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Abstract

Many structural relations should be taken into account in any reason-
able updating e¤ort. These structural relations are mainly represented by
coe¢cients of di¤erent types like technical coe¢cients or the proportion
of the value of a cell in relation to its row or column total. These coe¢-
cients can normally be introduced in an optimization framework by using
nonlinear programming approaches. Standard approaches concentrate in
using distance measures that minimize the absolute or relative di¤erence
in technical or other types of coe¢cients. However, these approaches show
a tendency to concentrate the changes in the biggest cells and therefore
produce a non-homogeneous pattern of coe¢cient adjustment.

This study has two main objectives. First, we propose a formulation
that tries both to obtain a more homogeneous relative adjustment of the
structural coe¢cients and to reduce the nonlinearities of the programms
in order to facilitate obtaining a solution. Second, we try to test the
usefulness of this proposal by comparing its results with the ones obtained
with more standard approaches.

This is a preliminary version of an ongoing research that aims to be
…nished by the end of this year. Next steps in the near future will include
testing these approaches in a more broad variety of scenarios, such as al-
lowing changes to the initially …xed vectors, including imports, and trying
to compare and combine our methods with those recently presented by au-
thors like Robinson, Cattaeno and El-Said (1998). Any suggestions or rec-
comendations will be sincerely welcome. (casiano@empresariales.ulpgc.es)
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1 Introduction

Many structural relations should be taken into account in any reasonable up-
dating e¤ort. These structural relations are mainly represented by coe¢cients
of di¤erent types like technical coe¢cients or the proportion of the value of
a cell in relation to its row or column total. These coe¢cients can normally
be introduced in an optimization framework by using nonlinear programming
approaches. Standard approaches concentrate in using distance measures that
minimize the absolute or relative di¤erence in technical or other types of coe¢-
cients. However, these approaches show a tendency to concentrate the changes
in the biggest cells and therefore produce a non-homogeneous pattern of coe¢-
cient adjustment.

On the other hand, most practical e¤orts to update IO matrices would gen-
erate very complicated nonlinear programms for which even obtaining a solution
could prove to be very di¢cult, especially when updating very disaggregated ac-
counts. This is especially the case when we introduce more than one coe¢cient
in the objective function (e.g.: technical coe¢cients, row and column coe¢cients
or some combination of all three). In many occasions this forces practitioners
to introduce exogenous bounds to the di¤erent elements of the IO matrix that
naturally biases the results in an arti…cial manner.

This study has two main objectives. First, we propose a formulation that
tries both to obtain a more homogeneous relative adjustment of the structural
coe¢cients and to reduce the nonlinearities of the programms in order to facili-
tate obtaining a solution. Second, we try to test the usefulness of this proposal
by comparing its results with the ones obtained with more standard approaches.

This approach was developed during the process of updating and adjustment
of the IO Accounts and an aggregated SAM of the Canary Islands for the year
1990 using the IO Table of 1985 as a benchmark (Manrique de Lara Peñate,
1999). This exercise covered all the elements of the IO Table and considered
simultaneously the incorporation of trade ‡ows with other regions and the rest
of the world. The …nal programm used 18 di¤erent sectors and its di¤erent
parts summed up to 6.130 restrictions and 10.875 variables.

Next section presents a brief summary of the main contributions found in
the literature about the adjustment of IO accounts with mathematical program-
ming. Section three summarizes our proposal in mathematical terms. Finally
the results of the di¤erent comparisons done to evaluate the usefulness of our
approach as well as a short section with our main conclusions are going to be
presented.

2



2 The Adjustment and Updating of IO Accounts
with Mathematical Programming

A way of solving the problem of adjustment and updating of IO accounts con-
sists in using mathematical programming. One of the approaches that can be
expressed in terms of a mathematical problem is the RAS algorithm, as demon-
strated by Macgill (1977). The RAS algorithm solves the following problem:

min
P
i

xt
ij ln

³
xt

ij

x0
ij

´

subject to: P
i

xt
ij = °t

j (j = 1; :::::n)P
j

xt
ij = ½t

i (i = 1; :::::n ¡ 1)

being:

X0 : initial IO matrix
Xt : updated IO matrix
°t : new vector of intermediate inputs in t
½t : new vector of intermediate outputs in t

Morrison and Thuman (1980) proposed to minimize the sum of the weighted
squared deviations:

min
P
i;j

(xt
ij¡x0

ij)
2

¼ij

subject to: P
i

xt
ij = °t

j (j = 1; :::::n)P
j

xt
ij = ½t

i (i = 1; :::::n ¡ 1)
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The objective function could represent a Â2 (when ¼ij = x0
ij) and di¤erent

weights could be applied to the elements of the matrix depending on the interest
in favoring their change in the matrix Xt to be obtained (e.g.: ¼ij =

¡
x0

ij

¢2
or

¼ij =
q

x0
ij).

Other examples include the use by Mankinen (1993) of generalized or con-
ditioned least squares and the e¤orts of Cole (1992) to introduce additional
restrictions on certain groups of elements.

Matuszewski, Pitts and Sawyer (1964) were the …rst to propose an adjust-
ment technique based on linear programming. Their problem was formulated
as follows:

min
P

(i;j)=a0
ij 6=0

¯̄̄
at

ij

a0
ij

¡ 1
¯̄̄

subject to: P
i=a0

ij 6=0

at
ijpt

j = °t
jP

j=a0
ij 6=0

at
ijpt

j = ½t
i

1
2 · at

ij

a0
ij

· 2 8(i; j)=a0
ij 6= 0

being:

A0 : technical coe¢cients matrix obtained from X0

At : technical coe¢cients matrix obtained from Xt

P 0 : vector of e¤ective production in 0
P t : vector of e¤ective production in t

Their last restriction was introduced to avoid the fact that the changes in
the coe¢cients tended to concentrate in the larger elements of the intermediate
transaction matrix. It is clearly arbitrary but it helped to increase the number
of basic variables giving more realistic solutions.

