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ABSTRACT 

In this paper we present a formal operational model, based on the translog cost functional form, that allows for 
simultaneous determination of factor demands and of technological change. Contrary to translog specifications most 
commonly used to analyze total factor productivity growth, our specification allows both for smooth adjustment processes 
and irreversibilities in input demands that might cause input demand rigidities. Estimating the demand equations allowing 
for these rigidities enables us to separate measured total factor productivity growth into a cyclical and a structural 
component. We apply this model to  9 sectors of economic activity belonging to the manufacturing sector of the US 
economy. Our data span a period of 37 years, from 1958 to 1994.  
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1. Introduction 
In a paper that appeared in Economic Systems Research (Lesuis et al.,1996), we presented a formal 
operational model based on the translog cost functional form that consists of a set of long term equilibrium 
relationships which describe how factor demands and technological change depend on factor prices and time. 
Because of informational and reactional delays in the adaptation of factor demands and technological change 
to price changes, we proposed to combine the model with an adjustment process according to the error 
correction mechanism (ECM). 

According to Slade (1989) the commonly used specification of the equation that describes technological 
change, that we adapted in our previous paper, has two drawbacks. First, a deterministic trend is used that 
does not allow for  the level and the slope to evolve slowly over time. Second, it does not allow for a cyclical 
component in measured total factor productivity (TFP) that may arise due to input demand rigidities. Instead, 
Slade introduces a specification in which aggregate output growth is used as a proxy for cyclical effects and 
TFP growth is estimated as a latent variable. The latter is done by assuming that structural TFP growth 
follows a stochastic trend, as introduced by Harvey (1981). 

In this paper we illustrate that Slade’s stochastic specification of structural TFP growth boils down to the 
conventional deterministic trend approach, when applied to annual data for 9 manufacturing sectors of the  
US economy over the period 1958-1994.  We therefore consider a generalization of Slade’s specification that 
allows for both a stochastic specification of the cyclical and the structural components in TFP growth. When 
applied to our data, this approach yields much better results than those obtained with Slade’s specification. 

The structure of the paper is as follows. In Section 2, that consists of four parts, we derive the 
econometric model. In the first part, we briefly review the standard cost share equations derived from the 
translog specification of the cost function. In the second part, we consider the equation that describes 
technological change. We introduce our generalization of the time varying parameter approach used by Slade 
and show how this specification also includes the standard model with deterministic trend. In the third part, 
we write the model in the state space representation that enables us to apply the Kalman Filter techniques to 
estimate the path of the (latent) structural and cyclical components in TFP growth. Finally, in the last part of 
Section 2, we briefly describe the EM-algorithm and the Kalman Filtering techniques that are used to obtain 
the maximum likelihood estimates of our parameters. Technical details can be found in Appendix 2. After a 
brief discussion of our data, we compare the results obtained using Slade’s and our approach in Section 3. 
We show that our generalization yields a more satisfactory explanation of structural TFP growth. Section 4 
contains our conclusions and suggestions for further research. 
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2. Model Specification 
In this section we will follow Slade (1989) and consider the cost share equations and the equation for 
technological change implied by the following generalization of the translog unit cost function. 
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where Ct denotes the unit cost at time t (t=1…T), F(t,y) represents the Hicks-neutral portion of productivity 
that is assumed to depend on time and on a vector of exogenous variables (y) and Pti is the price of factor of 
production i at time t. Twice continuous differentiability of lnCt implies that 
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2.1 Cost share equations 

By virtue of Shephard’s lemma, we can derive instantaneous conditional factor demand equations at time t in 
terms of cost shares, sti, by logarithmic differentiation of (1) with respect to lnPti: 
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Since the cost shares have to add up to one by definition, the parameters have to satisfy the following 
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Obviously, equations (2) and (4) imply that 
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i.e. the cost share equations are homogeneous of degree zero in prices and can thus be written in terms of 
relative prices in the following way 
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where pti is the relative price of factor i in terms of factor n, i.e. pti=Pti/Ptn. 

