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Abstract

In this paper we compare classical econometrics, calibration and Bayesian inference in the context

of the empirical analysis of factor demands. Our application is based on a popular flexible

functional form for the firm’s cost function, namely the Diewert’s Generalized Leontief, and uses

the well known Berndt-Wood’s 1947-1971 KLEM data on the U.S. manufacturing sector. We

illustrate how the Gibbs sampling methodology can be easily used to calibrate parameter values and

elasticities on the basis of previous knowledge from alternative studies on the same data but with

different functional forms. We rely on a system of mixed uninformative diffuse priors for some

parameters and informative tight priors for others. Within the Gibbs sampler, we employ rejection

sampling to incorporate parameter restrictions, which are suggested by economic theory but in

general rejected by economic data. Our results show that values of those parameters that relate to

uninformative priors are almost equal to the standard SUR estimates, whereas differences come out

for those parameters to which we have assigned informative priors. Moreover, discrepancies can be

appreciated in some crucial parameter estimates obtained with or without rejection sampling.
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1. Introduction

Once input-output (I-O) analysis and macroeconometrics used to be very close to each other. In the

subject index of the book by Klein et al. (1991), the item “I-O analysis” has 44 entries. In the same

book Wassilis Leontief is quoted 5 times, whereas 16 citations are devoted to John Maynard

Keynes. This evidence can be interpreted as a rough estimate of the relative importance of the two

authors from the viewpoint of the founder of modern applied macroeconometrics. For some time

the two traditions have cohabited: I-O analysis was dealing with long-run structural equilibria,

while macroeconometrics was concentrating on business cycles and forecasting. Later on, the two

styles of quantitative macro analysis have drifted apart and have communicated rarely to each other.

On the one hand, Computable General Equilibrium (CGE) models, the modern continuators of the

I-O tradition, have grown up both in complexity and realism, and have incorporated demand and

adjustment factors. On the other hand, Vector Autoregressive (VAR) and Vector Equilibrium

Correction (VECM) models have solved the dichotomy between short run and long run by means of

a sophisticated analysis of the time series properties of the data. Despite their widespread success at

an applied level, both traditions have been somewhat obscured, at the theoretical level, by the

emergence of the new classical economics and the general stochastic equilibrium models (e.g. real

business cycle, or RBC, models). This new class of models has introduced a novel fashion of

estimating the parameters of interest, the so-called calibration. To those of us who are older this

new methodology does not look like a terrific innovation. After all, I-O people have always

calibrated the relevant parameters of their models, whereas macroeconometric people had done this

at the very beginning of the discipline (remember Tinbergen’s work in the Thirties) and had always

been prone to calibrate whatever could not be estimated. In any case, we believe that important

indications towards a better understanding of the relative merits of I-O-CGE models and VAR-

VECM econometrics can be found mostly in the debate about calibration raised by the RBC

modelling approach. To illustrate this point, in this paper we develop an example from the modern

theory of production. The model discussed in our example can be interpreted as one of the building-

blocks of a more general CGE model. Moreover, it has the advantage of being manageable enough

as to give a simple illustration of the main points involved in the comparison of the two

methodologies. In this paper we suggest to resort to Bayesian inference and calibrate the parameters

of the model in a systematic way according to Bayes rule, taking advantage of recent developments

of the Gibbs sampling approach and related methodologies.
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The paper is organized as follows. In Section 2 some problems related to the empirical analysis of

factor demands are briefly discussed, which typically arise within the standard econometric

approach, and some alternative methodologies are suggested. In Section 3, a very popular flexible

functional form, namely the Generalized Leontief cost function, and the corresponding system of

factor demand equations are presented. Moreover, the methodology followed to calibrate parameter

values and elasticities based on different a priori is illustrated. In Section 4 and 5 the main empirical

results are reported and commented on. Section 6 provides some concluding comments.

2. Aggregate factor demand analysis: classical econometrics and alternative approaches

Empirical factor demand analysis typically involves making a choice from among several

competing functional forms. Each of the commonly used factor demand systems, such as Translog,

Generalized Leontief, Symmetric Generalized McFadden, Symmetric Generalized Barnett,

Generalized Box-Cox (see, for details, Diewert and Wales, 1987; Berndt and Khaled, 1979) and so

forth, can provide a valid and useful empirical description of the underlying production structure of

the multi-input neoclassical firm.

A common feature of flexible functional forms is that, as they are in general separate and there is

no a priori theory suggesting that the specification of one system of derived factor demands should

be preferred over another, it is not obvious how to choose among them.

A possible solution to the important task of model selection lies within the classical hypothesis

testing framework and is given by formal non-nested testing procedures. Paired and joint univariate

and multivariate non-nested tests of a null model against both single and multiple alternatives have

been discussed and criticized at length in the literature (see, among others, Davidson and

MacKinnon, 1982). One of the major drawbacks of these procedures is that the outcome of a non-

nested test can be highly influenced by the type of misspecification affecting the competing models.