Since the new vector of production was known to them, they switched from
using coe¢cients to ‡ows taking the inverse of the new known values of e¤ective
production as weights.They converted this nonlinear formulation into a linear
one by including two new positive variables for each of the elements to be up-
dated, avoiding the nonlinearity in the objective function due to the calculation
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of absolute values. The …nal formulation ended up looking very much the same
to the classical linear programming problem with upper bound constraints.

This need to set bounds to the variables is present in many other examples.
From the more open formulations of Harrigan and Buchanan (1984) to the ones
proposed by Zenios, Drud and Mulvey (1989) and Schneider and Zenios (1990)
or Callealta (1993). In fact the need of these bounds is twofold. First, it helps
the programming solver to …nd a solution, and second, it helps to avoid too
extreme corner solutions (zero values). However, it is very easy to remain at
the minimum or maximum values imposed, reducing therefore the freedom to
…nd the optimal solution. Our proposal shows there is an alternative way to
…nd new coe¢cients without imposing such strong restrictions to the updating
process. Our main emphasis lies indeed in trying to respect, as much as possible,
the initial relative structure (i.e. coe¢cients) of the accounts to be updated. It
also tries to obtain more linear formulations that are particularly useful in cases
where the row and column totals are unknown and several structural coe¢cients
are simultaneously considered.

3 Notation, De…nitions and Adjustment Crite-
ria

Let X = (xij)1·i·m;1·j·n, P = (pi)1·i·m and Q = (qi)1·i·m. We consider
the following sets, matrices and functions.

² SETS:

– I = f1; 2; :::; mg, the row index set.

– J = f1; 2; :::; ng, the column index set.

– I+ = fi 2 I=
P

k xik 6= 0g.

– J+ = fj 2 J=
P

k xkj 6= 0g.

– Ij = fi 2 I=xij 6= 0g and nj = jIj j is the cardinal of set Ij , 8j 2 J .

– Ji = fj 2 J=xij 6= 0g and mi = jJij is the cardinal of set Ji, 8i 2 I.

– SX = f(i; j)=xij 6= 0; i 2 I; j 2 Jg
² MATRICES:

– P- coe¢cients matrix, AX = (aij)1·i·m;1·j·n:

aij =

½ xij

pj
if pj 6= 0

0 otherwise

(In the applications presented in this paper, P is the vector of e¤ective
production).
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– Row coe¢cients matrix, BX = (bij)1·i·m;1·j·n:

bij =

½ xijP
k xik

if
P

k xik 6= 0

0 otherwise

– Column coe¢cients matrix CX = (cij)1·i·m;1·j·n:

cij =

½ xijP
k xkj

if
P

k xkj 6= 0

0 otherwise

Note that SX = SAX = SBX = SCX .

² FUNCTIONS: Given the m £ n matrix ¹X = (¹xij) with SX = S ¹X , we
de…ne

–

F1(X) =
X

(i;j)2SX

jxij ¡ ¹xij

¹xij
j:

–

F2(X) =
X

(i;j)2SX

jxij

¹xij
¡ ¹ij

where

¹i =
1

mi

X
j2Ji

xij

¹xij
:

–

F3(X) =
X

(i;j)2SX

jxij

¹xij
¡ ºj j

where

ºj =
1

nj

X
i2Ij

xij

¹xij
:

–

F4(X) =
X

(i;j)2I£(J¡fng)

jjdij ¡ 1j ¡ jdij+1 ¡ 1jj

where

dij =

½ xij

¹xij
if (i; j) 2 SX

1 otherwise
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–

F5(X) =
X

(i;j)2(I¡fmg)£J

jjdij ¡ 1j ¡ jdi+1j ¡ 1jj:

–

F6(X) =
X

(i;j)2SX

xijln
xij

¹xij
:

–

F7(Q) =
X
i2I

jqi ¡ 1j:

Henceforth, when we write Fi(AX) we assume that X0 is replaced by AX0 ,
analogously for BX and CX .

Given the matrix X0 = (x0
ij)1·i·m;1·j·n, the adjustment and updating prob-

lem is to determine a matrix Xt = (xt
ij)1·i·m;1·j·n with a structure similar to

X0 satisfying certain constraints. The problem is formulated as an optimization
problem where the objective function is a linear combination of the functions Fi

applied to particular matrices, replacing X by Xt and ¹X by X0. We consider
the following adjustment criteria formulation (the non-zero weights determine
di¤erent criteria).

² ADJUSTMENT CRITERIA FORMULATION:

– Formulation 1:

min G1(Xt; Q) = ¼11F1(AXt) + ¼12F2(AXt) + ¼13F3(AXt) +

¼14F1(BXt) + ¼15F2(BXt) +

¼16F1(CXt) + ¼17F3(CXt) +

¼18F7(Q):

– Formulation 2:

min G2(Xt; Q) = ¼21F1(AXt) + ¼22F4(AXt) + ¼23F5(AXt) +

¼24F1(BXt) + ¼25F4(BXt) +

¼26F1(CXt) + ¼27F5(CXt) +

¼28F7(Q):
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– Formulation 3:

min G3(Xt; Q) = ¼31F6(AXt) + ¼32F6(BXt) + ¼33F6(CXt) + ¼34F7(Q):

Note that the formulation 1 with ¼11 = 1 and ¼1k = 0, 8k 6= 1 corresponds
to the method of Matuszewski, Pitts and Sawyer (1964) for the input-output
coe¢cient estimation problem, and the formulation 3 with ¼31 = 1 and ¼3k = 0,
8k 6= 1, gives the information theory criterium.

