038 416 711 .092
206 .183 .0018 -.0035 .052 -.029 051 .620 1.733 .207 -114 191 .239
.009 .014 .0009 .0005 .022 .012 .023 .253 .698 .068
288 .244 0051 -.0049 .133 -063 .082 .357 1.215 .143 -098 327 .370
.020 0l4 0024  .0017 731 .035 .050 321 626 072
187 .082 -.0010 -.0022 .048 -.008 .008 .732 1322 .332 -064 .093 .097
.009 .006 .0009 .0006 .015 .005 .020 .166 .366 .095
261 .181 .0018 -.0032 .07/5 -053 .052 444 1571 .225 -163 .983 1.236
011 012  .0008  .0007 .031 021 .020 612 562 .076

" g and g, have to be multiplied by 107

15



Appendix 2: Maximum likelihood estimation, Kalman filter and the EM algorithm

In this appendix we briefly describe the Kalman filter and the maximum likelihood procedures that were
applied to obtain the results reported in the paper and Appendix 1.

The Kalman filter and smoother

Let &ys denote the minimum mean squared error forecast of the state variable at time t on the basis of the
information available at time s and let Pys be the corresponding covariance matrix of the forecast errors,
then the Kalman filter generates series &1, &y, Py and Pyeq, conditional on the values of o and Pgo.
These forecasts can be shown to be the result of a series of recursive linear projections. That is, given &y o
and Pgo, the Kalman filter first calculates &, and Py, on the basis of &.y.; and Peyy., and then & and
Pyt on the basis of &1 and Py, for t=1...T. This recursion is captured by the following recursive
formulas, which are derived under the assumption that both the parameter matrices A, H and F as well as
the covariance matrices R and Q are known.

‘srt+1lt = Fftrt
-1
Sip =Syp-1 t Ptlt—lH(H RgaH + R) (AWt(n) -Az -H ftn—l)
R = FReF'+Q
-1
Pr = R~ Ptlt—lH(H PraH+ R) H'Pg-1
However, we are more interested in the forecast of the structural TFP-growth on the basis of our whole

sample of data, i.e. in &t and Pyr. Using the results of the Kalman filter, these forecasts can be obtained
using the following recursion, known as the Kaman smoothing procedure.

Et|T = Et|t + ‘]t (€t+1ﬂ' _£t+1|t)

Rir = Py *+ 3P — P )¢
where J; = RyF’ tjﬁ and t=T-1...0. This backward recursion, also yields a new forecast for & and Pgp.
It turns out that for the implementation of the EM algorithm, later described in this section, we also need
to calculate Py im=E[ (&) (SeayrEir)’ [ Q4] , where Q; denotes the information available at time t. In

order to obtain P.qr for t=T-1,...,1 we follow Schumway and Stoffer (1982) and use the following
backward recursion

Prorar = % - PT[T—lH(H PrroH+ R)_lH'%:PT—JJT—l

Biar = Rpdia t ‘]t[ B FPtn]Jt'a

Maximum likelihood estimation and the EM algorithm

For given priors on the state variable, i.e. &y and Py, We can now calculate the maximum likelihood
estimates of the unknown parameters. In order to derive the likelihood function it is important to realize
that the distributional assumptions about the residual vectors e and r; imply that



awlz, Q. ~ N((A'zt + H':,i,t_l),(H'F},t_lH + R))

That is, the likelihood value associated with the t observation equal's

r

2 o 1 (I’l) ’ U 1 1 (n) ’ 1 O
xexpg—z Awe™ -A'zg ~H'"§4 ) \HPy4H+R| {Aw™” = A’z —H"§ 4 E

fan1z, 00,) = @) 1Ry i1+ R

Thus, the log-likelihood function, conditional on the priors &0 and Pgo, equals

T ()
LL—E| flA nZt,Q_ 15
n t:zn (Wt | tl) ( )

In principle the likelihood function in Ex)lcan be maximized using standard numerical methods, like the
score algorithm and Newton Raphson. However, as argued by Shumway and Stoffer (1982) and Engle
and Watson (1983), these methods require alot of calculational effort and do not assure us of an increase
in the log-likelihood value in every iteration. We therefore follow Shumway and Stoffer (1982) and
Engle and Watson (1983) and use the EM algorithm, introduced by Dempster et. Al (1977) to maximize
the log-likelihood function @ The EM algorithm iterates over two steps; the expectation step (E-step)
and the maximization step (M-step). Shumway and Stoffer (1982) show that for the state space model
considered here in the E-step the missing data, in our case the latent variable &;, are replaced by their
sufficient statistics, which are in our case obtained from the Kalman smoother. In the second step new
parameter estimates are then obtained by maximizing conditional expection of the likelihood for the
model that is derived assuming that all variables, including & are observed. This expectation is evaluated
conditional on the available data. The M-step thus yields updated parameter estimates that can again be
used in the Kalman filter and in the E-step to obtain new values for &;r. In the following section we will
describe the implementation of the M-step in more detail.

The M-step

In this section we will first consider the likelihood function for our model under the assumption that &
was actually observed. We will then derive an expression for the expectation of the likelihood function
conditional on the available data and briefly describe an iterative method that can be used to maximize
this expectation. For notational purposes we introduce

W= [W(n),...,W-E—n)

— [\ (n)
W_l_[wn,m,WTn_l X—1:[X1 ~~~~~ X7 1] and HA:% 2 gg
2=[g....&] E=[el,. e .
IEEER R
Z,= [Elv“-’ET—l]

Furthermore, let AWEW-W,;, AX=X-X; and AZ=Z-Z,. Under the assumption that we would have
observed all relevant variables, including &, and that H',¢&; is normaly distributed, such that

HAi& ~ N(H;‘ug, H, P1H4) , we can write the log likelihood function as

17



]

LnL ~ In|P1| trEPl_lH ( ué)(fl ug) H4§
——|n|Q|——tr§Q d(z-Fz)z-Fz) W (16)
——|n|Rn|——tr§R(”)) e’

where the first line is the part of the likelihood determined by the initial value &, the second line is the
part associated with the state equation and the third line with the measurement equation. In principle,
one would be tempted to maximize m However, @ does not take into account that the latent
variable, i.e. Z, is unobserved. The objective function that is maximized in the M-step of the EM-
algorithm will instead be the expectation of @conditional on the available data. Although tedious, this
objective function can be derived as a simple extension of the result in Shumway and Stoffer (1982).
This derivation yields

LnL = E[LnL|data] ~

In|Pl| tr[P H, EP]JT (é [15)(5; ug) EH;;

0
0
0

(17)
)

——In|Q| —tr( Hi{c-BF' - FB'+ FAF} H,

- R R 0. . 2 2 2 2 '
—Tln|R(”)|—Etr§R(”)) 1EEE’+(CD(”)Hé+ LIJ(”)Hé)D(<1>(”)H'2+ LP(”)H'z) %

where ™ is used to emphasize that we maximize @ with respect to the estimated parameter values.
Furthermore, the matrices A, B, C and D are defined as

T g . . O
A=Y Py O+ 24270
= a E
T g .. 0O
B= R -yr O 2240
= H B
T g .0
C= PIITD—FZZ'D
= E H

:

5
D=0) RtO
E\ZZ”Q

where Z = [Ezrr ,Em] and Z_, isdefined correspondingly. The maximization procedure that we used to
maximize isa sequential procedure that, in every iteration uses sequentially maximizes with

AAAAA

other parameter estimates. The derivation of the exact steps is Iengthy and tedious and can be obtained,
upon request, from the authors. The resulting maximization procedure is very similar to the one used in
Lesuiset. al. (1996).
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