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ABSTRACT. In structural analysis applied to matrix structures of production, as input-output
analysis, to determine how the structure has changed over time an interesting question, or
what are the differences between two structures, e.g., two countries for the same time. This
can be performed by directed methods based on the computation of technical (or column)
coefficients what removes the effect of differences between the two structures for their column
margins; same thing can be done with row coefficients. This predertemines the direction of the
economy, demand or supply driven, and both results are not comparable. However, the
comparison of the two matrices can be performed by removing simultaneously the differences
between the column margins and the row margins of the two matrices. The paper surveys all
ways to perform this: the methods based on additive method (minimization of differences,
minimization of square differences, etc.) and the methods based on multiplicative methods
biproportional.



I. Introduction

Determining how structures of exchange have change is a necessity in many fields: in
input-output analysis when one wants to determine the change of a structure of production
(i.e., a structure of exchange between sectors of production) over time, but also in spatial and
regional science when one wants to analyze how the exchanges between regions have been
modified over time, or in finance theory when one is concerned with the evolution of
cross-shareholding, or in sociological sciences when one is decided to see how the
communications between individuals have varied, etc. Similarly, it can be asked for what are
the differences over space between two different but comparable structures as two countries
for the same year. Not all these applications are economic, but all have a common point:
change in the structure of production must be measured.

The paper surveys some methods allowing to evaluate how an exchange structure has changed
over time or what are the differences between two exchange structures over space. These two
structures will be represented by two matrices denoted Z and Z*.

There are two major sets of methods: the directed methods where the economy is assumed to
be either demand-driven either supply driven and the non-directed methods where such a
hypothesis is not assumed.

II. Directed methods

By directed methods, I mean the methods of structural comparison that are based on the
comparison of two matrices of coefficients, technical coefficients or allocation coefficients, or
more generally, column coefficients and allocation coefficients.

A. Naive method: simple comparison of two matrices of technical
coefficients or two matrices of allocation coefficients

1. The direct comparison of coefficients

To evaluate change in a structure of exchanges, you can compare two matrices of technical
coefficients to remove the differences between column margins. A technical coefficient  isa ij

the ratio of the flow  from a sector i to a sector j, over the output  of sector j: it indicateszij x j

how much a sector has to buy of commodity i to produce one unit of commodity j. For
Leontief, these coefficients are assumed to be stable, what implies that the economy is demand
driven, so two technical coefficient matrices A and  are compared, an initial matrix A and aA∗

final matrix , belonging of two different periods.A∗

The same thing can be done with allocation coefficients: in the Ghosh perspective, the
allocation coefficients are assumed to be stable, what imply that the economy is supply driven.
An allocation coefficient  is a coefficient that divides the flow  by the output  of sectorb ij zij x i
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i: it indicates how the output of a sector, i, will be allocated to other sectors, j. In this case,
one compares two allocation coefficient matrices B and .B∗

This direct comparison of technical or allocation seems simple, but it has to be sophisticated to
be rigorous.

2. The comparison of normalized coefficients

With the demand-driven model, the matrix A deduced form Z is compared to the matrix  A∗

deduced from . However, even many authors use this approach directly, this is not soZ∗

simple because the two matrices have not the same column margins. If you compare directly
two matrices of technical coefficients that have not the same column margins, you mix two
effects: 1) the pure variation of the technical coefficients and 2) the variation of the rate of
added value that perturbs the analysis. In one hand, in the view point of the Leontief
production function, if a technical coefficient  decreases, all coefficients being equal, thena ij

this has a technical signification; but, as a counterpart, the rate of added value  (wherev j =
wj

x j

 is the added value) has been increased mechanically: added value is endogenous, dependingwj

on the variation of technical coefficients. In the other hand, in a structural analysis viewpoint,
the influence of j over i has decreased and the influence of j over the revenue has increased:
the added-value is exogenous and it can vary by itself. In this last case, it is preferable to catch
the pure variation of technical coefficients, for example when a comparative structural analysis
(based on graph analysis) is done over time. Remember that among the two components of
added value, the profit is traditionally a residue and it is endogenous, but the salaries are
largely exogenous, that is to say, they are not less exogenous than technical coefficients.

So, either added value is included into the analysis and the matrices of technical coefficients
are borded with a supplementary row, the row of added value: they have 1 as margin for all
their columns but they are rectangular:













a11 ... a1n

... ...
an1 ... ann

v1 ... vn













1 ... 1

either only the technical coefficient matrices are analyzed, but there is a need for an additional
operation of normalization to allow a significant comparison of the two matrices. To perform
it, a column normalization of A and  is done:  is computed, where  A∗ A∗M − AM AM = A MA

−1

and  are the matrices obtained by transforming A and  into MarkovianA∗M = A∗ (MA
∗ )−1 A∗

matrices, with 1 as margin of all columns.
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Remark. A margin is the column sum or a row sum. Here, the margin matrices  and MA MA
∗

 are the diagonal matrices whose diagonal elements are the sum of the column j of the
matrices A and , excluding added value:  . A∗ m jA = Σ

i
a ij

Additionally, as  and  have the same column margins, it could be skilled to computeAM A∗M

the Frobenius norm of the columns of the difference matrix to give the variability, an indicator
of change of sector computed in percentage:

(1)                                                σj = Σ
i


a ij

∗M − a ij
M 


2

that indicates what column sectors vary the more in terms of pure variation of technical
coefficients. Note that this quantity is also the relative variability, computed in percentage, of
the non-normalized technical coefficients, because  can be written:σj

(2)             σj = Σ
i


a ij

∗M − a ij
M 


2

= Σ
i





aij
∗

m j
∗ −

a ij

m j





2

= 1
m j

∗ Σ
i


a ij

∗ − aij



2

where the terms  are the transformation of A such as it has the same columna ij =
a ij

m j
m j

∗

margins than . Or it can be written alsoA∗

(3)                                                σj = 1
m j

Σ
i


a ij

∗ − a ij



2

where  is the transformation of  so that it has the same margins than A.a ij
∗ =

a ij
∗

m j
∗ m j A∗

So, at least for the sector level, normalizing technical coefficients is the same thing than to do
a comparison of  to , then to compute relative variabilities:A = A M−1 M∗ A∗

.σj = 1
m j

∗ Σ
i


a ij

∗ − a ij



2

Reciprocally, for the supply-driven model, the same procedure is applied to the matrix B,
deduced from Z, to compare it to the matrix , deduced from , to give the relativeB∗ Z∗

variabilities , that indicates what row sectors are the most changing.σi = Σ
j


b ij

∗M − b ij
M 


2

B. The causative matrix method

The causative matrix method has been extended to input-output analysis by Jackson,
Rogerson, Plane and O hUallachain (1990) 1. They start from the inverse matrix  ΠΠ = (I − A)−1

1 See also Rogerson and Plane (1984), Plane and Rogerson (1986), Jackson et al.
(1990).
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and they compute two transition matrices as Markovian matrices  andΠΠM = ΠΠ M−1