2.2 Technological change 

In this part we consider the equation for technological change, i.e. the percentage change of unit costs over 
time. Following Lesuis and de Boer (1994) we will denote this by tct. Partial differentiation of (1) with 
respect to t yields 
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In this equation f(t,y) represents the Hicks neutral part of technological change and the last term represents its 
non-neutral part. In the following we will focus on the specification of f(t,y). 

When introduced by Christensen et al. (1973) the translog model was specified as an arbitrary second 
order approximation of the logarithm of the unit cost function. This specification implied the conventional 
model where 
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leading to 

 ( )f t y a c tn n, = ++ +1 1  (7) 

Hence, according to this specification the Hicks neutral part of technological change, or TFP growth contains 
a deterministic trend. This implies that, when the length of the period considered goes to infinity, and cn+1≠0, 
the  TFP growth becomes unbounded. 

Slade (1989) argues that when tct is measured according to the commonly used Törnqvist index, see for 
example Lesuis and de Boer (1994, page 362), equation (7) suffers from two problems. First, the Törnqvist 
index might contain a procyclical bias because in reality firms might face input demand rigidities, whereas 
the index is derived assuming fully flexible input demands. Secondly, it would be preferable to allow for TFP 
growth to slowly fluctuate over time, instead of it being completely deterministic. 

In order to overcome the former, she proposes to include aggregate output growth as a proxy for input 
demand rigidities in the specification of f(t,y). She proposes to solve the latter problem by allowing for a time 
varying trend, as used by for example Harvey (1981). Letting ∆yt represent the growth rate of aggregate 
output, the specification proposed by Slade (1989) reads 
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where δ∆yt represents the cyclical component and µt the structural component of TFP growth. βt is the time 
varying trend parameter. ηt1 and ηt2 are assumed to be independently normally distributed white noise with 
variances q1 and q2 respectively. It can be easily seen that when there is no cyclical effect, i.e. δ=0, and when 
the trend is not time varying, i.e. q1=q2=0, (8) reduces to the deterministic specification (7). Although this 
specification allows for more flexible TFP growth and for a cyclical component, it still suffers from the fact 
that the structural component of TFP growth is still estimated by a process with a unit root, implying 
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unbounded growth as t goes to infinity. Furthermore, as we will show in the next section this specification 
will actually yield results for which q1=q2=0 and δ is insignificant. It would therefore be worthwhile to 
consider a specification that allows for a stationary, mean reverting, process. 

Since the latent growth rate in our data seems to be stationary, as can be seen from the figures that we 
will present in the next section, we propose to generalize specification (8) by allowing µt to be an arbitrary 
AR(1)-process with a possible non-unit root and a time varying mean. That is, we propose to use 
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where we consider ρ≤ 1. Thus, in principle we allow for µt to contain a unit root but in practice we will 
find that it is stationary with ρ <1. 

For the relevant case that ρ <1 specification (9) implies 
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Hence, at time s the expected structural growth rate depends only on βs and ρ. Like Slade (1989) we allow 
structural TFP growth to evolve slowly over time and, just like in equation (8), we use a martingale 
specification for the parameter fluctuation. Therefore in (9) we allow βt to follow a random walk. Thus, in 
specification (9), µt represents latent TFP growth and βt/(1-ρ) its structural component. However, 
specification (9) has one drawback. It can be easily seen that it is not identified for ρ=0, which actually  turns 
out  not to be a relevant case when applying the model in Section 3. 