When the alternative models are systems of factor demand equations, common forms of

misspecification include violations of classical assumptions on the error terms (e.g. absence of

autocorrelation) and of regularity conditions on the underlying cost function (e.g. symmetry of the

cross-price effects, monotonicity and concavity).

Alternative approaches are  related to calibration (see, among others, Kim and Pagan, 1995;

Hansen and Heckman, 1996) and Bayesian inference (see, e.g., Box and Tiao, 1992; for an

application to a flexible cost function, see Koop et al., 1994). In many studies based on calibration,

model parameter values are simply taken from previous empirical work. Conversely, in the
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Bayesian approach the strategy is to calculate posterior moments of the parameters of a given factor

demand system, taking into account and incorporating into the prior distribution some relevant

information obtained from alternative functional forms (e.g. different sets of estimated input price

elasticities, alternative input substitution or complementarity relations) or concerning some

regularity conditions which are known to be generally violated by the data. In other words, what

does calibration informally, Bayesian inference does it formally.

This paper concentrates on the Bayesian  approach. To illustrate the relative merits and problems

associated with incorporating relevant information into the prior distribution, we use  the

Generalized Leontief flexible functional form as discussed in Diewert and Wales (1987) and a

variety of priors to compute posterior input price elasticities. The data set used in our empirical

application  is very popular in the applied production literature (see, just to quote a few studies

which use the same data set, Berndt and Khaled, 1979; Terrell, 1996; Thomsen, 2000), and is based

on annual data on aggregate output of U.S. manufacturing industries, and prices and quantities for a

capital-labour-energy-materials (KLEM) technology over the period 1947-1971 (see Berndt and

Wood, 1975).

3. Handling the Generalized Leontief  cost function in the context of Gibbs sampling

In this paper  attention is focused on one of the most widely used flexible functional forms in the

context of cost function estimation, namely the Generalized Leontief. The theoretical framework is

well known and can be summarized as follows. Let the firm's technology be represented by the

production function:

[ ]nXXXFY ,...,, 21=                                                                                                                      (3.1)

where X=[X1, X2, …, Xn]' is the vector of inputs and Y is the maximal output that can be produced

using this input vector in any period. Given a positive vector of input prices, P=[P1, P2, …, Pn]', for

any period the cost function dual to equation (3.1) can be defined as:

[ ]nXYFXP
X

tPYC 0,)(:min),,( ≥≥⋅′= .                                                                                       (3.2)

In (3.2), C(·) satisfies various regularity conditions, depending on the assumptions placed on

equation (3.1). Following Diewert and Wales (1987, p. 45), we are primarily concerned with linear
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homogeneity and concavity of the cost function in input prices. A necessary and sufficient condition

for a twice continuously differentiable cost function to be concave in prices P is negative semi-

definiteness of the matrix of second-order partial derivatives of the cost function with respect to

factor prices. Moreover, a matrix is negative semi-definite if all its odd-numbered principal minors

are non-positive and all its even-numbered principal minors are non-negative (see Morey, 1986).

One way to check whether the estimated cost function satisfies the theoretical concavity property is

to calculate all the principal minors and leading principal minors and to evaluate them over the

sample period.

When a functional form for the cost function has been specified to satisfy the regularity

conditions, the system of conditional factor demands can be derived by applying Shephard's lemma:

i
i P

C
X

∂
∂ )(⋅

=   (i=1,...,n).                                                                                                                   (3.3)

The traditional Generalized Leontief cost function is a functional form in the square roots of input

prices. In this paper, we consider the following version (see Diewert and Wales, 1987, p. 49):
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Setting bt = byy = btt = 1, the system of factor demands is derived in the usual way via Shephard's

lemma (3.3), namely:
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Following Diewert and Wales (1987, pp.49-50), the Generalized Leontief cost function (3.4) is

linearly homogeneous in Y if the following restrictions are satisfied:

0;0;0 === yyti bbb .                                                                                                                      (3.6)
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Moreover, (3.4) does not depend on time if the following restrictions are true:

0;0;0 === tttit bbb .                                                                                                                      (3.7)

Finally, non-negative restrictions on the parameters bij in (3.4), for i≠j, are sufficient for (3.4) to be

globally concave, even if they rule out complementarity between all pairs of inputs.

The system of  Generalized Leontief factor demands (3.5) has been estimated with SUR using

Berndt and Wood’s (1975) classical annual data set for the U.S. manufacturing sector over the

period 1947-1971. It is assumed that U.S. manufacturing can be described by a regular aggregate

production function relating the flows of gross output Y to the services of four inputs, namely

capital (K), labour (L), energy (E) and materials (M). Corresponding to such a production function,

there exists a dual cost function summarizing all the characteristics of the representative firm's

technology. When output quantity and input prices are exogenous, the dual cost function can be

written as ( )tPPPPYCC melk ,,,,,= , where C(·) represents total input costs, Pi, i=K,L,E,M, are the

factor prices, and t is an index of technical progress. For purposes of empirical implementation, the

existence of random errors in the cost minimizing behaviour of the firm is such that each equation

in each demand system has an additive disturbance term which reflects the firm’s errors in deciding

the optimal level of inputs. In equations (3.5), the dependent variables are input levels divided by

output, as this makes the assumption of homoskedasticity of the disturbances more plausible.