. Note that the method would not have been changed, only theΠΠ∗M = ΠΠ∗ 
M∗ 


−1

interpretation of the results would, if the direct matrices would have been used instead of the
inverse matrices. Matrix  is assumed to be linked to the matrix  by the formula:ΠΠ∗M ΠΠM

(4)                                                         ΠΠ∗M = C ΠΠM

Matrix C is the left causative matrix and it explains the change between  and ; it isΠΠM ΠΠ∗M

found by inverting :ΠΠM

(5)                                                       C = ΠΠ∗M (ΠΠM)
−1

As matrix C is completely filled with  terms, its interpretation is not easy. This is why matrixn2

C is compared to the identity matrix: all diagonal elements are compared to 1, while all
off-diagonal elements of each row are compared to 0, i.e., only  elements to analyze; in2 n

other terms, one hopes that  for all i, j and all gap is inscribed. However, as formulaπ ij
∗M = π ij

M

(4) implies that each coefficient  of  is not linked to the corresponding coefficient  π ij
∗M ΠΠ∗M π ij

M

of , but to all coefficients of one column of : , the interpretation ofΠΠM ΠΠM π ij
∗M = Σ

k
c i k πkj

M

gaps remains difficult. For Jackson et al. (1990, p. 265-266), a large diagonal element  c ii

indicates that "final demand impacts [of sector i], relative to others, are increasingly being
internalized within the sector", while a large off-diagonal element indicates "an increasingc ij

proportionate importance of final demand deliveries from ... [sector j] in stimulating ... output
[of sector i], either directly from final demand deliveries from ... [sector j], or relative to the
impacts of final deliveries from all other sectors".

Formulae (4) or (5) allow to describe this approach as "multiplicative", by contrast to the
above comparison of technical or allocation coefficients that could be referred to as "additive":
transposed to the inverse matrices, it could be written , what should beD = ΠΠ∗M − ΠΠM

compared to the null matrix. In this case, the interpretation would be easier because there is no
mix of coefficients from  to  and each  is linked to the corresponding coefficientΠΠM ΠΠ∗M π ij

∗M

 by the simple formula  that gives a more simple interpretation of the gaps.π ij
M π ij

∗M = d ij + π ij
M

Remark. A reverse comparison can be done by posing , where  is theΠΠM = C
∼

ΠΠ∗M C
∼

causative matrix for this reverse analysis.  is the inverse of C:C
∼

(6)                                                      C
∼

= ΠΠM (ΠΠ∗M)
−1 = C−1
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However, this is a right causative matrix a defined by Jackson et al. (1990):

. ΠΠ∗M = ΠΠM R ⇒ R = 
ΠΠM 


−1

ΠΠ∗M

C. Discussion

The difficulty with directed methods is that the results obtained for technical coefficients will
be not comparable to the results obtained for allocation coefficients. If technical coefficients
are assumed to be stable, allocation coefficients cannot be stable: assuming that technical
coefficients are stable, i.e., , then   and if allocation coefficients areA∗ = A B∗ = x∗ −1 A x∗ ≠ B

stable, i.e., , then . This works except in the case of absolute joinB∗ = B A∗ = x∗ x−1 A x x∗−1

stability (Chen and Rose, 1986 and 1991): if  and , then .A∗ = A x∗ = k x B∗ = x∗ −1 A x∗ = B̀

There is a large literature about what model can be considered as the more attractive: Bon,
1986; Oosterhaven, 1988, 1989, 1996; Miller, 1989; Gruver, 1989; Rose and Allison, 1989;
Dietzenbacher, 1997. Generally, the demand driven model is considered as the more plausible.

However, the true stability over time of one type of coefficient or the other is doubtful: in
Mesnard (1997), it is shown that the temporal stability of column coefficients is not higher to
the temporal stability of row coefficients. If technical coefficients are not stable, the model can
be declared as not demand driven but the reciprocal of this proposition is false: if technical
coefficients are stable, the model is not necessarily demand driven while if allocation
coefficients are not stable, the model cannot be declared as supply driven but the reciprocal is
false again. So, one may want to compare technical coefficients over time by assuming the
demand driven hypothesis and the normal stability of technical coefficients, but one will have
no information about allocation coefficients. Or, alternately, one may want to compare
allocation coefficients over time by assuming the supply driven hypothesis by assuming the
normal stability of allocation coefficients, but one will have no information about technical
coefficients.

III. Not directed methods

In this group of methods, no hypotheses are made about the direction of the economy, demand
or supply driven. Both hypotheses are incompatible and the results in the first case are not
comparable with the results in the second case. However, even if the demand-driven
hypothesis could seem more plausible, in an epistemological view it is always preferable not to
pose a hypothesis when it can be avoided, provided that the hypothesis could be falsified later.
So, while for directed methods, either column coefficients were compared after a column
normalization either row coefficients after a row normalization, for non-directed methods the
idea consists into comparing coefficients but without a column or row normalization that
would imply a demand driven model or a row driven model.
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A. The methods that generalize the comparison of technical and allocation
coefficients

The idea is to generalize the comparison of technical coefficients and of allocation coefficients
but by becoming free from the direction of the economy -- demand-driven or supply-driven
hypothesis -- . The ex ante stability of technical and allocation coefficients will not be posed
and their stability will be measured eventually ex post, what could help to dismiss one of the
alternative hypothesis or both eventually.

Flow matrices can be compared directly, without passing by the technical and allocation
coefficient matrices. Remember that, instead of to compare two technical coefficients
(respectively two allocation coefficients)  and , one is able to compare two absolutea ij a ij

∗

values  and : , where the symbol " " signifieszij
x j

∗

x j
zij

∗ a ij ↔ a ij
∗ ⇔

zij

x j
↔

zij
∗

x j
∗ ⇔ zij

x j
∗

x j
↔ zij

∗ ↔

"compared to".

In a general way, the most simple principle of this type of non-directed methods will consist
into projecting one matrix to give her the margins of another matrix, what is close to do a
normalization of both column and rows. Nevertheless, while for directed methods it was
equivalent to compare  with  or  with , now it will not be the case:A = A M−1 M∗ A∗ AM A∗M

this will generate some variants in the procedure.

Starting from an initial flow matrix Z and a final flow matrix ,  the principle consists intoZ∗

computing a matrix the closer as possible to Z but with the row and column margins of ;Z∗

see figure 1.

Figure 1 here

However, there are many tools to perform the projection of a matrix and the problem is to
choose one of these tools, or, in other words, there are an infinite number of matrices that can
have the same margins and the problem is to choose one of these matrices. The resulting
matrix may vary depending on the tool chosen to perform the projection, and consequently the
results of the methods may vary, again generating a typology. Moreover, to evaluate the
variation from the projections, some methods compute the difference between the projection
and the target, some other compute the ratio between the projection and the target: this will
add two more branches to the typology.