2.3 State space representation and ECM model 

In this part we will rewrite the model in terms of a state space representation, see Hamilton (1994), which is 
used for the application of the Kalman Filter. This representation consists of two parts. The first part, known 
as the measurement equation, consists of the conventional share equations and the equation for technological 
change derived in the previous section. The second part, known as the state equation, describes the dynamic 
transition of the latent variables µt and βt. 
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Measurement equation 

In order to be able to write the measurement equation in matrix notation we introduce the following 
notation 

 [ ]′ =w s s tct t tn t1 , , ,K   
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Furthermore we define 
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This enables us to write the share equations (5) and the equation for technological progress, i.e. (6) in 
which the first equation of (9) has been substituted, as 

 w x Ht t t= ′ + ′Γ 1ξ  (11) 

Following Lesuis et al. (1996), we will consider the ECM specification of (11), which is of the form 
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where Φ and Ψ are (n+1×n+1)-matrices of adjustment parameters and where 
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It is assumed that et is not only independent over time but also independent from ηt1 and ηt2. As explained 
in Lesuis et al (1996), due to the constant term appearing in (12) and the additivity restrictions, there is a 
perfect multicollinearity between the explanatory variables and the matrix R is singular. They show that 
these problems can be solved by defining 
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where Φi and Ψi denote the ith columns of Φ and Ψ respectively2. Furthermore, we use the result derived 
by Barten (1969) and delete an arbitrary share equation, in our case equation n. In the following the 
superscript (n) denotes that the nth row, or in case of a vector the nth element, has been deleted. Defining 
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In order to introduce the state space representation of the ECM model in matrix notation, we define 
the following matrices 
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In our empirical application we resort the a simplification: we impose the restriction that the matrices 
of adjustment parameters are diagonal. As shown by Lesuis et al. (1996) the adjustment matrices then 
reduce to 
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Moreover, because we already impose a dynamic structure on the equation describing structural 
technological change, i.e. (9), we fix φn+1 and ψn+1 at 1, implying a static specification. 

                                                 
2 It can be shown, see Lesuis et al. (1996) that the first n elements of the columns of 

~Φ  and 
~Ψ  add up to zero. 
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State equation 

We define 
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and the transition matrix 
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so that we can rewrite the last two equations of (9) as  

 ξ ξ ηt t tF= +−1  (14) 

which is the state equation that combined with the measurement equation derived in (13) yields the state 
space representation used in Hamilton (1994) to derive the Kalman Filter. 

2.4 Estimation 

In appendix 2 we describe the Kalman filter and the maximum likelihood procedures that were applied to 
obtain the results presented in the following section. The appendix consists of three parts. In the first part we 
review the Kalman filter equations that can be used to obtain forecasts of the state variable, ξt, conditional on 
previous and current information. Furthermore, we also review the Kalman smoother that calculates forecasts 
of the state variable, ξt, conditional on all the data available. In the second part, we introduce the likelihood 
function and describe how the Kalman filter and smoother can be used in conjunction with the EM algorithm, 
first introduced by Dempster et al. (1977) and applied to state space models by Shumway and Stoffer (1982), 
to obtain maximum likelihood estimates of the unknown parameters in the model. The EM algorithm iterates 
over two steps; the expectation step (E-step) and the maximization step (M-step). Shumway and Stoffer 
(1982) show that for the state space model considered here in the E-step the missing data, in our case the 
latent variable ξt, are replaced by their sufficient statistics, which are in our case obtained from the Kalman 
smoother. In the second step new parameter estimates are then obtained by maximizing the conditional 
expection of the likelihood for the model that is derived assuming that all variables, including ξt are 
observed. This expectation is evaluated conditional on the available data. The M-step thus yields updated 
parameter estimates that can again be used in the Kalman smoother in the E-step. Finally, in the third part, we 
consider the practical implementation of the maximization step (M-step) of the EM algorithm. 

3. Data and empirical results 
In this section we present our empirical results for the US economy  using data from the NBER 
Manufacturing Productivity Database for the period 1958-1994. A more detailed description of the data can 
be found in Bartelsman and Gray (1996). In this paper we use three categories of production factors, i.e. 
capital, labor and materials. Our TFP growth measure , based on the three input case, perfectly matches the 
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NBER measure that is calculated for the five input case. Capital income is treated as a value added residual. 
A rental price of capital was obtained  implicitly by dividing capital income by the real capital stock figures 
available in the database. Likewise a wage deflator was obtained implicitly from the total  payroll and the 
number of employees.  