A SUR model can be witten as (see Bauwens et al.,1999):

εβ += Zy ,

where ( )nyyyy ′′′=′ ,...,, 21 , ( )nββββ ′′′=′ ,...,, 21 , ( )nεεεε ′′′=′ ,...,, 21  and ( )nZZZdiagZ ,...,, 21= .

Each element of y and ε  is a Tx1 vector, each element of β is a kx1 vector, whereas each element of

Z is a Txk matrix. Given the Generalized Leontief system of factor demands (3.5) and the sample of

data used for our empirical application, n = 4, k = 9, and T = 25. The total number of β parameters

in the model is then K = kxn = 36.

The distribution of the Tnx1 vector ε is assumed to be ( )TTn IN ⊗Σ,0 . Indicating with IWn a n-

dimensional Inverted Wishart distribution (see, e.g., Press, 1982), we assume that the prior
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distribution for Σ is  ( )1
1, −+ RnIWn ν , where ν+n are the degrees of freedom and R1 is the scale

matrix. Moreover, we assume that the prior distribution for β is ( )0, RN K µ  (see Tiao and Zellner,

1964). Although posterior marginal densities for the SUR model cannot be derived analytically, full

conditional densities of  β and Σ are available and can be used to define a Gibbs-sampling technique

to generate samples from the joint posterior distribution of ( )Σ,β . It is possible to show that the

posterior distribution of β|Σ  is ( )1, −+ nn RnIW ν , with Ω+= −− 1
1

1 RRn , εε′=Ω . In addition, the

posterior distribution of Σ|β  is ( )QN K ,β̂ , where ( )[ ] 111
0

−−− ⊗Σ′+= ZIZRQ T  and

( )[ ]yIZRQ T⊗Σ′+= −− 11
0

ˆ µβ . In the empirical exercise we set v+n = 16, R1 = I4x106 and





×=
0001.0

05.0
360 IR , depending on whether the prior is uninformative or informative (see Section 4

for details).

The Gibbs sampling approach and its applications to SUR models are discussed in a number of

papers (see, among others, Albert and Chib, 1993; Casella and George, 1992; Chib, 1993; Chib and

Greenberg, 1994, 1995; Percy, 1992; Kim and Nelson, 1999). Efficient sampling techniques to

generate random numbers from Multivariate Normal and Inverted Wishart distributions can be

found in Rubinstein (1981) and Bauwens et al. (1999). Basically, given the posterior distributions

for β|Σ  and Σ|β , the Gibbs sampling algorithm is started with arbitrary starting values for Σ, say

Σ(0). Then iterations are for r = 1, 2, …., L+M, according to the following scheme: i) conditional on

Σ generated at replication r-1, β is generated from the conditional posterior distribution of Σ|β  at

replication r; ii) conditional on β generated at replication r, Σ is generated from the conditional

distribution of β|Σ  at replication r; iii) set r = r-1 and go to i). A well known result is that the joint

and marginal distributions of generated { })()()2()1( ,...,,...,, MLr +ββββ  and

{ })()()2()1( ,...,,...,, MLr +ΣΣΣΣ  converge at an exponential rate to the joint and marginal distributions

of β and Σ as r→∞, provided L, the first generated parameter values, and M are large enough (see

Geman and Geman, 1984; Kim and Nelson, 1999, pp. 179-180). In our empirical application, L and

M have been set equal to 300 and 3000, respectively. In generating β from Σ|β  it is also possible

to use “rejection sampling” in order to incorporate sets of restrictions which are required by specific

informative priors (see Terrell, 1996).
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4. Results of the Bayesian estimation via the Gibbs sampler

Tables 1-3 report a variety of estimates of input price elaticities obtained in previous well know

studies which use alternative flexible functional forms on the same data set employed in our

empirical application.

[INSERT TABLES 1-3 ABOUT HERE]

 Table 4 presents our SUR estimates of the same elasticities calculated on the basis of the

Generalized Leontief cost function. Our results replicate those of Diewert and Wales (1987). We

regard these elasticities values as the basic information set upon which the subjective belief of the

investigator is naturally formed.

[INSERT TABLE 4 ABOUT HERE]

The tables reveal some regularities. All studies suggest the existence of a significant substitution

relationship between capital and labour. However, not all inputs are substitutes, in fact the main

result of this empirical literature is the complementarity between capital and energy (see, for further

empirical evidence on this point, also Chung, 1994). The other factors of production are generally

substitutes, but many price elasticities are quite small, implying that in the period of observation a

relevant number of inputs are used mostly in fixed proportions.