1. The methods that minimize a distance between the projected matrix and
the final matrix

To find the matrix  that is the nearest to a matrix Z and that respects the margins of anotherZ

matrix  (i.e. under constraints of margins:  and ), it is possible toZ∗ Σ
i

zij = Σ
i

zij
∗ Σ

j
zij = Σ

j
zij

∗
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use one of the methods that minimize a distance between the projected matrix  and the initialZ

matrix Z. However, this may create negative terms in the projection  because of theirZ

additive form. For example, the orthogonal projection, i.e., the minimization of the least
squares, that is  gives , where P and Q are diagonalminΣ i Σ j (zij − zij)

2 Z = P + Z + Q

matrices. The non negativity of terms of the projected matrix is not guaranteed (Mesnard,
1990a). Remember that negative terms are impossible to explain in an input-output context: if
Z has no negative terms, how to justify in an economic view point, the existence of some
negative terms inside the projected matrix ?Z

Among the possible methods, can be found:

The above minimization of the quadratic deviation (the square of the Frobenius norm of the
difference matrix): .min Σ

i
Σ

j
(zij − zij)

2

The minimization of the absolute differences: , what is not continuouslymin Σ
i

Σ
j

zij − zij

derivable.

The minimization of the Hölder norm at the power p: , knowing thatmin Σ
i

Σ
j

zij − zij
p

the Hölder norm (Rotella and Borne, p. 78) is , what is aZ − Z
p

=



Σ

i
Σ

j
zij − zij

p 




1/p

generalization of two preceding, 

Pearson's : ,χ2 min Σ
i

Σ
j

(zij − zij)
2

zij

Neyman's : .χ2 min Σ
i

Σ
j

(zij − zij)
2

zij

Besides the negative terms, these methods often lead to various problems as some
non-linearities or non-differentiabilities that can be found in the system of equation (Neyman,
absolute differences).

2. The methods based on a biproportion

In (Mesnard, 1990a, 1990b, 1996, 1977), a biproportional filter was proposed to analyze
structural change. Remember that the result  of a biproportion that gives to Z the sameZ

margins than to , , is equal to , where P and Q are diagonal matricesZ∗ Z = K(Z, Z∗) P Z Q

that allow to respect two conditions:

1)  must have the same row and column margins than Z Z∗ :

(7)                                                   










Σ
j

zij = Σ
j

zij
∗ for all i

Σ
i

zij = Σ
i

zij
∗ for all j









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2)  is the matrix the nearest to Z following a certain criterion. This criterion can be, amongZ
others:

The maximization of entropy (Wilson, 1970): , under the constraint  max − Σ
i

Σ
j

zij log zij

 where C is the total cost and  is a cost, that can be considered asC = Σ
i

Σ
j

zij c ij c ij

representative of .Z0

Kullback and Liebler's minimization of information (Kullback and Liebler, 1951),

(Kullback, 1959), (Snickars and Weibull, 1977): .min Σ
i

Σ
j

zij log
zij

zij

The minimization of interactions of Watanabe (1969) and Guiasu (1979). Etc.

Several algorithms respect these two conditions. Among them, there is RAS. For example, the
terms P and Q can be of the following form:

 , for all i , and , for all jp i =
zi•

∗

Σ
j=1

m

q j zij

q j =
z•j

∗

Σ
i=1

n

p i zij

It is demonstrated (Mesnard, 1994) that all algorithms respecting the two conditions of a
biproportion provide to the same results. These algorithms have a unique solution as
demonstrated for RAS by Bacharach (1970). One of the properties that cause difficulties with
these algorithms is that they have to be solved iteratively, but generally, the convergence speed
is good even if it depends on the choice made for the algorithm (Bachem and Korte, 1979).
Also, note that if all terms  are positive, all terms  will be also positive, as soon as allp i

(k) q j
(k)

terms of Z are positive: this guarantees to avoid negative terms, always hard to interpret.

However, there are more than one manner to complete the job.

i. The subtractive biproportional methods

a. Projection of a flow matrix on a flow matrix

1) The basic method

With the biproportional ordinary filter, the flow matrix Z is projected such that it obtains the
same margins than the flow matrix : . Then the result  is compared to  byZ∗ Z = K(Z, Z∗) Z Z∗

calculating the difference matrix . Relative variations are then computed:Z∗ − K(Z, Z∗)

, for column j and, , for row iσj
C =

Σ
i

zij
∗ − K(Z, Z∗) ij


2

Σ
i

zij
∗ σi

R =
Σ

j

zij
∗ − K(Z, Z∗) ij


2

Σ
j

zij
∗
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Remark. Also, a  is able to be computed, for example:χ2

  or Σ
i

zij
∗ − K(Z, Z∗) ij


2

zij
∗ Σ

i

zij
∗ − K(Z, Z∗) ij


2

zij

Remark. As  has the same row and column margins as , both matrices areK(Z, Z∗) Z∗

compared without the differential growth effect of sectors: this generalizes the
"shift-and-share method". 

A difficulty is that it is also possible to project  on the margins of Z to compare the result toZ∗

Z, so we have two ways to do the computation, the direct computation from Z to  and theZ∗

reverse computation from  to Z, what multiplies all computations by two and what givesZ∗

two sets of different results without a criterion to declare the superiority of one over the other.

2) Avoiding the double projections, direct and reverse

Understanding that the basic idea of biproportional filtering consists into giving to the flow
matrices Z and  the same margins, to remove these difficulties, one can try to find a thirdZ∗

matrix  to provide these margins. If  has the same margins than Z, or is equal to Z, thenZB ZB

 and , that is the reverse projection of the ordinaryK(Z, ZB) = Z K(Z∗ , ZB) = K(Z∗ , Z)

biproportional projector; if  has the same margins than , then  andZB Z∗ K(Z∗ , ZB) = Z∗

, that is the direct projection of the ordinary biproportional projector.K(Z, ZB) = K(Z, Z∗)

For all positions between these two "polar" matrices, one can obtain a wide range of results. A
good idea could consist into choosing  such a manner that the variance would beZB

minimized:

  min K(Z, ZB) − K(Z∗ , ZB) F
2

Unfortunately, this expression is not linear regarding to the terms of Z,  and to the marginsZ∗

of  and it has no analytical solution because biproportion is a transcendent operator. Such aZB

problem can be solved only by a succession of computations, what is too much heavy even for
small matrices.

However, one type of matrix is a good candidate to play the role of : a function of Z andZB

; for example, , the mean of Z and , with . I call this the biproportionalZ∗ Z Z∗ Z = 1
2

(Z + Z∗)

mean filter (Mesnard, 1998). 

Remark.  could be also a third matrix of an intermediary year, 1988, if Z is 1980 and  ZB Z∗

is 1996, but remember that only the margins of this matrix are important. 
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In the biproportional mean filter, each matrix Z and  is projected to the margins of , theZ∗ Z

mean of Z and , to give  and ; then,  is compared toZ∗ K
Z, Z

 K
Z∗ , Z

 K
Z, Z



 by calculating the Frobenius norm of the difference matrix  K
Z∗ , Z

 K
Z∗ , Z

 − K
Z, Z



as it is done in the ordinary biproportional filter, except that there is only one set of
computations and not two:

, for row iσi
R =

Σ
j



K

Z∗ , Z
 ij

− K
Z, Z

 ij




2

z i•

and , for column j. σj
C =

Σ
i



K

Z∗ , Z
 ij

− K
Z, Z

 ij




2

z •j

This allows to remove the effects of differential growth of sectors, but not the effect of
differences in the size of sectors.

