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1. Introduction 
 
Macroeconomic models typically contain a number of bookkeeping identities 
inherent in the national accounts. These identities are important aspects of the model 
since they help to maintain the consistency and to assure the reproduction of official 
national accounts statistics for the historical years. But it is not a matter of course 
that the consistency of the current price identities can be reproduced in the model. 
Not even in historical years. This is basically due to the way that national accounts 
data are deflated, as we shall return to. We devise some enhancements to the 
standard model to handle such problems.  
 
The most basic identity is the equilibrium condition linking aggregated supply and 
demand quantities 
 
Y + M = C + I + E (1) 
 
where Y is GDP and M imports and together they are total supply. In practice, input-
output coefficients are used to provide more detail in the determination of supply 
components; thus, if we have a separate import matrix we can split the final demand 
components into a domestically produced part and an imported part 
 
Y = aYCC + aYI I + aYE E (2) 
M = aMCC + aMI I + aME E (3) 
 
where aYj+aMj=1, j=C,I,E (though this specific formulation of the i-o model is of the 
“endogenous imports” type the formulation easily covers the case of “exogenous 
imports” as well).2 The restriction that the coefficients must sum to unity ensures that 
(2) and (3) implies the aggregated condition, so we can write (1) as 
 
Y + M = (aYC + aMC)C +(aYI + aMI)I +(aYE + aME)E (1a) 
 
The coefficients aij can be fixed at a base year value, or they can be series of 
observed coefficients. In the first case it is most likely that in years other than the 
base year, we will find that (2) and (3) do not hold because over time many of the 
coefficients will tend to drift away from their base year value as the structure of the 
economy changes. Therefore we will have to add an error term to (2) and (3) to make 
them balance. In the latter case, where time series of i-o coefficients are used, (2) and 
(3) become book-keeping identities with no room for error terms. For the purposes in 
the main text of this paper the latter interpretation is sufficient (the case where (2) 
and (3) contains error terms is treated in appendix 1). 
 

                                                 
    2 In this case the variable ( should be interpreted as net exports, while < and 0 should be 
considered two types of domestic production. 
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Due to the duality between input-output quantity and prices models, the same input-
output coefficients can be used to determine the prices on demand components from 
the prices on supply components, using 
 
pC = pY aYC + pM aMC + uC (4) 
pI  = pY aYI  + pM aMI  + uI (5) 
pE  = pY aYE  + pM aME  + uE (6) 
 
Error terms are included in (4)-(6) since, in practice, we have e.g. pC ≠ pY aYC + pM aMC 
in the historical data set, even when time series of observed input-output coefficients 
are used. The reason for the presence of such error terms is found in the way national 
accounts are deflated, as we will discuss below. 
 
It is easily verified from (2)-(6) that if the error terms uC, uI, uE were unrestricted (and 
nonzero) in model computations then the value of aggregated supply would be 
different from the value of aggregated demand, i. e. that pY Y+pM M ≠ pCC+pII+pEE. 
Thus, the most basic current price identity of the model would be broken.  
 
In the observed national accounts statistics the error terms are, of course, restricted in 
such a way that the current price identities hold. But in model computations such as 
forecasts non-zero error terms are likely to generate inconsistencies unless the 
appropriate restrictions are included in the model equations. This is unfortunate 
because in practical forecasting it is necessary to specify non-zero error terms in the 
forecast period to avoid jumps in the prices between the last historical year and the 
first forecast year. 
 
In this paper we will derive the conditions on the error terms that ensure the current 
price identities of supply and demand. These restrictions are then used to determine a 
number of the error terms in the model residually. As an alternative, a technical 
reformulation involving a general adjustment of demand prices is suggested. We will 
treat only additive error terms in the main text, since the analysis of this case is 
simpler; the analogous, but technically more complicated case with multiplicative 
error terms is treated in appendix 2. 
 