These stylized facts form the basis for the specification of our Bayesian priors. Accordingly, we

have devised to use a system of mixed uninformative diffuse priors for some parameters and

informative tight priors for others. We have assumed uninformative priors for own price elasticities,

given that, while they are significant and with the correct sign, in most studies they exhibit wide

variability across different functional forms. Also, we have used uninformative priors for constant

terms, scale and trend parameters, since these are obviously better determined by the likelihood. All

uninformative priors have been set to zero. Instead, we have used informative and tight priors for

the most relevant economic parameters, namely those pertaining to cross price elasticities. In other

words, we have chosen as prior for the mean of the distribution of each relevant parameter a non-

zero value  approximating the means of the values reported for year 1971  (the end point of the

sample) by the studies quoted above. Then, in order to give tightness to this prior, we have selected

an a priori diagonal variance-covariance matrix whose elements are in the ratio of  0.05 to 0.0001,
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or, alternatively, given a scale matrix of 0.01, informative priors have a variance that is 50 times

less than that of uninformative priors. Of course, this has involved an informal searching procedure

to individualize appropriate values for this ratio.

Results for both parameters and implied elasticities are reported in Tables 5a and 5b.

[INSERT TABLES 5a-5b ABOUT HERE]

 The same results are also displayed in the following graphs.

[INSERT GRAPHS 1a-1b ABOUT HERE]

It  can seen by inspection of Graphs 1a-1b that, as expected, values of those parameters that relate to

uninformative priors are almost equal to the SUR estimates, whereas differences come out for those

parameters to which we have assigned informative priors. A practical implication of this result for

the investigator is that economically relevant parameters are more suitable to be employed in

simulation experiments, given the fact that they reflect not only sample information but also

previous economic knowledge. We stress that this approach can provide the investigator with a

systematic but not arbitrary way of calibrating parameters which are crucial for policy evaluations.

5. An extension: revised estimation via  rejection sampling

It is also evident by inspection of Tables 5a-5b that symmetry restrictions are not satisfied by our

estimates. This may constitute a problem if one thinks that it is crucial to satisfy parameter

restrictions which are suggested by economic theory. On the other hand, since a flexible functional

form is only a second-order approximation to an unknown cost function, it is not possible to rule

out misspecification problems, which typically prevent the model from the exact fulfilment of

theoretical restrictions. Actually, in most factor demand studies symmetry restriction are seldom

satisfied by the unrestricted estimates, but they are imposed anyway. On the contrary, we have

decided to run the Gibbs sampler on the unrestricted demand system. In fact, even in presence of

symmetric priors, we have not been able to find exactly matching cross parameters. However, we

can refine our estimates in order to bring them closer to theory by using a technique known as

“rejection sampling”. Rejection sampling can be readily implemented within the Gibbs sampling

framework, since it requires the sampler to discard those iterations whose generated parameters  are
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too far apart to be considered as respecting the restrictions suggested by economic theory. This

approach obviously involves some judgment on the difference between generated parameters. On

this respect, we have decided to use a fixed value for the absolute distance of the estimated

parameters, setting it at 0.1.

Results are reported in Tables 6a-6b, whereas Graph 2 reports the whole set of price elasticities

estimated with and without rejection sampling.

[INSERT TABLES 6a-6b and GRAPH 2 ABOUT HERE]

Values are, in same cases (see, e.g., the price elasticities between capital and energy and capital and

labour, respectively), different from those obtained without rejection sampling. In addition, these

values are not very far from the fixed criterion, and it can be appropriate to use them in applications

involving simulation of the estimated model.

6. Conclusions

In this paper we have pursued two major objectives. The first is methodological, and consists in

appreciating the practical possibilites of the Gibbs sampler applied to a problem of Bayesian

inference. The context, namely factor demand analysis, is very common in classical econometrics,

but, given the rather rich parametrization of the involved models as well as the related

computational problems, it has not been considered in Bayesian econometrics until very recently.

On this respect, we can report a remarkable stability of the algorithm and no significant

convergence problems.

The second, more substantial, goal is to evaluate if the Gibbs sampling technique can be proposed

to calibrationists and I-O specialists as a valid tool to estimate models which be employed in policy

exercises or in structural interpretations that are, at the same time, not entirely based on (always

limited) sample evidence and not entirely based on a priori or conventional belief. We have shown

that Bayesian inference can offer a natural way to combine a priori information with sample

evidence in models of factor demands, and, given recent computational advances, may work very

well also in practice.
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Tables

Table 1. Estimated input price elasticities using alternative flexible functional forms, Berndt-Wood
data set, year 1947