The adjustment problem is

min F(X; Q) subject to X 2 X
where F = Gi for some i and certain weights ¼ik, and X is the feasible set
de…ned by certain constraints on X. These constraints are such as

½i1xi1 + ½i2xi2 + ::: + ½inxin = (·)(¸)½i (1)

°1jx1j + °2jx2j + ::: + °njxnj = (·)(¸)°j (2)

xij¤ = qiri 8i 2 I

where R = (ri)1·i·m is given (this constraint is associated to the function F8

and j¤ represents a particular column of X).
Now, we consider two cases:

1. Case 1: P ,
P

k xik, 1 · i · m, and
P

k xkj , 1 · j · n, are known.

In this case, the adjustment problem can be formulated as a linear pro-
gramm. It is enough to consider that each real number s satis…es jsj = y+z
with s = y ¡ z and y = 0 or z = 0.

2. Case 2: P ,
P

k xik, 1 · i · m, and
P

k xkj , 1 · j · n, are not known.

In this case, there are adjusment problems which can be formulated as
linear problems. In the situations for which the linearization is not so
evident, we have applied a change of variables to reduce the di¢culty of
the problem.

To illustrate the procedure used in this work for case 2, we present two
particular problems.

² Problem 1:

min G1(X) subject to constraints (2)
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with ¼16 = 1; ¼1j = 0; j 6= 6 , and
P

k xkj , 1 · j · n, not totally known.
That is

min F1(CX) subject to constraints (2)

This problem can be formulated as

min
X

(i;j)2SX

(yij + zij)

xijP
1·k·n xkj

¡ c0
ij = c0

ij(yij ¡ zij) 8(i; j) 2 SX

X 2 X (constraints (2))

yij ; zij ¸ 0 8(i; j) 2 SX :

We de…ne the variables

tj =
1P

1·k·n xkj
; 8j 2 J+ uij = xijtj ; 8(i; j) 2 SX :

Then X
1·i·n

uij = 1 8j 2 J+:

For (i; j) =2 SX ; uij = 0. Using these variables, problem 1 can be trans-
formed into the following linear problem

min
X

(i;j)2SX

(yij + zij)

uij ¡ c0
ij = c0

ij(yij ¡ zij) 8(i; j) 2 SX

X
1·k·n

°kjukj = (·)(¸)°jtj 8j 2 J 0 ½ J
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X
1·i·n

uij = 1 8j 2 J+

yij ; zij ¸ 0 8(i; j) 2 SX

If the optimal solution is (u¤
ij ; t¤

j ), then the optimal X is Xt = (xt
ij) where

xt
ij =

u¤
ij

t¤
j

; 8(i; j) 2 SX ; xt
ij = 0; 8(i; j) =2 SX :

² Problem 2:

min G1(X) subject to constraints (1) and (2)

with ¼14 = ¼16 = 1; ¼1j = 0; j 6= 4; 6 , and
P

k xik, 1 · i · m,
P

k xkj ,
1 · j · n, not totally known. That is

min F1(BX) + F1(CX) subject to constraints (1) and (2)

Now, we introduce the variables

vi =
1P

1·k·n xik
; 8i 2 I wij = xijvi; 8(i; j) 2 SX :

Then

X
1·j·n

wij = 1 8i 2 I+:

For (i; j) =2 SX ; uij = wij = 0. Using the variables uij , tj , wij and vi, the
problem 2 can be converted into the problem

min
X

(i;j)2SX

(y½ij + z½ij + y°ij + z°ij)

wij ¡ b0
ij = b0

ij(y½ij ¡ z½ij) 8(i; j) 2 SX
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X
1·k·n

½ikwik = (·)(¸)½ivi 8i 2 I 0 ½ I

X
1·j·n

wij = 1 8i 2 I+

uij ¡ c0
ij = c0

ij(y°ij ¡ z°ij) 8(i; j) 2 SX

X
1·k·n

°kjukj = (·)(¸)°jtj 8j 2 J 0 ½ J

X
1·i·n

uij = 1 8j 2 J+

uijvi ¡ wijtj = 0 8(i; j) 2 SX (3)

y½ij ; z½ij ; y°ij ; z°ij ¸ 0 8(i; j) 2 SX :

If the optimal solution is (u¤
ij ; t¤

j ; w¤
ij ; v¤

j )), then the optimal X is Xt =
(xt

ij) where

xt
ij =

u¤
ij

t¤
j

8(i; j) 2 SX ; xt
ij = 0; 8(i; j) =2 SX :

Note that, by constraint (3),

xij =
uij

tj
=

wij

vi
8(i; j) 2 SX

To facilitate obtaining a solution, equation 3 could be reformulated as
follows:

uijvi ¡ wijtj = e1(i; j) ¡ e2(i; j) 8(i; j) 2 SX
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where

e1(i; j); e2(i; j) > 0 8(i; j) 2 SX

and the sum

¼
X

(e1(i; j) + e2(i; j))

with a su¢ciently high weight ¼, would be added to the objective function.

² COMPARISON MEASURES: The following measures will be used to com-
pare the matrices X and X0.

1. Standardized total error:

STE(X0; X) =

P
(i;j) jxij ¡ x0

ij jP
(i;j) x0

ij

2. Correlation coe¢cient:

CC(X0; X) =

P
(i;j)(xij ¡ ¹)(x0

ij ¡ ¹0)

¾¾0

where ¹, ¹0, and ¾, ¾0, are the means and standard deviations of the
sets fxijg and fx0

ijg, respectively.