The discussion of our detailed results in this section will be limited to the Turbine and Turbine Generator 
Sets industry (SIC 3511). The complete estimation results for all sectors are presented in  Appendix 1, Table 
2 and Table 3. 

Table 1 lists the parameter estimates for both Slade’s (1989) specification, denoted by “Restricted”, and 
our generalization, denoted by “Unrestricted”. Two things are immediately apparent. First, the parameter 
estimates for the state equations do not differ much for both specifications. Furthermore, the coefficient for 
the proxy for irreversibilities, i.e. δ, turns out to be insignificant, as judged by the "two-sigma" rule of thumb 
.  As listed in Appendix 1, the results  concerning the parameter estimates  for the state equations seem to be 
robust across the sectors considered.  Significant cyclical effects however  are present  in the sectors  
Furniture (SIC 2511), Newspapers (SIC 2711), Steel mills (SIC 3312) and  Car bodies (SIC 3711) for both  
type of specifications.   

The peculiarity of the results obtained with Slade’s specification are most clear when considering 
estimated structural and measured TFP growth. From Table 1 it can be seen that, in case of the restricted 
specification, q1 and q2 are both estimated equal to zero. This implies that Slade’s (1989) specification, for 
our data, yields the same result as the conventional Translog model with a deterministic trend, i.e. as 

Table 1. Estimation results for turbine sector (3511) 

 Restricted  Unrestricted 

a1 .289 (.020)  .288 (.020) 

a2 .245 (.013)       .244     (.014) 

c1 .005 (.002)  .005 (.002) 

c2 -.005 (.002)  -.005 (.002) 

b11 .131 (.070)  .133 (.074) 

b12 -.069 (.038)  -.063 (.035) 

b22 .078 (.048)  .082 (.050) 

δ .289 (.175)  .357 (.321) 

φ1 1.203 (.604)  1.215 (.626) 

ψ1 .144 (.071)  .143 (.072) 

ρ 1.000   -.098  

q1
* .000   .327  

q2
* .000   .370  

* q1 and q2 have to multiplied by 10-2. 
standard errors between parentheses 
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specification (7). That is, it fits structural TFP growth as a deterministic trend. That this specification leads to 
a poor fit is immediately clear when one considers figure 1, which depicts measured and estimated structural 
TFP growth. Where measured TPF growth, i.e. the Törnqvist index, seems to be a mean reverting process, 
estimated structural TFP growth is a slightly positive deterministic trend. 

This fit contrasts sharply with the fit obtained with our specification. From figure 2 it can be easily seen 
that our model yields a much better fit for TFP-growth. More importantly, instead of being a positive 
deterministic trend as obtained with Slade’s (1989) specification estimated structural TFP growth, as 
depicted in figure 3, seems to be fluctuating much more. As expected, the outliers for the oilcrises in 1974 
and subsequently 1979, are mainly attributed to cyclical effects. More importantly, where the results obtained 
with the restricted specification suggest that the growth rate of TFP will eventually be infinite, because of the 
deterministic trend, the results of the unrestricted specification suggest that structural TFP growth peaked  
especially after the oilcrisis in 1975 and in 1979. 

 
figure 1. Estimated and measured TFP growth, restricted specification 

 solid: estimated structural TFP growth (µt), dashed: Törnqvist index. 



 

 

 
. 
figure 2. Estimated and measured TFP growth,  unrestricted specification 
 solid: estimated latent Hicks-neutral TFP growth (µt), dashed: Törnqvist index. 
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figure 3. Estimated and measured TFP growth, unrestricted specification 
solid: Estimated structural TFP growth (βt-1/(1-ρ)), dashed: Törnqvist index. 
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5. Concluding remarks 
In this paper we have extended Slade’s (1989) idea to allow for the estimation of structural TFP-growth as a 
latent variable. We have shown that,  using data for 9 sectors for the US economy, Slade’s specification boils 
down to the conventional Translog model in which structural TFP growth is modeled as a deterministic trend. 
Our specification allows for both structural as well as cyclical TFP growth being latent variables. 