A figure based on an Edgeworth box will illustrate the method (see figure 2). Consider the
matrices:

and  Z =





5 5
4 1






10
5

9 6

Z∗ =





3 1
6 5






4
11

9 6

so,                      and K(Z, Z∗) =





1.42 2.58
7.58 3.42




 K(Z∗ , Z) =






6.74 3.26
2.26 2.74






This matrix is represented by the following Edgeworth box, where the sides of the box
correspond to the column constraints of matrix Z, the line AB corresponds to the row
constraints of Z and the point z corresponds to Z. With matrix , column constraints are theZ∗

same and row constraints become the line CD, while  is represented by point . TheZ∗ z∗

length of segment , which corresponds to the variation found by the direct{K(z, z∗), z∗}

projection, is closed to the length of segment , which corresponds to the{K(z∗ , z), z}

variation by the reverse projection. Consider another matrix  with the same margins than Z:Z1

Z1 =





8 2
1 4






10
5

9 6
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so,                                           K(Z1, Z∗) =





3.74 0.26
5.26 5.74






As Z and  have the same margins,  is confused with . The segmentZ1 K(z∗ , z1) K(z∗ , z)

 is clearly shorter than the segment . This is because the{K(z1, z∗), z∗} {K(z∗ , z1), z1}

projection of  is near the limit of the box: the orthogonal projection of , found by anz1 z1

additive method, is even outside the limit of the box (it corresponds to negative terms in the
projected matrix) and the ordinary biproportional projection corrects it.

Consider the matrix  represented by the segment EF:Z

Z = 1
2

(Z + Z∗) =





4 3
5 3






7
8

9 6

Then,

,  ,  K
Z, Z

 =





3.00 4.00
6.00 2.00




 K

Z∗ , Z
 =






5.00 2.00
4.00 4.00




 K

Z1, Z
 =






6.25 0.75
2.75 5.25






Figure 2 here

The second variant is a generalization of the normalization of the technical or allocation
coefficients: for this reason, it constitutes a special category.

b. Binormalization of flow matrices

In the biproportional bimarkovian filter, both flow matrices are binormalized, that is to say
normalized by columns and by rows simultaneously: each matrix Z and  is transformed intoZ∗

a bimarkovian matrix,  and .ZM Z∗M

A bimarkovian or binormalized matrix is a matrix of which all margins of both sides, column
and row, are equal to 1: this is exactly possible only for square matrices. Any other number
can be chosen; the important thing is that all margins of the same side would be equal. For
rectangular matrices of dimension , the margins of one side -- say the side of dimension(n, m)

n -- are equal to  and the margins of the other side are equal to :  andµ, λ 1M s = µ s

. For example, one can take:s 1M = λ s
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(8)                                                     1M =















1
...
1

n
m ... n

m

or,

(9)                                                     1M =















m
...
m

n ... n

Two biproportional projections are done:  and . For example,ZM = K(Z, 1M) Z∗M = K(Z∗ , 1M)

 and with matrix  defined in (8):K(Z, 1M) = P Z Q 1M

(10)                             , for all i , and , for all jp i = 1

Σ
j=1

m

q j zij

q j = n
m

1

Σ
i=1

n

pi zij

or with the matrix  defined in (9):1M

(11)                              , for all i , and , for all jp i = m

Σ
j=1

m

q j zij

q j = n

Σ
i=1

n

p i zij

The same reasoning holds for . Then,  is compared to , by calculating the FrobeniusZ∗ ZM Z∗M

norm of the difference matrix . The rest of the method is similar to theZ∗M − ZM

biproportional mean filter replacing matrix  by the bimarkovian matrix . With aZ 1M

bimarkovian matrix as  in (9), one divide by m for columns and by n for rows when1M

calculating relative variations:  and .σj = 1
n Σ

i


zij

∗M − zij
M 


2

σi = 1
m Σ

j


zij

∗M − zij
M 


2

Remark. The choice between forms (8) or (9) for matrices  is neutral because the above1M

matrices (8) and (9) are equivalent; a separable modification of Z (or ) is ineffectiveZ∗

(Mesnard, 1994, 1997), i.e., if Z is replaced by , then . Z
∼

= ΨΨ Z ΩΩ K
Z
∼

, 1M 
 = K(Z, 1M)

This method could seem to distort strongly the data but it is only a generalization of the
normalization procedure applied to technical or allocation coefficients as seen in the beginning
of this paper. In the other hand, not only the effect of the differential growth of sectors is
removed without predetermining if the economy is demand or supply - driven as in the
ordinary biproportional filter, not only the problem of the double result is removed as in the
biproportional mean filter, but the effect of differential size of sectors is removed: after
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projection all sectors in column will have the same margin, i.e. the same size, and all sectors in
column will have the same margin. 

ii. The divisive biproportional methods

Van der Linden and Dietzenbacher (1995) have had an idea similar to those exposed above: to
compare two matrices, they project the first on the margins of the second. To perform this,
they compute . There are only two differences with the biproportional ordinaryA = K(A, A∗)

filter exposed above.

They do not compute variablities of rows or columns, but only variabilities of single cells of
the matrices: they compute  by dividing  by :d ij a ij a ij

∗

 for all i, jd ij =
a ij

a ij
∗

They work on technical coefficient matrices, when flow matrices are used in the
biproportional filters above. Note that under biproportion, it is not the same thing to work
on flow matrices or on technical coefficient matrices even if A is derived from Z by a
diagonal matrix multiplication (Mesnard, 1994):

 but .K(A, A∗) = K
A, Z∗ 〈x∗〉−1 

 = K(A, Z∗) K(A, A∗) = K
Z 〈x〉−1, A∗ 

 ≠ K(Z, A∗)

Even if these authors remain on technical coefficient matrices, both margins are projected,
so the method is relevant to the category of non-directed methods: it could be applied as
well as to flow matrices. There is a certain contradiction to start from a directed model
(demand-driven) and then to apply a non-directed method: it could seem curious to project
on both margins, while only the column margin has a signification when technical
coefficient matrices are used.