3. Mean absolute di¤erence:

MAD(X0; X) =

P
(i;j) jxij ¡ x0

ij j
m £ n

4. Mean relative di¤erence:

MRD(X0; X) =

P
(i;j)2S0

X
jxij¡x0

ij

x0
ij

j
m £ n

5. Index of inequality (Theil’s U):

TII(X0; X) = (

P
(i;j)(xij ¡ x0

ij)2P
(i;j)(x

0
ij)2

)
1
2

6. Root mean squared error:

RMSE(X0; X) =
(
P

(i;j)(xij ¡ x0
ij)2)

1
2

m £ n

7. Root mean squared relative error:

RMSRE(X0; X) =
(
P

(i;j)(
xij¡x0

ij

x0
ij

)2)
1
2

m £ n
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8. Maximal absolute di¤erence:

MXAD(X0; X) = max
(i;j)

jxij ¡ x0
ij j

9. Maximal relative di¤erence:

MXRD(X0; X) = max
(i;j)2SX0

jxij ¡ x0
ij

x0
ij

j

10. Weighted absolute di¤erence

WAD(X0; X) =
(xij + x0

ij)jxij ¡ x0
ij jP

(i;j)(xij + x0
ij)

11. Information measure:

IM(X0; X) =
X

(i;j)2SX0

xij ln
xij

x0
ij

In our problems the matrices compared are always matrices of coef-
…cients.

4 Analysis of the models proposed

In this section we proceed to present and analyse the results of the di¤erent com-
parisons prepared to measure the usefulness of the models proposed. All the
applications presented in this work used the IO Table of the Canary Islands for
1985 as a benchmark (ISTAC, 1995). All the models have been solved combin-
ing the optimization and computational capabilities of GAMS and MATLAB,
respectively.

4.1 Cases formulated

The two cases prepared correspond themselves to case 1 and case 2 described in
the previous section. In case 1 we considered the updating of the intermediate
requirements matrix, where the row and column totals of this matrix and the
vector of e¤ective production are known. Figure 1 shows the percentage changes
introduced in the vectors of e¤ective production, total intermediate inputs and
outputs, by this order.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0
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0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

Figure 1. Total percentage change of production and intermediate inputs and
outputs.

In this …rst case, we considered the RAS algorithm and the di¤erent prob-
lems described in Table 1. Cases 1-1 to 1-3 refer themselves to the adjustment
of the technical coe¢cients of the IO table. In Cases 1-4 to 1-9 we used the
same intermediate requirements matrix as in the previous subcases, but the
coe¢cients were calculated against the vectors of total input and output inter-
mediate requirements (column and row sums). Cases 1-4 and 1-5 deal only with
column coe¢cients while cases 1-6 to 1-9 combine the use of column and row
coe¢cients. Our adjustment proposal is included only in cases 1-2, 1-3, 1-5, 1-7,
1-8 and 1-9.

Table 1.: Problems considered in Case 1
for i= 1,2;

C 1-1 C 1-2 C 1-3 C 1-4 C 1-5 C 1-6 C 1-7 C 1-8 C 1-9
¼i1 1 1 1 0 0 0 0 0 0
¼i2 0 0 1 0 0 0 0 0 0
¼i3 0 1 1 0 0 0 0 0 0
¼i4 0 0 0 0 0 1 1 1 1
¼i5 0 0 0 0 0 0 1 0 1
¼i6 0 0 0 1 1 1 1 1 1
¼i7 0 0 0 0 1 0 0 1 1

In case 2, we proceed to update a matrix that includes the vector of inter-
mediate outputs and all the elements of the …nal demand. We impose known
values for private and public consumption and exports to the rest of the world.
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The programm obtains the vectors of intermediate outputs, investment (…xed
and inventory changes) and the vector of total resources as the sum of the dif-
ferent elements considered.Table 2 shows the values of the weights that de…ne
the di¤erent problems solved in relation to the second case. Figure 2 shows
the percentage changes introduced in the vectors of private consumption and
exports, by this order. The value of public consumption was increased in a 45%.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
- 1 0 0

- 5 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
- 1 0 0

- 5 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

Figure 2. Total percentage change of private consumption and exports.

Table 2.: Problems considered in Case 2
for i= 1,2;

C 2-1 C 2-2 C 2-3 C 2-4 C 2-5 C 2-6 C 2-7 C 2-8
¼i4 1 0 1 0 1 1 1 1
¼i5 0 0 1 0 0 1 0 1
¼i6 0 1 0 1 1 1 1 1
¼i7 0 0 0 1 0 1 1 0
¼32 1 0 1 0 1 1 1 1
¼33 0 1 0 1 1 1 1 1
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4.2 Results

Appendix A includes the tables of the results obtained from our di¤erent prob-
lems. The results for each of the problems are presented in two types of tables,
tables A and B. Tables A show the position obtained by each of the methods
used according to the comparison measures described in section 3. The di¤erent
methods are positioned in increasing order according to the value of the distance
measure considered. Tables B show the values of the distance measures obtained
by each of these methods.

Tables 1A and 1B report the results obtained for cases 1-1 to 1-3. The
methods proposed in this paper clearly provide better values when the distance
measure re‡ects relative di¤erences, respecting therefore better the previous rel-
ative structure of the technical coe¢cients. In the cases where RAS gets better
positions, the values are not signi…cantly di¤erent from those achieved by the
other methods. Figures 3 and 4 show the relative change in the technical coef-
…cients obtained from RAS and method G1, respectively. Our method clearly
tends to globally maintain the previous relative structure of the technical coef-
…cients, even if for some cells the relative change is higher than the one shown
by RAS

0
5

10
15

20

0

5

10

15

20

-0.1

0

0.1

0.2

0.3

Figure 3. Relative change in the technical coe¢cients. Ras algorithm.
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-0.1

0

0.1

0.2

Figure 4. Relative change in the technical coe¢cients. Case 1-2. Model G1.