Our results suggest that structural TFP growth does not follow any deterministic pattern at all but, 
instead, fluctuates significantly over time. Furthermore, contrary to Slade’s specification, which predicts that 
the structural component of the productivity growth rate will grow beyond bounds, the results obtained with 
our generalized specification do not seem to suggest any trend in the growth rate of TFP. 

Many extensions of the analysis that we presented in this paper are possible. Two of them are especially 
worthwhile mentioning. First, one could consider a specification of the state equation that does not suffer 
from an identification problem for certain parameter values, as is the case in our specification when ρ=0. 
Second, one could substitute the deterministic trend in the share equations by the latent TFP growth variable. 
One thing should be clear from the results presented in this paper: Any specification of TFP growth as a 
latent variable should allow for it to follow a general stochastic process that can preferably be divided in a 
structural and cyclical component. 
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Appendix 1: Complete estimation results 

Table 2. Estimation results: restricted model 

 Measurement equation  state  equation 
Sector a1 a2 c1 c2 b11 b12 b22 δ φ1 ψ1  ρ# q1

* q2
* 

2011 Meatpacking .071 .059 .0005 -.0011 .031 -.002 .023 .215 2.014 .158   1. .000 .000 
  

.003 .009 .0003 .0003 .019 .002 .014 .081 1.190 .061     

2511 Furniture .270 .259 .0024 -.0026 .035 -.028 .055  .596 2.007 .324   1. .000 .000 
  

.013 .012 .0004 .0003 .025 .021 .040 .091 1.350 .104     

2711 Newspapers .478 .300  .0079 -.0041 .154 -.077 .105  .312 1.012 .098  1. .000 .000 
  

.054 .029 .0018 .0009 .077 .039 .054 .064 .491 .044     

2911 Petroleum re .106 .025 .0018 -.0005 .078 -.003 .019 .313 1.214 .091   1. .000 .000 
  

.018 .005 .0016 .0005 .031 .002 .008 .138 .461 .046     

3111 Leather .181 .176 .0004 -.0039 .036 -.017 .035 -.240 2.256 .151  1. .000 .000 
  

.016 .097 ..0018 .0011 .057 .028 .006 .215 3.511 .081     

3312 Steel mills .206 .184 .0018 -.0034 .048 -.029 .050  .567 1.770 .202  1. .000 .000 
  

.001 .015 .0008 .0005 .022 .013 .024 .120 .768 .065     

3511 Turbines .289 .245 .0053 -.0047 .131 -.069 .078 .289 1.203 .144  1. .000 .000 
  

.020 .013 .0023 .0018 .070 .038 .048 .175 .604 .071     

3711 Car bodies .190 .080 -.0011 -.0021 .057 -.007 -.018 .679 .996 .337  1. .000 .000 
  

.008 .005 .0009 .0007 .013 .006 .025 .100 .187 .090     

3911 Precious met. .255 .187 .0024 -.0034 .074 -.054 .043  .343 1.623 .164   1. .000 .000 
  

.020 .022 .0011 .0008 .040 .028 .022 .316 .800 .067     
* q1 and q2 have to be multiplied by 10-2 

                                                                                #preset at value 1 
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Appendix 1: Complete estimation results (continued) 

Table 3. Estimation results: unrestricted model 

 measurement equation  state  equation 
Sector a1 a2 c1 c2 b11 b12 b22 δ φ1 ψ1  ρ q1