 
The causes of the problem 
 
The standard assumption in i-o price models such as (4)-(6) is that all supplies from 
the same source are at the same price, independently of which category of demand it 
is supplied to. Thus, for example, the same price pY is applied to all supplies from 
domestic production, no matter whether they are used in category C, I or E. The 
economic content of this assumption is that every source supplies a single product, 
and that the demand elasticity for this product (and therefore the mark-up on 
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marginal cost), must be identical in all uses. In other words, there can be no price 
discrimination. If this assumption actually did hold in practice, there would be no 
room for error terms in (4)-(6), and our problem would not exist. Unfortunately, it is 
in fact very unlikely to hold, since many industries tend to supply their product at 
different prices to different users. This means that price discrimination between 
different users contributes to error terms in (4)-(6). 
 
In the simplest input-output and CGE model frameworks, where all parameters are 
calibrated from a single input-output/SAM matrix in a base year, and where all 
prices are defined to be equal to 1 in this base year, the problem would not be visible 
at all in the basic data. However, if we would want to introduce price discrimination 
in such model calculations, so that e.g. export prices would be able to move away 
from home market prices, the problem could easily show up anyway. 
 
A less tractable, but probably more severe reason for error terms in (4)-(6) is that 
each industry in the input-output table does not supply only one product, but several. 
This is problematic since many of the products supplied from a single industry have 
different prices, so when the bundles of products are composed differently to 
different users, prices will necessarily differ between them. This problem arises 
because the deflation of the national accounts data is carried out at a much more 
detailed level than the model computations. In Denmark, for example, the deflation 
of national accounts is carried out at a level of app. 2750 products, while the input-
output tables are published at a level of 130 industries only.3 Thus, on average an 
industry in the input-output table produces 21 goods. So, if e.g. the domestic supplies 
to consumption have a different product composition than the supplies to exports, 
with respect to the deflation level, then the prices for the two supplies are likely to 
differ, causing error terms in (4) and (6). 
 
For a simple example, consider the industry ’construction’ which typically supplies 
’building maintenance’ for consumption and ’new buildings’ for investment. The two 
products are deflated using different prices, at least in the Danish national accounts, 
since maintenance contains almost exclusively labour cost, while the cost of 
materials contributes much more significantly to the total cost of new buildings. 
Therefore, the price of supply from construction to consumption tends to grow faster 
than the price of supply from construction to investment. The production price on 
construction is some weighted average of the two, the weights depending primarily 
on the level of new building investment (since building maintenance is very stable). 
 

                                                 
     3See Thage(1986), Statistics Denmark (1998). We have no wish to pick up the question of  
commodity vs. industry tables in this context, though; even if the "commodity technology" assumption 
had been used for the published tables, the deflation would almost certainly still be carried out at a much 
more detailed commodity level than the "characteristic commodities". 
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Figure 1 shows an extreme example of different prices of supplies from an industry. 
 
 
Figure 1. Prices on supplies from the industry: Manufacturing of computers etc 
 

 
That is why in integrated models, in which a combination of input-output tables and 
economic time series is used, aggregation problems is likely to be the major cause of 
error terms in (4)-(6). In such models, the base year of price index calculations is 
given by the standards of the available national accounts data set, and we will typi-
cally have to use equations like (4)-(6) for years where the price indexes are different 
from 1. In this case the error terms uC, uI, uE are directly computable from the data 
bank as the historical price minus the estimated price, e.g. uC = pC – (pY aYC + pM aMC), 
and they are extremely unlikely to be zero in such years.   
 
In practice, aggregation problems and price discrimination are both extremely likely 
to be significant causes of error terms in (4)-(6). However, in models based on time 
series of national accounts data the aggregation problems will probably be the 
dominating cause, in particular if the base year of fixed price computations is 
somewhat back in time, and if the aggregation level is so high that the individual 
product prices within each aggregate are likely to develop differently. 
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2. Some solutions 
 
The simple solution to the problem of ensuring the aggregated current price identity 
is to find the necessary constraint on the error terms and then use this constraint to 
determine one of the error components residually: 
 

The value of total supply equals the value of total demand for arbitrary exogenous 
C, I, E, pM  og pY if and only if 

uCC+uI I+uE E =0 
 
i.e. that the error terms in the demand price equations, weighted with the 
appropriate quantities, must sum to 0. 
 