Tables 2A and 2B report the results obtained in cases 1-4 through 1-9. Since
the RAS algorithm functioned altering the column coe¢cients, the most rea-
sonable comparison should be done between RAS and our methods in case 1-5,
where our proposals show normally better results than RAS. Obviously, the IM
measure should give better results for RAS. Measures MXAD and MXRD reveal
the same situation described in cases 1-1 to 1-3 where for some cells the rela-
tive change was higher than the one shown by RAS. Figures 5 and 6 show the
relative change in the technical coe¢cients obtained from RAS and method G1,
respectively. Our method clearly maintains the tendency to reproduce the pre-
vious technical coe¢cients, with the exception of some cells where the relative
change is higher than the one shown by RAS.
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Figure 5. Relative change in the column coe¢cients RAS algorithm.
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Figure 6. Relative change in the column coe¢cients. Case 1-5. Model G1.
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Tables 4A to 5B, report the results obtained for all the models included
in our Case 2. They follow a similar structure as the preceeding ones, and
the conclusions to be extracted are also equally similar. In this case the bad
results achieved by the information theory criterium may stem from the fact
that it was formulated under similar bounding conditions to those imposed to
the other approaches. Changing these bounds would probably generate better
results. However, comparing the three methods under similar circumstances,
allow us to observe that our two formulations obtain better results than those
achieved by the entropy measure.

Figures 7 and 8. show the relative change in the column coe¢cients obtained
from methiods G2 and G3, respectively. Taking into account the di¤erence in
scaling of both pictures, our method clearly maintains the tendency to avoid
concentrating the changes in some cells, what clearly has not been achieved by
the simple entropy formulation.
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Figure 7. Relative change in the column coe¢cient. Case 2-6. Model G2.
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Figure 8. Relative change in the column coe¢cient. Case 2-6. Model G3.

5 Conclusions

In this paper we have proposed new formulations for the updating and adjust-
ment problem of economic accounts. The preliminary results allow us some
optimism about its usefulness. However many more experiments have to be
implemented before achieving any de…nite conclusions.

Next steps in the near future will include testing these approaches in a more
broad variety of scenarios, like allowing changes to the initially …xed vectors,
including imports, and trying to compare and combine our methods with those
presented by authors like Robinson, Cattaeno and El-Said (1998).
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Table  1A
Estimation statistics. Case 1-1 to Case 1-3

Position obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 RAS RAS G2 RAS RAS G2 RAS RAS RAS RAS G2
2 G2 G2 G1 G2 G2 G1 G2 G2 G2 G2 G11-1
3 G1 G1 RAS G1 G1 RAS G1 G1 G1 G1 RAS
1 RAS RAS G1 RAS RAS G1 RAS RAS RAS RAS G1
2 G2 G2 G2 G2 G2 G2 G2 G1 G1 G1 G21-2
3 G1 G1 RAS G1 G1 RAS G1 G2 G2 G2 RAS
1 RAS RAS G2 RAS RAS G2 RAS RAS RAS RAS G1
2 G2 G2 G1 G2 G2 RAS G2 G2 G2 G2 G21-3
3 G1 G1 RAS G1 G1 G1 G1 G1 G1 G1 RAS

Table  1B
Estimation statistics. Case 1-1 to Case 1-3

Values obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 0.0230 0.0006 0.0053 0.0285 0.0001 0.0011 0.0042 0.0669 0.0298 0.1679 0.9989
2 0.0236 0.0006 0.0065 0.0416 0.0002 0.0013 0.0053 0.0698 0.0474 0.1826 0.99901-1
3 0.0239 0.0006 0.0234 0.0450 0.0002 0.0022 0.0063 0.0703 0.0475 0.1908 0.9995
1 0.0230 0.0006 0.0047 0.0285 0.0001 0.0012 0.0042 0.0669 0.0298 0.1679 0.9988
2 0.0241 0.0006 0.0047 0.0467 0.0002 0.0012 0.0065 0.0705 0.0475 0.2052 0.99881-2
3 0.0241 0.0006 0.0234 0.0467 0.0002 0.0022 0.0065 0.0705 0.0475 0.2052 0.9995
1 0.0230 0.0006 0.0068 0.0285 0.0001 0.0013 0.0042 0.0669 0.0298 0.1679 0.9820
2 0.0239 0.0006 0.0188 0.0423 0.0002 0.0022 0.0054 0.0703 0.0475 0.2122 0.99901-3
3 0.0846 0.0022 0.0234 0.1816 0.0008 0.0058 0.0159 0.3147 0.1671 1.1302 0.9995
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Table  2A
Estimation statistics. Case 1-4 to Case 1-9: column coefficients.

Position obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 G2 G2 G2 G1 G1 G1 G2 RAS RAS RAS RAS
2 G1 G1 G1 G2 G2 G2 G1 G1 G1 G1 G21-4
3 RAS RAS RAS RAS RAS RAS RAS G2 G2 G2 G1
1 G1 G1 G1 G1 G1 G1 G1 RAS RAS RAS G2
2 G2 G2 G2 RAS RAS G2 G2 G1 G1 G1 RAS1-5
3 RAS RAS RAS G2 G2 RAS RAS G2 G2 G2 G1
1 RAS RAS RAS RAS RAS RAS RAS RAS RAS RAS G2
2 G1 G1 G1 G2 G2 G1 G1 G1 G2 G1 G11-6
3 G2 G2 G2 G1 G1 G2 G2 G2 G1 G2 RAS
1 RAS RAS RAS RAS RAS RAS RAS RAS RAS RAS G1
2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G21-7
3 G1 G1 G1 G1 G1 G1 G1 G1 G1 G1 RAS
1 G1 G1 G1 G1 G1 G1 G1 G1 G1 RAS G2
2 G2 G2 G2 RAS RAS RAS RAS RAS RAS G1 RAS1-8
3 RAS RAS RAS G2 G2 G2 G2 G2 G2 G2 G1
1 G1 G1 G1 RAS RAS RAS G1 RAS RAS RAS G2
2 RAS RAS RAS G1 G1 G1 RAS G1 G1 G1 G11-9
3 G2 G2 G2 G2 G2 G2 G2 G2 G2 G2 RAS
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Table  2B
Estimation statistics. Case 1-4 to Case 1-9: column coefficients