B. The bicausative method

The principle of the bicausative method (Mesnard, 2000) consists into keeping the idea of
causative matrices, but in abandoning the directed character of the causative method. The
bicausative method starts from the double causative method proposed by Jackson et al. (1990,
p. 268): ; the double causative method could be qualified as non-directedΠΠ∗M = CL ΠΠM CR

after replacing Markovian matrices by flow matrices, but it does not allow to compute C
matrices and it obliges to estimate a too large number of parameters,  -- . In the2 n2

bicausative method, two diagonal matrices, L and R, are replacing the matrices and :CL CR

the number of parameters falls to . Change between flow matrices is assumed to be of the2 n

form  but this form is not biproportional because L and R are diagonal matrices. AsL Z R

 is generally not equal to , the choice is made to find the matrices  andL Z R Z∗ L(n, n)

 by minimizing the sum of squares of the differences between  and :R(m, m) zij
∗ l i zij rj
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(12)

                                      min SS ;SS = Σ
i=1

n

Σ
j=1

m
zij

∗ − l i zij rj
2

what gives:

(13)

                                       


























li =
Σ
j=1

m

zij
∗ zij rj

Σ
j=1

m 
zij

0 


2 
rj

0 


2
, for all i

rj =
Σ
i=1

n

zij
∗ zij l i

Σ
i=1

n

(zij)
2 (l i)2

, for all j


























This is solved iteratively and is denoted . The diagonal matrix R affectsLS(Z, Z∗) = L Z R
equally all terms of a column and the diagonal matrix L affects equally all terms of a row.

Remark. In reverse form, from  to Z, one obtains:Z∗

(14)                                                 LS(Z∗ , Z) = L
∼ ∗ Z∗ R

∼ ∗

with,

(15)                                         


























l
∼

i
∗ =

Σ
j=1

m

zij
∗ zij r∼ j

∗

Σ
j=1

m 
zij

∗ 


2 
r∼ j

∗ 


2
, for all i

r∼ j
∗ =

Σ
i=1

n

zij
∗ zij l

∼
i
∗

Σ
i=1

n 
zij

∗ 


2 
l
∼

i
∗ 


2
, for all j


























However, unlike the case for causative matrices, the direct and inverse results will not be
the same. To compare the results of the direct and reverse methods, one should compute

 and  that are both on the space ofLS
Z, Z∗ 

 = L Z R 
L
∼ ∗ 


−1

LS
Z∗ , Z



R

∼ ∗ 


−1

= Z∗

year 1 (while   is on the space of year 0) so matrix R should beLS
Z∗ , Z

 = L
∼ ∗ Z∗ R

∼ ∗

compared to matrix  and matrix  should be compared to matrix L. 
R

∼ ∗ 


−1 
L
∼ ∗ 


−1

Some drawbacks of the bicausative-matrices method are indicated in (Mesnard, 2000). The
estimators L and R are not identified because they are specified at a coefficient of

proportionality. The initialization by , for all j, gives  , for all i, andrj(0) = λ l i
∗ = 1

λ l i
∗

, for all j,  where  and  denote the values obtained after an initialization byrj
∗ = λ r j

∗ l i
∗ r j

∗
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, for all j, and the product  remains unchanged: , for all i andrj(0) = 1 l i
∗ x ij rj

∗ l i
∗ x ij rj

∗ = l i
∗ x ij r

j. It is similar if one initializes by  instead of for all i. When the computation isl i(0) = λ l i(0) = 1

initialized by any set of values, i.e., by , for all j, then the result is not∃ j1, j2 / rj1(0) ≠ rj2
(0)

predictable. The problem is embarrassing because non identification concerns the coefficients
L and R that are searched, while it is not the case with other methods as the biproportional
filter where only the identified products  are searched. Problems of convergence of theP Z Q

iterative algorithm were found, with local equilibria.

Moreover, interpretation of the bias between  and  is problematic:Z∗ LS (Z, Z∗)

 can be approximately different to 0 but the quality of the analysis depends onZ∗ − LS (Z, Z∗)

the size of this bias. As it is said in (Mesnard, 2000), this manner of calculating the bias mixes
two phenomenona, the bias caused by the differences in the sector size and the bias caused by
the true structural effect because both matrices Z and  do not have the same margins. Thus,Z∗

one could give to both matrices the same margins to eliminate the size effect of differential
growth of margins, for example by doing a biproportion:

(16)

                                               K LS (Z, Z∗), Z∗ 

However, the bias of the bicausative method is similar to the difference matrix of the
biproportional filtering method, then, if one computes the structural bias of the bicausative
method, one is forced to compute the structural change as found by the biproportional filtering
method. It is simple to prove: as P and Q are diagonal in the expression ,LS(Z, Z∗) = L Z R
one has (Mesnard, 1994):

(17)

                           K LS (Z, Z∗), Z∗  = K (L Z R, Z∗) = K (Z, Z∗)

and the bias is:

(18)

                                  Z∗ − K LS (Z, Z∗), Z∗  = Z∗ − K (Z, Z∗)

that is what it is computed with the ordinary biproportional filter.

Remark. In the biproportional filtering method, the difference  is analyzed: it isY − K(X, Y)

not a bias, it is the subject of the analysis itself. 

IV. Application for France

All filters will be compared to the ordinary biproportional filter by an application based on data
for France, for the period 1980-1997. These two tables, the definitive table for 1980, the
temporary table for 1997 (INSEE, various years), are used in their original form but
aggregated into 9 sectors. Data are given in the base of 1980; the price deflation used is those
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made by the INSEE itself: all tables are at the prices of 1980, so price effects are removed.
Only the intermediate block of tables is used. To obtain a square table that can be analyzed by
the causative method, sectors T25 (Trade) and T38 (Non Marketable Services) have been
removed because they have not a row in the French accounting system.

To be allowed to compute technical coefficients and allocation coefficients, I have computed
final demand and added-value so that the account of each sector is in equilibrium (total of
column equal to total of corresponding row). So, the final demand is simply the difference
between the grand total of each sector and its intermediate sales and the added-value is the
difference between the grand total of each sector and its intermediate buyings. Imports,
customs duty, commercial margins and VAT are included into the added-value and the gross
formation of fixed capital, stock variations and exportations into the final demand; but, for this
simple illustrative application, it is not a problem (and it is difficult to avoid the difficulty...).
These data are presented by tables 1 and 2. This includes the imports, customs duty,
commercial margins and VAT into the added-value and the gross formation of fixed capital,
stock variations and exportations into the final demand, but, for this simple illustrative
application, it is not a problem (and it is difficult to avoid the difficulty...).

Table 1 here

Table 2 here

All these results are not always comparable. For example, the causative method is not
comparable to other methods: they are not relative variations in percentage. For the causative
method, to allow a minimal degree of comparability, the direct matrices A and  are usedA∗

along with the inverse matrices  and : the results are denoted in table 11 as "direct" whenΠΠ ΠΠ∗

the ordinary causative method based on inverse matrices is denoted "inverse". The first column
for the causative method indicates the value of diagonal term of the left causative matrix, the
second column the sum of the off-diagonal terms of each row. The results of the bicausative
method are not provided because they are not significant, as seen above.

For other methods, the percentages of variation obtained with all methods can be compared
only in a first approximation, especially for the methods that compare technical or allocation
coefficients and for the other methods. Also remember that with directed methods the results
for column sectors are not comparable to the results for row sectors, while they are with
non-directed methods. There are two ways of projection in the ordinary biproportional filter:
one is obliged to synthesize these results, direct and reverse, in a completely empirical way, by
computing the average of these two. The causative matrix and various matrices obtained by a
biproportion are shown in tables 3 to 9. As the multiplicative biproportional filter does not
give results for columns and rows, and as it is similar to the ordinary biproportional filter
except for presenting the results, it will not be published.