Elasticities SGB SGM TL1 TL2 TL3
KK -0.10 -0.18 -0.34 -0.96 -0.49
KL 0.14 (s) 0.46 (s) 0.48 (s) 0.29 (s) 0.26 (s)
KE -0.03 (c) -0.13 (c) -0.09 (c) 0.03 (s) -0.14 (c)
KM 0.00 (s) -0.14 (c) -0.05 (c) 0.64 (s) 0.37 (s)
LK 0.03 (s) 0.10 (s) 0.11 (s) 0.06 (s) 0.06 (s)
LL -0.18 -0.26 -0.20 -0.77 -0.45
LE 0.06 (s) 0.11 (s) 0.08 (s) 0.06 (s) 0.03 (s)
LM 0.09 (s) 0.05 (s) 0.01 (s) 0.65 (s) 0.37 (s)
EK -0.04 (c) -0.16 (c) -0.12 (c) 0.03 (s) -0.17 (c)
EL 0.32 (s) 0.66 (s) 0.44 (s) 0.31 (s) 0.16 (s)
EE -0.52 -0.77 -0.62 -0.98 -0.47
EM 0.24 (s) 0.27 (s) 0.30 (s) 0.64 (s) 0.49 (s)
MK 0.001 (s) -0.01 (c) -0.01 (c) 0.05 (s) 0.03 (s)
ML 0.03 (s) 0.02 (s) 0.01 (s) 0.26 (s) 0.15 (s)
ME 0.02 (s) 0.02 (s) 0.02 (s) 0.05 (s) 0.03 (s)
MM -0.05 -0.02 -0.02 -0.35 -0.21

Notes: 1. ij (i,j=K,L,E,M) means the elasticity of demand for input i with respect to the price of input j. 2. c = inputs i
and j are complements; s = inputs i and j are substitutes. 3. SGB = Symmetric Generalized Barnett cost function; SGM
= Symmetric Generalized McFadden cost function; TL1 = Translog cost function; TL2 = Translog cost function
constrained to be concave for non-negative share values. See Diewert and Wales (1987) for details. The values of
elasticities in the first four columns of the table are taken from Table II reported in Diewert and Wales (1987), pag. 61.
4. TL3 =Translog cost function with constant returns to scale and no technical progress. See Berndt and Wood (1975)
for details. The values of elasticities in the last column of the table are taken from Table 5 in Berndt and Wood (1975),
pag. 265.
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Table 2. Estimated input price elasticities using alternative flexible functional forms, Berndt-Wood
data set, year 1959

Elasticities GBC1 GBC2 GBC3 GBC4 GBC5
KK -0.35 -0.48 -0.37 -0.51 -0.55
KL 0.57 (s) 0.24 (s) 0.21 (s) 0.24 (s) 0.59 (s)
KE -0.11 (c) -0.12 (c) -0.10 (c) -0.13 (c) -0.06 (c)
KM -0.11 (c) 0.36 (s) 0.25 (s) 0.40 (s) 0.02 (s)
LK -0.12 (c) 0.05 (s) 0.04 (s) 0.05 (s) 0.12 (s)
LL -0.17 -0.46 -0.44 -0.46 -0.37
LE 0.11 (s) 0.02 (s) 0.02 (s) 0.02 (s) 0.09 (s)
LM -0.06 (c) 0.39 (s) 0.37 (s) 0.39 (s) 0.16 (s)
EK -0.14 (c) -0.15 (c) -0.12 (c) -0.17 (c) -0.08 (c)
EL 0.66 (s) 0.13 (s) 0.16 (s) 0.12 (s) 0.55 (s)
EE -0.71 -0.59 -0.45 -0.61 -0.55
EM 0.20 (s) 0.62 (s) 0.42 (s) 0.66 (s) 0.08 (s)
MK -0.1 (c) 0.03 (s) 0.02 (s) 0.04 (s) 0.002 (s)
ML -0.03 (c) 0.17 (s) 0.16 (s) 0.17 (s) 0.07 (s)
ME 0.01 (s) 0.04 (s) 0.03 (s) 0.05 (s) 0.006 (s)
MM 0.02 -0.25 -0.22 -0.25 -0.08

Notes: 1. ij (i,j=K,L,E,M) means the elasticity of demand for input i with respect to the price of input j. 2. C = inputs i
and j are complements; s = inputs i and j are substitutes. 3. c = inputs i and j are complements; s = inputs i and j are
substitutes. 4. GBC1 = Non-homothetic generalized Box-Cox functional form with non-neutral technical change; GBC2
= Homogeneous generalized Box-Cox functional form with neutral technical change; GBC3 = Constant return-to-scale
generalized Box-Cox functional form with neutral technical change; GBC4 = Homogeneous generalized Box-Cox
functional form with no technical change. GBC5 = Constant return-to-scale generalized Box-Cox functional form with
no technical change. See Berndt and Khaled (1979) for details. The values of elasticities in the table are taken from
Table 5 reported in Berndt and Khaled (1979), pag. 1236.
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Table 3. Estimated input price elasticities using alternative flexible functional forms, Berndt-Wood
data set, year 1971