Values obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 0.0025 0.0001 0.0019 0.0051 0.0000 0.0007 0.0004 0.0008 0.0069 0.0631 1.0000
2 0.0025 0.0001 0.0019 0.0051 0.0000 0.0007 0.0004 0.0010 0.0078 0.1857 1.00001-4
3 0.0063 0.0003 0.0103 0.0061 0.0000 0.0009 0.0015 0.0010 0.0078 0.1857 1.0000
1 0.0025 0.0001 0.0019 0.0050 0.0000 0.0006 0.0004 0.0008 0.0069 0.0631 1.0000
2 0.0034 0.0002 0.0024 0.0061 0.0000 0.0008 0.0007 0.0009 0.0073 0.1654 1.00001-5
3 0.0063 0.0003 0.0103 0.0064 0.0000 0.0009 0.0015 0.0015 0.0076 0.1785 1.0000
1 0.0063 0.0003 0.0103 0.0061 0.0000 0.0009 0.0015 0.0008 0.0069 0.0631 0.9997
2 0.0088 0.0005 0.0150 0.0231 0.0002 0.0028 0.0027 0.0094 0.0502 0.2609 0.99971-6
3 0.0088 0.0005 0.0151 0.0231 0.0002 0.0028 0.0027 0.0094 0.0502 0.2609 1.0000
1 0.0063 0.0003 0.0103 0.0061 0.0000 0.0009 0.0015 0.0008 0.0069 0.0631 0.9993
2 0.0154 0.0009 0.0180 0.0346 0.0003 0.0029 0.0047 0.0154 0.0749 0.2571 0.99931-7
3 0.0162 0.0009 0.0187 0.0359 0.0003 0.0030 0.0051 0.0165 0.0776 0.2609 1.0000
1 0.0029 0.0002 0.0024 0.0044 0.0000 0.0005 0.0005 0.0007 0.0057 0.0631 0.9999
2 0.0057 0.0003 0.0076 0.0061 0.0000 0.0009 0.0015 0.0008 0.0069 0.0875 1.00001-8
3 0.0063 0.0003 0.0103 0.0126 0.0001 0.0020 0.0015 0.0045 0.0245 0.2507 1.0000
1 0.0047 0.0003 0.0090 0.0061 0.0000 0.0009 0.0010 0.0008 0.0069 0.0631 0.9994
2 0.0063 0.0003 0.0103 0.0064 0.0000 0.0016 0.0015 0.0014 0.0110 0.2138 1.00001-9
3 0.0149 0.0008 0.0157 0.0342 0.0003 0.0028 0.0046 0.0150 0.0744 0.2539 1.0000
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Table  3A
Estimation statistics. Case 1-4 to Case 1-9: row coefficients.

Position obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 RAS RAS G1 RAS RAS G1 RAS RAS RAS G1 G1
2 G1 G1 G2 G1 G1 G2 G1 G1 G1 G2 G21-4
3 G2 G2 RAS G2 G2 RAS G2 G2 G2 RAS RAS
1 RAS RAS G1 RAS RAS G1 RAS RAS RAS G1 G2
2 G1 G1 G2 G1 G1 G2 G2 G1 G1 G2 G11-5
3 G2 G2 RAS G2 G2 RAS G1 G2 G2 RAS RAS
1 RAS RAS G2 RAS RAS G2 RAS RAS RAS RAS G1
2 G2 G2 G1 G2 G2 G1 G1 G2 G2 G1 G21-6
3 G1 G1 RAS G1 G1 RAS G2 G1 G1 G2 RAS
1 RAS RAS G1 RAS RAS G2 RAS RAS RAS RAS G2
2 G1 G1 G2 G1 G1 G1 G1 G1 G1 G2 G11-7
3 G2 G2 RAS G2 G2 RAS G2 G2 G2 G1 RAS
1 RAS RAS G2 RAS RAS G2 RAS RAS RAS G1 G2
2 G1 G1 G1 G1 G1 G1 G1 G1 G1 RAS G11-8
3 G2 G2 RAS G2 G2 RAS G2 G2 G2 G2 RAS
1 RAS RAS G2 RAS RAS G2 RAS RAS RAS G1 G2
2 G1 G1 G1 G1 G1 G1 G1 G1 G1 RAS G11-9
3 G2 G2 RAS G2 G2 RAS G2 G2 G2 G2 RAS
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Table  3B
Estimation statistics. Case 1-4 to Case 1-9: row coefficients

Values obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 0.0082 0.0004 0.0254 0.0097 0.0001 0.0040 0.0019 0.0033 0.0126 0.3609 0.9997
2 0.0162 0.0008 0.0254 0.0232 0.0002 0.0040 0.0045 0.0081 0.0379 0.3609 0.99971-4
3 0.0162 0.0008 0.0263 0.0232 0.0002 0.0043 0.0045 0.0081 0.0379 0.3923 0.9999
1 0.0082 0.0004 0.0252 0.0097 0.0001 0.0040 0.0019 0.0033 0.0126 0.3609 0.9997
2 0.0154 0.0008 0.0257 0.0214 0.0002 0.0041 0.0040 0.0071 0.0317 0.3609 0.99971-5
3 0.0159 0.0008 0.0263 0.0228 0.0002 0.0043 0.0044 0.0084 0.0357 0.3923 0.9999
1 0.0082 0.0004 0.0083 0.0097 0.0001 0.0019 0.0019 0.0033 0.0126 0.3923 0.9999
2 0.0094 0.0005 0.0083 0.0149 0.0001 0.0019 0.0029 0.0051 0.0173 0.4599 0.99991-6
3 0.0094 0.0005 0.0263 0.0149 0.0001 0.0043 0.0029 0.0051 0.0173 0.4599 0.9999
1 0.0082 0.0004 0.0054 0.0097 0.0001 0.0017 0.0019 0.0033 0.0126 0.3923 0.9998
2 0.0106 0.0006 0.0063 0.0207 0.0002 0.0017 0.0038 0.0071 0.0262 0.5085 0.99981-7
3 0.0113 0.0006 0.0263 0.0211 0.0002 0.0043 0.0039 0.0072 0.0291 0.5137 0.9999
1 0.0029 0.0002 0.0024 0.0044 0.0000 0.0005 0.0005 0.0007 0.0057 0.0631 0.9999
2 0.0057 0.0003 0.0076 0.0061 0.0000 0.0009 0.0015 0.0008 0.0069 0.0875 1.00001-8
3 0.0063 0.0003 0.0103 0.0126 0.0001 0.0020 0.0015 0.0045 0.0245 0.2507 1.0000
1 0.0082 0.0004 0.0091 0.0097 0.0001 0.0017 0.0019 0.0033 0.0126 0.3826 0.9998
2 0.0103 0.0005 0.0159 0.0149 0.0001 0.0026 0.0032 0.0044 0.0168 0.3923 0.99991-9
3 0.0120 0.0006 0.0263 0.0201 0.0002 0.0043 0.0039 0.0070 0.0255 0.5075 0.9999
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Table  4A
Estimation statistics. Case 2-1 to Case 2-8: row coefficients.