Table 3 here
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Table 4 here

Table 5 here

Table 6 here

Table 7 here

Table 8 here

Table 9 here

Table 10 here

In tables 11 and 12, the results for the comparison of technical or allocation coefficients will
be presented in a first column, a second column will contain the results of the causative
method, a third and fourth column will present the results for the ordinary biproportional filter
for direct and reverse computations while a fourth column will indicate the average of column
three and four; the sixth column contains the results of the biproportional mean filter and the
last column gives the results of the biproportional bimarkovian filter.

Table 11 here

Table 12 here

With all methods, the main result is the overwhelming dynamism of Financial Services, for
both column and row vectors. This is caused by the strong development of exchanges between
financial institutions, what can appear partially artificial because all financial movements
between banks, positive and negative, are measured in the French system, while only the
balances are really exchanged each month. This is why in the future reform of the French
national accounting system, only these balances will be taken into account. However a
discussion remains concerning these phenomenons. For other sectors, the results are the
following with the biproportional bimarkovian filter:
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For columns: Buildings, Energy and Trade (but this last one does not appear in the list of
the most changing sectors with the bimarkovian filter), are the most changing. Remember
that change in columns reflects change in the production function.

For rows: Buildings, Trade, Transport and Telecommunications, Services (again, Trade
and Transport and Telecommunications do not appear as the most changing with the
bimarkovian filter). Remember that change in rows reflects change in the distribution
function.

The biproportional mean filter, the average of the ordinary biproportional filter and the
bimarkovian filter provide very similar results for columns. For rows, the two firsts give
similar results also but those of the bimarkovian filter diverge for sectors Energy, Trade,
Transport and Telecommunications and Services.

Some large differences between direct and reverse projections can be noted with the ordinary
biproportional filter. For technical coefficients or allocation coefficients, the magnitude of
indicators diverges to the biproportional analysis but the ordering of sectors remains similar.

With the causative method based on inverse matrices, only diagonal elements are found to
exceed 1, Financial Services and Transport and Telecommunications and Minerals; the
smaller diagonal elements are for Buildings and Energy. For off-diagonal elements, Financial
Services and Services are the only positive, when Energy has the larger negative one. With the
causative method based on direct matrices, Financial Services, Transport and
Telecommunications, Services and Manufacturing have a diagonal element that exceeds one,
while the same coefficient for Buildings is near zero. The off-diagonal element of Financial
Services is highly positive, those of Agriculture, Services, Transport and Telecommunications
are strongly negative.

V. Conclusion

In this paper, I have presented some methods to compare two input-output matrices, and more
generally two flow matrices, at two different dates. The following graph will summarize the
typology of these methods. Bicausative method is crossed because it suffers theoretical
problems that prevent its use. The dotted line indicates that the original version of the
multiplicative biproportional method works on technical coefficient matrices (even if it could
be functional on flow matrices).

Figure 3 here

The question that remains is: what is the best method? It is hard to answer but, what is certain,
is that it is always preferable to avoid to choose a method that obliges to pose a hypothesis
when this hypothesis cannot be verified with the method. In other terms, it is preferable to
choose a more general method that allows not to pose this hypothesis especially if the method
allows to verify the hypothesis. The directed methods fall into the first category of method that
oblige to pose an unverifiable hypothesis (the demand-driven or the supply-driven hypothesis).
The non-directed methods fall into the second category: they do not force to pose the
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demand-driven or the supply-driven hypothesis but they give a tool to choose between them,
even if the results are not always decisive (Mesnard, 1997).
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VII. Tables and figures

1980
Buildings Energy Minerals Manu-

facturing
Buildings Trade Transpor

t and
Telecom.

Services Financial
Services

Final
Demand Output

Agriculture... 270 732 196 63 24 955 0 25 520 233 2 305 0 468 699 792 703

Energy 18 603 167 784 23 722 48 846 8 091 6 285 28 118 7 129 877 221 557 531 012

Minerals 1 962 2 303 83 346 72 775 60 063 1 880 493 810 0 71 271 294 903

Manufacturing 50 722 13 485 10 610 439 871 74 100 11 480 13 867 59 304 3 437 1 136 942 1 813 818

Buildings 1 033 6 042 381 2 050 231 406 627 2 917 5 891 431 123 450 701

Trade 831 263 1 401 2 627 813 3 524 1 866 8 703 823 136 133 156 984

Transport and
Telecomm.

5 632 5 985 10 125 36 106 13 034 4 026 24 126 21 715 4 407 143 731 268 887

Services 18 792 12 857 9 866 83 142 48 570 12 646 15 907 103 334 12 802 476 609 794 525

Financial
Services

1 038 568 829 5 826 5 940 790 636 1 796 3 812 115 447 136 682

Added-value 423 358 321 529 154 560 1 097 620 239 859 90 427 183 014 586 512 104 633 3 201 512 5 240 215

Output 792 703 531 012 294 903 1 813 818 450 701 156 984 268 887 794 525 136 682 5 240 215

Table 1. Input-output table for 1980

1997
Agri-

culture...
Energy Minerals Manu-

facturing
Buildings Trade Transpor

t and
Telecom.

Services Financial
Services

Final
Demand Output

Agriculture... 322 195 82 18 26 579 0 29 155 262 3 793 0 652 127 1 034 211

Energy 21 967 131 572 17 340 57 330 9 039 7 886 37 493 11 455 1 511 278 729 574 322

Minerals 1 897 13 704 73 056 75 138 52 009 2 019 294 1 147 0 86 226 305 490

Manufacturing 65 350 13 689 9 949 643 225 77 183 14 998 22 418 110 662 3 360 1 876 975 2 837 809

Buildings 1 308 7 462 311 2 567 205 450 779 5 147 11 980 435 214 465 423

Trade 902 283 908 2 756 595 3 834 2 524 12 399 420 168 423 193 044

Transport and
Telecomm.

8 304 7 026 9 786 66 975 15 001 7 352 53 145 59 148 8 055 253 161 487 953

Services 34 278 26 771 13 246 160 772 65 040 21 598 25 851 224 065 34 205 838 362 1 444 188

Financial
Services

3 168 1 791 1 616 18 459 12 291 1 341 2 107 5 507 987 446 145 990 1 179 716

Added-value 574 842 371 942 179 260 1 784 008 234 060 104 411 343 080 1 010 865 132 739 4 735 207 8 522 156

Output 1 034 211 574 322 305 490 2 837 809 465 423 193 044 487 953 1 444 188 1 179 716  8522156

Table 2. Input-output table for 1997



C
based on

inverse matrices

Agri-
culture...

Energy Minerals Manu-
facturing

Buildings Trade Transport
and

Telecom.