* q2
* 

2011 Meatpacking  .070 .057 .005 -.0011 .036 -.002 .027 .239 1.745 .147  -.060 .088 .081 
  

.004 .008 .0004 .0003 .021 .002 .016 .162 .989 .063     

2511 Furniture .268 .262 .0023 -.0025 .033 -.023 .049  .604 2.265 .312  -.017 .140 .224 
  

.016 .015 .0004 .0003 .027 .019 .041 .233 1.730 .103     

2711 Newspapers .478 .300  .0076 -.0040 .151 -.078 .102  .332 1.050 .108  -.239 .050 .103 
  

.046 .025 .0016 .0008 .070 .036 .048 .145 .468 .045     

2911 Petroleum ref .113 .030 .0011 -.0007 .051 -.002 .014 .255 1.862 .121  -.205 .220 .312 
  

.016 .006 .0012 .0004 .032 .001 .009 .277 1.129 .057     

3111 Leather .187 .149 .0015 -.0036 .054 -.023 .067 -.210 1.487 .298  -.100 .603 .578 
  

.011 .012  .0009 .0007 .028 .014 .038 .416 .711 .092     

3312 Steel mills .206 .183 .0018 -.0035 .052 -.029 .051   .620 1.733 .207  -.114 .191 .239 
  

.009 .014 .0009 .0005 .022 .012 .023 .253 .698 .068     

3511 Turbines .288 .244 .0051 -.0049 .133 -.063 .082 .357 1.215 .143  -.098 .327 .370 
  

.020 .014 .0024 .0017 .731 .035 .050 .321 .626 .072     

3711 Car bodies .187 .082 -.0010 -.0022 .048 -.008 .008 .732 1.322 .332  -.064 .093 .097 
  

.009 .006 .0009 .0006 .015 .005 .020 .166 .366 .095     

3911  Precious met .261 .181 .0018 -.0032 .075 -.053 .052  .444 1.571 .225  -.163 .983 1.236 
  

.011 .012 .0008 .0007 .031 .021 .020 .612 .562 .076     
* q1 and q2 have to be multiplied by 10-2 

 
 



 

Appendix 2: Maximum likelihood estimation, Kalman filter and the EM algorithm 
In this appendix we briefly describe the Kalman filter and the maximum likelihood procedures that were 
applied to obtain the results reported in the paper and Appendix 1.  

The Kalman filter and smoother 
Let ξt|s denote the minimum mean squared error forecast of the state variable at time t on the basis of the 
information available at time s and let Pt|s be the corresponding covariance matrix of the forecast errors, 
then the Kalman filter generates series ξt|t-1, ξt|t, Pt|t and Pt|t-1, conditional on the values of ξ0|0 and P0|0. 
These forecasts can be shown to be the result of a series of recursive linear projections. That is, given ξ0|0 
and P0|0, the Kalman filter first calculates ξt|t-1 and Pt|t-1 on the basis of ξt-1|t-1 and Pt-1|t-1 and then ξt|t and 
Pt|t on the basis of ξt|t-1 and Pt|t-1 for t=1…T. This recursion is captured by the following recursive 
formulas, which are derived under the assumption that both the parameter matrices A, H and F as well as 
the covariance matrices R and Q are known.  
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However, we are more interested in the forecast of the structural TFP-growth on the basis of our whole 
sample of data, i.e. in ξt|T and Pt|T. Using the results of the Kalman filter, these forecasts can be obtained 
using the following recursion, known as the Kalman smoothing procedure. 
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where J P F Pt t t t t= ′ +
−

| |1
1 and t=T-1…0. This backward recursion, also yields a new forecast for ξ0|0 and P0|0. 