Position obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 G1 G1 G1 G1 G1 G1 G2 G1 G1 G1 G3
2 G2 G2 G2 G2 G2 G2 G1 G2 G2 G2 G22-1
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G1
1 G1 G1 G1 G3 G3 G1 G3 G1 G1 G1 G2
2 G3 G3 G2 G1 G1 G2 G1 G2 G3 G2 G32-2
3 G2 G2 G3 G2 G2 G3 G2 G3 G2 G3 G1
1 G1 G1 G2 G1 G1 G1 G1 G1 G1 G1 G3
2 G2 G2 G1 G2 G2 G2 G2 G2 G2 G2 G22-3
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G1
1 G1 G1 G1 G1 G1 G1 G3 G1 G2 G1 G3
2 G2 G2 G2 G2 G2 G2 G2 G2 G1 G2 G22-4
3 G3 G3 G3 G3 G3 G3 G1 G3 G3 G3 G1
1 G2 G2 G1 G2 G2 G1 G2 G2 G3 G1 G3
2 G1 G1 G2 G1 G1 G2 G1 G1 G2 G2 G12-5
3 G3 G3 G3 G3 G3 G3 G3 G3 G1 G3 G2
1 G1 G1 G2 G1 G1 G2 G1 G1 G3 G1 G3
2 G2 G2 G1 G2 G2 G1 G2 G2 G1 G2 G22-6
3 G3 G3 G3 G3 G3 G3 G3 G3 G2 G3 G1
1 G2 G2 G2 G2 G2 G2 G2 G2 G3 G1 G3
2 G1 G1 G1 G1 G1 G1 G3 G1 G1 G2 G12-7
3 G3 G3 G3 G3 G3 G3 G1 G3 G2 G3 G2
1 G1 G1 G1 G2 G2 G1 G1 G1 G3 G1 G3
2 G2 G2 G2 G1 G1 G2 G2 G2 G2 G2 G12-8
3 G3 G3 G3 G3 G3 G3 G3 G3 G1 G3 G2
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Table  4A
Estimation statistics. Case 2-1 to Case 2-8: row coefficients.

Values obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 0.2154 0.0359 0.1309 0.3641 0.0106 0.0367 0.0956 1.6976 0.5820 2.2735 0.8659
2 0.2154 0.0359 0.1309 0.3641 0.0106 0.0367 0.0956 1.6976 0.5820 2.2735 0.90842-1
3 0.3559 0.0593 4.4630 0.4235 0.0124 2.2880 0.1227 8.1548 0.6416 199.9887 0.9084
1 0.4800 0.0800 0.3968 0.4975 0.0145 0.0599 0.1582 3.3607 0.5233 2.2578 0.7457
2 0.4940 0.0823 0.6369 0.4989 0.0146 0.1078 0.2073 5.9560 0.5243 4.7134 0.80612-2
3 0.6438 0.1073 7.9078 0.6507 0.0190 2.7349 0.2748 13.1568 0.5896 199.9887 0.8382
1 0.2128 0.0355 0.1309 0.3555 0.0104 0.0364 0.0941 1.6201 0.5575 2.2735 0.8659
2 0.2154 0.0359 0.1325 0.3641 0.0106 0.0367 0.0956 1.6976 0.5820 2.2735 0.90842-3
3 0.3559 0.0593 4.4630 0.4235 0.0124 2.2880 0.1227 8.1548 0.6416 199.9887 0.9123
1 0.4758 0.0793 0.4866 0.4814 0.0141 0.0785 0.1582 3.3761 0.5183 3.8840 0.8061
2 0.4923 0.0820 0.8090 0.4826 0.0141 0.1420 0.1895 3.8005 0.5185 5.6369 0.84082-4
3 0.4940 0.0823 7.9078 0.4975 0.0145 2.7349 0.1928 13.1568 0.5243 199.9887 0.8451
1 0.2228 0.0371 0.1647 0.3319 0.0097 0.0381 0.0965 1.4638 0.4262 2.2734 0.9059
2 0.2228 0.0371 0.1647 0.3319 0.0097 0.0381 0.0965 1.4638 0.4741 2.2734 0.92242-5
3 0.3091 0.0515 3.0034 0.3565 0.0104 2.1210 0.1078 4.2802 0.4741 220.4765 0.9224
1 0.2164 0.0361 0.1647 0.3125 0.0091 0.0381 0.0925 1.3418 0.4262 2.2698 0.9059
2 0.2228 0.0371 0.1737 0.3318 0.0097 0.0406 0.0965 1.4633 0.4421 2.2734 0.92252-6
3 0.3091 0.0515 3.0034 0.3565 0.0104 2.1210 0.1078 4.2802 0.4740 220.4765 0.9308
1 0.2228 0.0371 0.1647 0.3318 0.0097 0.0381 0.0965 1.4635 0.4262 2.2663 0.9059
2 0.2606 0.0434 0.2118 0.3333 0.0097 0.0420 0.1078 1.5120 0.4415 2.2734 0.92102-7
3 0.3091 0.0515 3.0034 0.3565 0.0104 2.1210 0.1111 4.2802 0.4740 220.4765 0.9225
1 0.2109 0.0351 0.1468 0.3319 0.0097 0.0369 0.0928 1.4591 0.4262 2.2651 0.9059
2 0.2228 0.0371 0.1647 0.3344 0.0098 0.0381 0.0965 1.4637 0.4741 2.2734 0.92182-8
3 0.3091 0.0515 3.0034 0.3565 0.0104 2.1210 0.1078 4.2802 0.4914 220.4765 0.9225
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Table  5A
Estimation statistics. Case 2-1 to Case 2-8: column coefficients.