Elasticities SGB SGM TL1 TL2 TL3 LRGLT
KK -0.38 -0.13 -0.26 -0.96 -0.44 -0.49
KL 0.51 (s) 0.56 (s) 0.56 (s) 0.33 (s) 0.30 (s) 0.50 (s)
KE -0.13 (c) -0.13 (c) -0.11 (c) 0.03 (s) -0.16 (c) -0.34 (c)
KM 0.00 (s) -0.30 (c) -0.19 (c) 0.60 (s) 0.30 (s) 0.33 (s)
LK 0.08 (s) 0.09 (s) 0.09 (s) 0.06 (s) 0.05 (s) 0.11 (s)
LL -0.39 -0.42 -0.24 -0.72 -0.45 -0.31
LE 0.18 (s) 0.14 (s) 0.07 (s) 0.05 (s) 0.03 (s) 0.04 (s)
LM 0.13 (s) 0.18 (s) 0.07 (s) 0.61 (s) 0.37 (s) 0.17 (s)
EK -0.14 (c) -0.14 (c) -0.12 (c) 0.04 (s) -0.17 (c) -0.34 (c)
EL 1.16 (s) 0.93 (s) 0.48 (s) 0.35 (s) 0.20 (s) 0.16 (s)
EE -1.07 -0.74 -0.63 -0.98 -0.49 -0.41
EM 0.04 (s) -0.05 (c) 0.27 (s) 0.60 (s) 0.46 (s) 0.59 (s)
MK 0.00 (s) -0.02 (c) -0.01 (c) 0.06 (s) 0.02 (s) 0.04 (s)
ML 0.06 (s) 0.09 (s) 0.04 (s) 0.30 (s) 0.18 (s) 0.09 (s)
ME 0.00 (s) 0.00 (s) 0.02 (s) 0.04 (s) 0.03 (s) 0.07 (s)
MM -0.07 (c) -0.06 (c) -0.04 (c) -0.39 (c) -0.24 (c) -0.19 (c)

Notes: 1. ij (i,j=K,L,E,M) means the elasticity of demand for input i with respect to the price of input j. 2. c = inputs i
and j are complements; s = inputs i and j are substitutes. 3. SGB = Symmetric Generalized Barnett cost function; SGM
= Symmetric Generalized McFadden cost function; TL1 = Translog cost function; TL2 = Translog cost function
constrained to be concave for non-negative share values. See Diewert and Wales (1987) for details. The values of
elasticities in the first four columns of the table are taken from Table II reported in Diewert and Wales (1987), pag. 61.
4. TL3 =Translog cost function with constant returns to scale and no technical progress. See Berndt and Wood (1975)
for details. The values of elasticities in the last column of the table are taken from Table 5 in Berndt and Wood (1975),
pag. 265.  5. LRGLT = long-run Generalized Leontief cost function, with K and L quasi-fixed and E and M flexible.
See Thomsen (2000) for details.
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Table 4. Estimated input price elasticities using the Generalized Leontief cost function,
years 1947, 1959, 1971 (restricted SUR)

Elasticities 1947 1959 1971

KK -0.09261 -0.13541 -0.23236

KL 0.46604 0.45342 0.59117

KE -0.13204 -0.11407 -0.12937

KM -0.2414 -0.20394 -0.22944

LK 0.09718 0.09903 0.09536

LL -0.1787 -0.18429 -0.18948

LE 0.0952 0.09921 0.10936

LM -0.01368 -0.01394 -0.01525

EK -0.16081 -0.15179 -0.13652

EL 0.55605 0.60444 0.71543

EE -0.62965 -0.67392 -0.80489

EM 0.23441 0.22126 0.22599

MK -0.01894 -0.02007 -0.01777

ML -0.00515 -0.00628 -0.00732

ME 0.0151 0.01637 0.01658

MM 0.00899 0.00999 0.0085

Notes: 1. ij (i,j=K,L,E,M) means the elasticity of demand for input i with respect to the price of input j. 2. c = inputs i
and j are complements; s = inputs i and j are substitutes. 2. The numerical values of the elasticities reported in the table
replicate exactly those presented in Diewert and Wales (1987), Tables II and IV.
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Table 5a. Classical vs Bayesian inference: classical parameter estimates with restricted SUR
compared with Bayesian parameter estimates of unrestricted SUR using a mixture of uninformative
diffuse priors and informative tight priors

Parameters SUR
(restricted)

SUR
(se)

SUR
(t stat)

Priors
(means)

Priors
(sd)

Gibbs
(means)

Gibbs
(sd)

Gibbs
(pseudo t stat)

bKK -0.203650  0.021400 -9.518400  0.000000  0.050000 -0.205630  0.011200 -18.36445
bKL  0.043980  0.011080  3.969720  0.037200  0.000100  0.048510  0.009210  5.264950
bKE -0.012460  0.002970 -4.190090 -0.048160  0.000100 -0.014340  0.005600 -2.563050
bKM -0.022780  0.013790 -1.651930  0.000000  0.050000 -0.024950  0.009470 -2.633690
bK  0.134140  0.011450  11.72012  0.000000  0.050000  0.135730  0.006550  20.73322
bKt -0.013170  0.001620 -8.139820  0.000000  0.050000 -0.012950  0.000880 -14.74188
αK  0.017040  0.001710  9.976260  0.000000  0.050000  0.016820  0.000920  18.38463

βK  0.103960  0.011180  9.298580  0.000000  0.050000  0.103780  0.005770  17.97900