Services Financial
Services

Agriculture... 0.978020 -0.000188 -0.000588 -0.007009 -0.000213 -0.032388 -0.000909 -0.001059 -0.002325

Energy -0.004692 0.928007 -0.035239 -0.011832 -0.005093 -0.003089 -0.039038 -0.000944 -0.013546

Minerals -0.001302 0.023335 1.004467 -0.022213 -0.053228 -0.003719 -0.003390 -0.000441 -0.006258

Manufacturing -0.002428 -0.000301 -0.004832 0.988599 -0.017293 0.001931 -0.007881 -0.000600 -0.045208

Buildings 0.000198 0.001970 -0.000297 0.000086 0.914776 0.000280 -0.000781 0.000314 -0.027662

Trade -0.000040 0.000308 -0.001498 -0.000352 -0.000421 0.952228 -0.001363 -0.002084 -0.006364

Transport and
Telecommunications

0.001252 0.002198 -0.002823 0.003449 0.000187 0.013095 1.033929 0.013584 -0.033719

Services 0.012133 0.026504 0.012507 0.014496 0.031391 0.036846 -0.003537 0.971099 -0.074636

Financial Services 0.016858 0.018167 0.028304 0.034777 0.129894 0.034817 0.022970 0.020131 1.209719

Table 3. Causative matrix 1980/1997, based on inverse matrices

C
based on

direct matrices

Agri-
culture...

Energy Minerals Manu-
facturing

Buildings Trade Buildings Services Financial
Services

Agriculture... 0.958951 -0.011314 0.009073 -0.022090 0.210353 -0.906155 0.047631 0.077316 -0.421638

Energy 0.009650 0.826050 -0.002153 -0.003934 -0.384087 0.158514 -0.052877 -0.000919 0.449191

Minerals 0.003914 0.042692 0.979570 -0.033269 1.035944 0.176445 -0.046811 0.007051 -1.588412

Manufacturing 0.010407 0.018109 0.009308 1.006449 -0.246185 0.134790 -0.003001 -0.063338 -0.317095

Buildings 0.000078 0.041925 -0.004515 -0.000760 0.109691 -0.018828 -0.048532 0.032454 -0.131094

Trade 0.000586 0.006263 -0.002530 0.000722 -0.145419 0.839969 -0.001829 -0.010946 0.083538

Transport and
Telecommunications

-0.001645 0.023506 -0.030048 0.006167 -0.714651 0.202697 1.281932 0.010606 -0.403282

Services 0.017805 0.180426 0.023596 0.042680 -2.619437 0.599590 -0.311563 1.077434 0.855066

Financial Services 0.000253 -0.127658 0.017698 0.004034 3.753791 -0.187022 0.135049 -0.129658 2.473725

Table 4. Causative matrix 1980/1997, based on direct matrices

K(1980, 1997)
Agri-

culture...
Energy Minerals Manu-

facturing
Buildings Trade Transport

and
Telecom.

Services Financial
Services

Agriculture... 318 681.59 210.33 50.96 30 271.13 0.00 28 527.08 350.48 3 992.43 0.00

Energy 18 057.72 148 475.97 15 822.34 48 861.03 4 855.38 5 793.55 34 878.55 10 182.58 8 665.87

Minerals 2 429.58 2 599.87 70 918.02 92 868.44 45 981.21 2 210.80 780.14 1 475.93 0.00

Manufacturing 67 661.55 16 399.18 9 725.24 604 678.58 61 108.96 14 542.76 23 638.62 116 406.95 46 672.16

Buildings 418.84 2 233.33 106.15 856.55 57.90 156.33 324.87 1 740.33 24 314.69

Trade 636.23 183.57 737.04 2 072.65 384.81 2 562.17 1 825.65 9 804.63 6 414.25

Transport and
Telecommunications

7 565.83 7 329.65 9 346.05 49 983.50 10 824.61 5 136.02 41 416.47 42 924.26 60 265.60

Services 24 341.50 15 182.38 8 781.22 110 980.98 38 894.09 15 555.60 26 330.36 196 954.98 168 804.89

Financial Services 19 576.16 9 765.72 10 742.97 113 228.13 69 256.05 14 148.70 15 327.85 49 840.90 731 839.53

Table 5.  K(Z, Z∗)
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K(1997, 1980)
Agri-

culture...
Energy Minerals Manu-

facturing
Buildings Trade Transport

and
Telecom.

Services Financial
Services

Agriculture... 273 889.90 84.50 21.83 22 082.10 0.00 25 267.38 190.00 2 468.30 0.00

Energy 20 982.61 152 345.43 23 633.24 53 519.88 11 860.75 7 679.54 30 552.36 8 376.08 505.10

Minerals 1 566.47 13 717.60 86 078.54 60 639.78 58 997.72 1 699.73 207.11 725.06 0.00

Manufacturing 46 507.00 11 809.23 10 102.70 447 383.68 75 456.67 10 881.68 13 610.55 60 287.65 836.83

Buildings 1 121.01 7 752.34 380.32 2 150.16 241.36 393.19 569.57 3 376.85 3 593.21

Trade 864.63 328.84 1 241.92 2 581.94 783.51 3 746.83 2 064.04 9 098.41 140.90

Transport and
Telecommunications

4 772.20 4 894.60 8 024.58 37 617.41 11 842.82 4 307.52 26 055.54 26 021.29 1 620.03

Services 19 471.11 18 433.89 10 736.07 89 254.48 50 752.67 12 507.73 12 527.33 97 433.03 6 799.70

Financial Services 170.09 116.56 123.80 968.58 906.51 73.40 96.51 226.34 18 553.23

Table 6. K(Z∗ , Z)

K(1997, 1980)
Agri-

culture...
Energy Minerals Manu-

facturing
Buildings Trade Transport

and
Telecom.

Services Financial
Services

Agriculture... 443 611.27 252.94 69.75 34 575.44 0.00 31 133.74 372.38 4 125.98 0.00

Energy 22 559.34 160 249.48 19 436.02 50 086.37 6 054.57 5 674.61 33 257.97 9 444.19 6 744.94

Minerals 2 691.08 2 487.85 77 236.96 84 402.84 50 836.16 1 919.88 659.54 1 213.68 0.00

Manufacturing 69 824.67 14 620.63 9 868.26 512 017.82 62 946.10 11 766.36 18 619.28 89 184.53 30 007.34

Buildings 520.68 2 398.60 129.75 873.72 71.85 152.37 308.25 1 606.21 18 832.06

Trade 791.24 197.23 901.28 2 115.02 477.68 2 498.22 1 732.96 9 052.53 4 969.85

Transport and
Telecommunications

7 566.51 6 332.86 9 190.53 41 016.57 10 805.59 4 027.12 31 614.47 31 870.26 37 550.11

Services 24 458.55 13 179.53 8 675.84 91 500.90 39 008.92 12 254.58 20 193.61 146 924.40 105 674.67

Financial Services 14 414.66 6 212.38 7 778.11 68 410.81 50 901.62 8 168.12 8 614.54 27 246.23 335 734.03

Table 7. K(Z, mean)

K(1997, mean)
Agri-

culture...
Energy Minerals Manu-

facturing
Buildings Trade Transport

and
Telecom.