It turns out that for the implementation of the EM algorithm, later described in this section, we also need 
to calculate Pt,t-1|T=E[(ξt|T-ξt) (ξt-1|T-ξt-1)’|ΩT] , where Ωt denotes the information available at time t. In 
order to obtain Pt,t-1|T for t=T-1,…,1 we follow Schumway and Stoffer (1982) and use the following 
backward recursion 
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Maximum likelihood estimation and the EM algorithm 
For given priors on the state variable, i.e. ξ0|0 and P0|0, we can now calculate the maximum likelihood 
estimates of the unknown parameters. In order to derive the likelihood function it is important to realize 
that the distributional assumptions about the residual vectors et and ηt imply that 
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 ( ) ( ) ( )( )∆ Ωw z N A z H H P H Rt
n

t t t t t t t, ~ ,| |− − −′ + ′ ′ +1 1 1ξ  

That is, the likelihood value associated with the tth observation equals 
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Thus, the log-likelihood function, conditional on the priors ξ0|0 and P0|0, equals 

 ( )( )LnL f w zt
n

t t
t

T

= −
=
∑ ln | ,∆ Ω 1

2

 (15) 

In principle the likelihood function in (15) can be maximized using standard numerical methods, like the 
score algorithm and Newton Raphson. However, as argued by Shumway and Stoffer (1982) and Engle 
and Watson (1983), these methods require a lot of calculational effort and do not assure us of an increase 
in the log-likelihood value in every iteration. We therefore follow Shumway and Stoffer (1982) and 
Engle and Watson (1983) and use the EM algorithm, introduced by Dempster et. Al (1977) to maximize 
the log-likelihood function (15). The EM algorithm iterates over two steps; the expectation step (E-step) 
and the maximization step (M-step). Shumway and Stoffer (1982) show that for the state space model 
considered here in the E-step the missing data, in our case the latent variable ξt, are replaced by their 
sufficient statistics, which are in our case obtained from the Kalman smoother. In the second step new 
parameter estimates are then obtained by maximizing conditional expection of the likelihood for the 
model that is derived assuming that all variables, including ξt are observed. This expectation is evaluated 
conditional on the available data. The M-step thus yields updated parameter estimates that can again be 
used in the Kalman filter and in the E-step to obtain new values for ξt|T. In the following section we will 
describe the implementation of the M-step in more detail. 

The M-step 
In this section we will first consider the likelihood function for our model under the assumption that ξt 
was actually observed. We will then derive an expression for the expectation of the likelihood function 
conditional on the available data and briefly describe an iterative method that can be used to maximize 
this expectation. For notational purposes we introduce 
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Furthermore, let ∆W=W-W-1, ∆X=X-X-1 and ∆Z=Z-Z-1. Under the assumption that we would have 
observed all relevant variables, including ξt, and that H’4ξ1 is normally distributed, such that 

( )′ ′ ′H N H H P H4 1 4 4 1 4ξ µξ~ , , we can write the log likelihood function as 
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 (16) 

where the first line is the part of the likelihood determined by the initial value ξ1, the second line is the 
part associated with the state equation and the third line with the measurement equation. In principle, 
one would be tempted to maximize (16). However, (16) does not take into account that the latent 
variable, i.e. Z, is unobserved. The objective function that is maximized in the M-step of the EM-
algorithm will instead be the expectation of (16) conditional on the available data. Although tedious, this 
objective function can be derived as a simple extension of the result in Shumway and Stoffer (1982). 
This derivation yields 
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where ^ is used to emphasize that we maximize (17) with respect to the estimated parameter values. 
Furthermore, the matrices A, B, C and D are defined as 
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where [ ]$ , ,| |Z T T T= ξ ξ2 K  and $Z−1  is defined correspondingly. The maximization procedure that we used to 
maximize (17) is a sequential procedure, that, in every iteration, uses sequentially maximizes (17) with 
respect to one of the matrices to be estimated, i.e. ( ) ( ) ( )$ , $ , $ , $ , $ , $ , ~$P Q F R n n n

1 1ξ Γ Φ  and ( )~$Ψ n , conditional on all 
other parameter estimates. The derivation of the exact steps is lengthy and tedious and can be obtained, 
upon request, from the authors. The resulting maximization procedure is very similar to the one used in 
Lesuis et. al. (1996).  
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