γK  0.000130  2.00E-05  5.449530  0.000000  0.050000  0.000120  1.00E-05  8.709600
bLL -0.029630  0.124780 -0.237460  0.000000  0.050000 -0.188040  0.036900 -5.096430
bLK  0.043980  0.011080  3.969720  0.115310  0.000100  0.048000  0.008440  5.684800
bLE  0.043090  0.013960  3.086090  0.000000  0.000100  0.027910  0.009910  2.817820
bLM -0.006190  0.079550 -0.077850  0.101540  0.000100  0.142590  0.010620  13.42205
bL  0.122000  0.048450  2.518370  0.000000  0.050000  0.134430  0.016560  8.116870
bLt -0.006380  0.006040 -1.055490  0.000000  0.050000 -0.006520  0.002340 -2.789230
αL  0.007770  0.006490  1.197500  0.000000  0.050000  0.009380  0.002500  3.749820

βL  0.051600  0.045300  1.139100  0.000000  0.050000  0.061890  0.016260  3.806310

γL  4.00E-05  8.00E-05  0.532590  0.000000  0.050000  6.00E-05  3.00E-05  1.876500
bEE -0.032800  0.020710 -1.583550  0.000000  0.050000 -0.022340  0.014320 -1.559900
bEK -0.012460  0.002970 -4.190090 -0.045640  0.000100 -0.014620  0.002630 -5.553670
bEL  0.043090  0.013960  3.086090  0.000000  0.000100  0.027350  0.008090  3.381060
bEM  0.018160  0.011890  1.527910  0.047420  0.000100  0.030330  0.007360  4.122620
bE  0.023000  0.009470  2.428610  0.000000  0.050000  0.020690  0.005660  3.657920
bEt -0.001290  0.001210 -1.064900  0.000000  0.050000 -0.000760  0.000830 -0.921730
αE  0.002150  0.001290  1.673940  0.000000  0.050000  0.001710  0.000860  1.981070

βE -0.001120  0.008700 -0.129090  0.000000  0.050000 -0.003630  0.005380 -0.675370

γE  2.00E-05  2.00E-05  1.013290  0.000000  0.050000  2.00E-05  1.00E-05  1.275080
bMM  0.926780  0.190690  4.860050  0.000000  0.050000  0.735070  0.062710  11.72076
bMK -0.022780  0.013790 -1.651930  0.000000  0.050000 -0.024680  0.014250 -1.731780
bML -0.006190  0.079550 -0.077850  0.211500  0.000100  0.142630  0.010720  13.30569
bME  0.018160  0.011890  1.527910  0.000000  0.000100  0.030470  0.010320  2.952100
bM -0.193350  0.088390 -2.187470  0.000000  0.050000 -0.176350  0.028510 -6.184590
bMt -0.006900  0.010910 -0.632340  0.000000  0.050000 -0.007940  0.004340 -1.831550
αM -0.000780  0.011720 -0.066300  0.000000  0.050000 -0.000530  0.004560 -0.116900

βM -0.113910  0.082280 -1.384430  0.000000  0.050000 -0.102210  0.029210 -3.499600

γM  0.000280  0.000150  1.873960  0.000000  0.050000  0.000240  6.00E-05  3.973830
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Table 5b. Classical vs Bayesian inference: classical elasticities estimates with restricted SUR
compared with Bayesian elasticities estimates of unrestricted SUR using a mixture of uninformative
diffuse priors and informative tight priors

Elasticities SUR Priors Gibbs

KK -0.232360  0.000000 -0.251540
KL  0.591170  0.500000  0.651140
KE -0.129370 -0.500000 -0.148700
KM -0.229440  0.000000 -0.250900
LL -0.189480  0.000000 -0.532720
LK  0.095360  0.250000  0.105400
LE  0.109360  0.000000  0.071750
LM -0.015250  0.250000  0.355570
EE -0.804890  0.000000 -0.667830
EK -0.136520 -0.500000 -0.159330
EL  0.715430  0.000000  0.451770
EM  0.225990  0.590000  0.375390
MM  0.008500  0.000000 -0.176310
MK -0.017770  0.000000 -0.019150
ML -0.007320  0.250000  0.167780
ME  0.016580  0.000000  0.027690

Note: ij (i,j=K,L,E,M) means the elasticity of demand for input i with respect to the price of input j.
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Table 6a. Classical vs Bayesian inference: classical parameter estimates with restricted SUR
compared with Bayesian parameter estimates of unrestricted SUR trying to approximate symmetry
restrictions via rejection sampling

Parameters SUR
(restricted)

SUR
(se)

SUR
(t stat)

Priors
(means)

Priors
(sd)

Gibbs_rj
(means)

Gibbs_rj
(sd)

Gibbs_rj
(pseudo t stat)

bKK -0.203650  0.021400 -9.518400  0.000000  0.050000 -0.215830  0.011400 -18.93862
bKL  0.043980  0.011080  3.969720  0.037200  0.000100  0.049060  0.013180  3.721880
bKE -0.012460  0.002970 -4.190090 -0.048160  0.000100 -0.023980  0.006410 -3.740540
bKM -0.022780  0.013790 -1.651930  0.000000  0.050000 -0.018290  0.011590 -1.577210
bK  0.134140  0.011450  11.72012  0.000000  0.050000  0.142590  0.006760  21.10322
bKt -0.013170  0.001620 -8.139820  0.000000  0.050000 -0.013710  0.000940 -14.58187
αK  0.017040  0.001710  9.976260  0.000000  0.050000  0.017720  0.000990  17.86183