Services Financial
Services

Agriculture... 447 695.56 102.47 24.61 30 584.01 0.00 31 405.51 284.76 4 044.59 0.00

Energy 26 607.69 143 317.39 20 668.93 57 505.61 10 530.94 7 404.95 35 521.77 10 647.78 1 302.44

Minerals 2 089.59 13 575.02 79 192.21 68 540.24 55 103.96 1 724.09 253.31 969.58 0.00

Manufacturing 65 996.65 12 432.17 9 887.54 537 936.50 74 973.55 11 741.90 17 708.47 85 763.47 2 414.75

Buildings 1 352.14 6 936.93 316.38 2 197.51 203.83 360.62 629.88 4 083.15 8 813.06

Trade 1 042.86 294.24 1 033.09 2 638.69 661.68 3 436.36 2 282.52 11 001.00 345.56

Transport and
Telecommunications

7 762.20 5 906.15 9 001.92 51 844.42 13 487.39 5 327.60 38 856.87 42 429.23 5 358.21

Services 31 642.52 22 223.84 12 032.97 122 901.65 57 749.23 15 456.03 18 665.55 158 729.30 22 469.93

Financial Services 2 248.79 1 143.30 1 128.85 10 850.86 8 391.93 737.94 1 169.87 2 999.90 498 809.05

Table 8. K(Z∗ , mean)
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K(1997, mean)
Agri-

culture...
Energy Minerals Manu-

facturing
Buildings Trade Transport

and
Telecom.

Services Financial
Services

Agriculture... 0.716452 0.000834 0.000347 0.036431 0.000000 0.236817 0.001885 0.007235 0.000000

Energy 0.037608 0.545333 0.099677 0.054474 0.022610 0.044555 0.173760 0.017095 0.004888

Minerals 0.006306 0.011901 0.556792 0.129035 0.266846 0.021189 0.004844 0.003088 0.000000

Manufacturing 0.084256 0.036014 0.036632 0.403081 0.170143 0.066870 0.070413 0.116849 0.015742

Buildings 0.028669 0.269591 0.021978 0.031386 0.008862 0.039512 0.053192 0.096026 0.450786

Trade 0.022224 0.011308 0.077876 0.038756 0.030054 0.330478 0.152544 0.276074 0.060686

Transport and
Telecommunications

0.028159 0.048109 0.105219 0.099586 0.090079 0.070586 0.368727 0.128781 0.060753

Services 0.044341 0.048773 0.048386 0.108222 0.158413 0.104634 0.114732 0.289210 0.083287

Financial Services 0.031984 0.028138 0.053093 0.099030 0.252994 0.085359 0.059904 0.065641 0.323858

Table 9. 1980 bimarkovized: K(Z, 1M)

K(1997, 1980)
Agri-

culture...
Energy Minerals Manu-

facturing
Buildings Trade Transport

and
Telecom.

Services Financial
Services

Agriculture... 0.720838 0.000270 0.000134 0.034507 0.000000 0.235614 0.001456 0.007180 0.000000

Energy 0.047732 0.421356 0.125007 0.072290 0.047219 0.061896 0.202379 0.021060 0.001060

Minerals 0.004291 0.045684 0.548240 0.098624 0.282818 0.016496 0.001652 0.002195 0.000000

Manufacturing 0.074098 0.022876 0.037427 0.423232 0.210399 0.061428 0.063144 0.106166 0.001230

Buildings 0.048258 0.405756 0.038069 0.054960 0.018184 0.059972 0.160674 0.142732

Trade 0.023670 0.010945 0.079055 0.041969 0.037538 0.363426 0.164535 0.275302 0.003559

Transport and
Telecommunications

0.024620 0.030702 0.096263 0.115233 0.106928 0.078738 0.391423 0.148380 0.007712

Services 0.048265 0.055555 0.061880 0.131365 0.220170 0.109850 0.090421 0.266942 0.015553

Financial Services 0.008228 0.006855 0.013925 0.027820 0.076744 0.012580 0.013594 0.012101 0.828153

Table 10. 1997 bimarkovized: K(Z∗ , 1M)

Sectors
Norm.
tech.
coeff.

Causat.
diag.

inverse

Causat.
off

inverse

Causat.
diag

direct

Causat.
off

direct

Biprop.
direct

Biprop.
reverse

Average
direct +
reverse

Biprop.
mean Bimark.

Agriculture... 4.025 0.978 -0.045 0.959 -1.017 4.368 1.614 2.991 2.690 3.474
Energy 17.647 0.928 -0.113 0.826 0.173 12.517 9.629 11.073 11.313 18.981
Minerals 5.025 1.004 -0.067 0.980 -0.402 8.325 2.611 5.468 5.856 5.265
Manufacturin
g

5.300 0.989 -0.077 1.006 -0.457 11.082 2.407 6.745 8.313 8.983

Buildings 8.449 0.915 -0.026 0.110 -0.129 28.205 3.310 15.758 21.918 19.439
Trade 8.081 0.952 -0.012 0.840 -0.070 16.434 2.629 9.532 10.873 8.514
Transport and
Telecomm.

11.076 1.034 -0.003 1.282 -0.907 12.383 5.406 8.894 9.365 6.788

Services 5.090 0.971 0.056 1.077 -1.212 12.675 3.685 8.180 9.155 8.976
Financial
Services

93.409 1.210 0.306 2.474 3.466 28.381 51.625 40.003 34.906 60.008

Table 11. Comparison of methods for France, column vectors, in %
(the results of the causative method are not at all comparable with those of other methods)
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Sectors
Buildings Biprop.

direct
Biprop.
reverse

Average
direct +
reverse

Biprop.
mean Bimark.

Agriculture... 1.134 1.346 1.321 1.334 1.113 0.499
Energy 11.340 7.229 5.500 6.364 6.528 13.486
Minerals 7.465 9.984 7.568 8.776 9.000 4.931
Manufacturing 4.597 6.303 1.380 3.842 4.900 5.206
Buildings 11.860 46.245 14.837 30.541 45.759 34.591
Trade 9.812 27.363 4.137 15.750 22.753 6.755
Transport and Telecommunications 10.421 24.975 5.063 15.019 20.238 6.858
Services 6.726 24.652 3.938 14.295 20.028 10.146
Financial Services 86.703 27.410 77.517 52.463 34.245 55.073

Table 12. Comparison of methods for France, row vectors, in %
(no results for row coefficients with the causative method)

Z Z* x*

x*

x*

Z Z*

x*

Comparison of technical
coefficients by a proportion

Z Z*

Comparison of allocation
coefficients by a proportion

Comparison of both coefficients

Figure 1. Principle of matrix comparisons over time.
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Figure 2. Edgeworth box for the ordinary biproportional projector
and the mean biproportional projector
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Figure 3.  Typology of methods
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