Position obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 G1 G1 G1 G1 G1 G1 G1 G1 G1 G1 G3
2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G12-1
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G2
1 G2 G2 G1 G2 G1 G1 G2 G2 G1 G1 G3
2 G1 G1 G2 G1 G2 G2 G1 G1 G2 G2 G22-2
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G1
1 G1 G1 G1 G1 G1 G1 G1 G1 G1 G1 G3
2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G22-3
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G1
1 G2 G2 G2 G1 G1 G1 G2 G2 G1 G1 G3
2 G1 G1 G1 G2 G2 G2 G1 G1 G2 G2 G12-4
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G2
1 G1 G1 G2 G2 G2 G2 G1 G2 G1 G1 G3
2 G2 G2 G1 G1 G1 G1 G2 G1 G2 G2 G12-5
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G2
1 G2 G2 G1 G2 G2 G1 G2 G1 G1 G1 G3
2 G1 G1 G2 G1 G1 G2 G1 G2 G2 G2 G12-6
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G2
1 G1 G1 G1 G1 G1 G1 G1 G1 G1 G1 G3
2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G22-7
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G1
1 G2 G2 G2 G2 G2 G2 G2 G2 G1 G1 G3
2 G1 G1 G1 G1 G1 G1 G1 G1 G2 G2 G12-8
3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G3 G2
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Table  5B
Estimation statistics. Case 2-1 to Case 2-8: column coefficients.

Values obtained by each of the methods used

CASE POSITION STE MAD MRD TII RMSE RMSRE WAD IM MXAD MXRD CC
1 0.2135 0.0119 0.3028 0.1991 0.0029 0.0616 0.0387 0.3793 0.2379 3.7207 0.9367
2 0.2135 0.0119 0.3028 0.1991 0.0029 0.0616 0.0387 0.3793 0.2379 3.7207 0.97712-1
3 0.2874 0.0160 0.3856 0.3472 0.0050 0.1188 0.0741 0.7824 0.3920 11.3085 0.9771
1 0.1268 0.0070 0.1640 0.1800 0.0026 0.0449 0.0216 0.2464 0.2379 3.1142 0.9684
2 0.1268 0.0070 0.1640 0.1800 0.0026 0.0449 0.0216 0.2464 0.2379 3.1142 0.98102-2
3 0.2112 0.0117 0.3398 0.2319 0.0033 0.1168 0.0405 0.4479 0.2379 11.3085 0.9810
1 0.2086 0.0116 0.2879 0.1973 0.0028 0.0558 0.0379 0.3523 0.2379 3.1142 0.9367
2 0.2135 0.0119 0.3028 0.1991 0.0029 0.0616 0.0387 0.3793 0.2379 3.7207 0.97712-3
3 0.2874 0.0160 0.3856 0.3472 0.0050 0.1188 0.0741 0.7824 0.3920 11.3085 0.9776
1 0.1268 0.0070 0.1640 0.1800 0.0026 0.0449 0.0216 0.2464 0.2379 3.1142 0.9684
2 0.1268 0.0070 0.1640 0.1800 0.0026 0.0449 0.0216 0.2464 0.2379 3.1142 0.98102-4
3 0.2112 0.0117 0.3398 0.2319 0.0033 0.1168 0.0405 0.4479 0.2379 11.3085 0.9810
1 0.1530 0.0085 0.2175 0.1825 0.0026 0.0484 0.0251 0.2761 0.2379 3.1142 0.8670
2 0.1530 0.0085 0.2175 0.1825 0.0026 0.0484 0.0251 0.2761 0.2379 3.1142 0.98052-5
3 0.3801 0.0211 0.5610 0.4777 0.0069 0.2058 0.0755 1.9311 0.4687 19.3607 0.9805
1 0.1530 0.0085 0.2134 0.1825 0.0026 0.0478 0.0251 0.2733 0.2379 3.1142 0.8670
2 0.1560 0.0087 0.2175 0.1827 0.0026 0.0484 0.0270 0.2761 0.2379 3.1142 0.98052-6
3 0.3801 0.0211 0.5610 0.4777 0.0069 0.2058 0.0755 1.9311 0.4687 19.3607 0.9805
1 0.1361 0.0076 0.1826 0.1806 0.0026 0.0465 0.0226 0.2564 0.2379 3.1142 0.8670
2 0.1530 0.0085 0.2175 0.1825 0.0026 0.0484 0.0251 0.2761 0.2379 3.1142 0.98052-7
3 0.3801 0.0211 0.5610 0.4777 0.0069 0.2058 0.0755 1.9311 0.4687 19.3607 0.9809
1 0.1530 0.0085 0.2175 0.1825 0.0026 0.0484 0.0251 0.2761 0.2379 3.1142 0.8670
2 0.1823 0.0101 0.2449 0.1878 0.0027 0.0499 0.0298 0.3075 0.2379 3.1142 0.97942-8
3 0.3801 0.0211 0.5610 0.4777 0.0069 0.2058 0.0755 1.9311 0.4687 19.3607 0.9805
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