βK  0.103960  0.011180  9.298580  0.000000  0.050000  0.109890  0.005920  18.55247

γK  0.000130  2.00E-05  5.449530  0.000000  0.050000  0.000130  2.00E-05  7.491690
bLL -0.029630  0.124780 -0.237460  0.000000  0.050000 -0.193740  0.037230 -5.203690
bLK  0.043980  0.011080  3.969720  0.115310  0.000100  0.070650  0.008280  8.530770
bLE  0.043090  0.013960  3.086090  0.000000  0.000100  0.019370  0.010750  1.802080
bLM -0.006190  0.079550 -0.077850  0.101540  0.000100  0.098830  0.008580  11.51951
bL  0.122000  0.048450  2.518370  0.000000  0.050000  0.147670  0.017460  8.456930
bLt -0.006380  0.006040 -1.055490  0.000000  0.050000 -0.010710  0.002370 -4.518880
αL  0.007770  0.006490  1.197500  0.000000  0.050000  0.013460  0.002570  5.228540

βL  0.051600  0.045300  1.139100  0.000000  0.050000  0.084790  0.017390  4.876670

γL  4.00E-05  8.00E-05  0.532590  0.000000  0.050000  0.000110  3.00E-05  3.531510
bEE -0.032800  0.020710 -1.583550  0.000000  0.050000 -0.034710  0.013930 -2.492290
bEK -0.012460  0.002970 -4.190090 -0.045640  0.000100 -0.010230  0.002790 -3.668390
bEL  0.043090  0.013960  3.086090  0.000000  0.000100  0.018030  0.010260  1.758300
bEM  0.018160  0.011890  1.527910  0.047420  0.000100  0.039110  0.008950  4.368210
bE  0.023000  0.009470  2.428610  0.000000  0.050000  0.023780  0.005590  4.254660
bEt -0.001290  0.001210 -1.064900  0.000000  0.050000 -0.001760  0.000780 -2.255830
αE  0.002150  0.001290  1.673940  0.000000  0.050000  0.002810  0.000830  3.401180

βE -0.001120  0.008700 -0.129090  0.000000  0.050000  0.002160  0.005240  0.412990

γE  2.00E-05  2.00E-05  1.013290  0.000000  0.050000  3.00E-05  1.00E-05  2.670920
bMM  0.926780  0.190690  4.860050  0.000000  0.050000  0.635640  0.062580  10.15677
bMK -0.022780  0.013790 -1.651930  0.000000  0.050000  0.003100  0.016860  0.183720
bML -0.006190  0.079550 -0.077850  0.211500  0.000100  0.191830  0.008470  22.64199
bME  0.018160  0.011890  1.527910  0.000000  0.000100 -0.011680  0.011330 -1.031240
bM -0.193350  0.088390 -2.187470  0.000000  0.050000 -0.146320  0.026780 -5.463680
bMt -0.006900  0.010910 -0.632340  0.000000  0.050000 -0.014130  0.004470 -3.158290
αM -0.000780  0.011720 -0.066300  0.000000  0.050000  0.005720  0.004660  1.226810

βM -0.113910  0.082280 -1.384430  0.000000  0.050000 -0.065780  0.029070 -2.262950

γM  0.000280  0.000150  1.873960  0.000000  0.050000  0.000310  6.00E-05  4.885160
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Table 6b. Classical vs Bayesian inference: classical elasticities estimates with restricted SUR
compared with Bayesian elasticities estimates of unrestricted SUR trying to approximate symmetry
restrictions via rejection sampling

Elasticities SUR Priors Gibbs_rj
(rejection sampling)

KK -0.232360  0.000000 -0.228310
KL  0.591170  0.500000  0.665170
KE -0.129370 -0.500000 -0.251110
KM -0.229440  0.000000 -0.185760
LL -0.189480  0.000000 -0.453390
LK  0.095360  0.250000  0.155830
LE  0.109360  0.000000  0.050010
LM -0.015250  0.250000  0.247560
EE -0.804890  0.000000 -0.676130
EK -0.136520 -0.500000 -0.112490
EL  0.715430  0.000000  0.300450
EM  0.225990  0.590000  0.488180
MM  0.008500  0.000000 -0.218180
MK -0.017770  0.000000  0.002410
ML -0.007320  0.250000  0.226420
ME  0.016580  0.000000 -0.010650

Note: ij (i,j=K,L,E,M) means the elasticity of demand for input i with respect to the price of input j.
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Graph 1a.
Classical vs Bayesian Parameters: informative tight priors
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Graph 1b.
Classical vs Bayesian Parameters: uninformative diffuse priors
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Graph 2. Classical vs Bayesian elasticities 
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