 
Proof: The condition that the value of total supply equals the value of total demand is 
equivalent to 
 
pY Y+pM M = pCC+pI I+pE E (7) 
 
= (pY aYC+pM aMC+uC)C + (pY aYI +pM aMI +uI )I + (pY aYE +pM aME +uE )E  
 
= (pY aYC+pM aMC)C + (pY aYI +pM aMI )I + (pY aYE +pM aME )E + uCC+uI I+uE E ⇔ 
 
uCC+uI I+uE E = 0 (8) 
 
using (4), (5), (6) and (1a). 
 
Please note that the weighting of the error terms in (8) depends on the quantity 
variables C, I and E. If these variables are exogenous in the model, as they are here, 
the user could easily specify the error terms in such a way that (8) is violated, 
causing the basic identity (7) to be broken. But even worse, such quantities are 
usually determined endogenously in a wider model context. In any case, the current 
price identity (7) can be ensured only if one of the error terms is determined in the 
model as a function of the other (exogenous) error terms using (8). If, for example, 
we choose the error term on investment for such a residual determination, we get the 
equation 
 
uI    = –(uCC+uEE)/I (9) 
 
which should be added to the model; note that uC  and uE can be set arbitrarily by the 
user in forecast periods e.g. to implement price discrimination. This model - 
equations (2)-(6), (9) - is termed the simple residual price model.  
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In practice, this type of residual determination has the disadvantage that the whole 
load of the adjustment is placed on a single demand price, in this case pI. This could 
be a problem, in particular if many categories of final demand are specified in the 
model and, therefore, many different developments must be balanced in this single 
demand price. The model user could easily, by accident or unawareness, generate a 
peculiar residual price.  
 
Therefore, it could be a practical alternative to specify a general correction of all 
demand prices. This is done by enhancing (4)-(6) with a general correction term, u 
(defined to be 0 in the historical data set): 
 
pC = pY aYC + pM aMC + uC + u (10) 
pI  = pY aYI  + pM aMI  + uI  + u (11) 
pE  = pY aYE  + pM aME  + uE  + u (12) 
 
In model computations, the general correction term u is then determined using the 
identity (7) so that 
 
(uC+u)C+(uI +u)I+(uE +u)E = 0 ⇔ 
 
u  = –(uCC+uI I+uE E)/(C+I+E) (13) 
 
Now, if the user should specify the exogenous error terms uC, uI and uE in such a way 
that, without the correction (13), it would lead to a violation of the aggregated value 
identity (7), then the general correction term u would automatically adjust all 
demand prices in the opposite direction to keep (7) fulfilled. On the other hand, the 
user has to accept that the final correction of a price, e.g. pC, could be different from 
the correction that was originally intended when the value of uC was set. 
 
This model - equations (2), (3), (10)-(13) - is termed the simple general price 
correction model. 
 
 
More sophisticated corrections of demand prices 
 
It should be noted that, though both the residual and the general price corrections 
ensures the aggregated identity (7), neither of them is sufficient to guarantee the 
current price identities for the individual components Y and M in the model. A closer 
look at this question requires, however, a more general, input-output type 
formulation of the model. 
 
Therefore, we reformulate the model (2)-(3) as follows 
 
Y = CY + IY + EY (14) 
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M = CM  + IM  + EM (15) 
 
where CY, CM , IY, IM , EY, EM  are the individual cells of the input-output quantity 
matrix, determined by the equations 
 
Ci = aiC C i=Y, M (16) 
Ii  = aiI  I i=Y, M (17) 
Ei = aiE  E i=Y, M (18) 
 
Equations (14)-(18) are, of course, equivalent to (2) and (3). 
 
Likewise, the price equations are reformulated to determine the price of the 
individual input-output cells, as 
 
pYj   = pY  + uYj j=C, I, E (19) 
pMj  = pM  + uMj j=C, I, E (20) 
 
which means that the final demand price equations become identities given by 
 
pC = (pYCCY +pMCCM )/C   (21) 
pI  = (pYI IY +pMI IM )/I     (22) 
pE = (pYEEY +pMEEM )/E   (23) 
 
Substituting (16)-(20) into (21)-(23) it is easily seen that the only new feature in this 
price determination is that the error term uj in each of equations (4)-(6) is replaced by 
two "cell-specific" error terms using the relation  
 
uj  = aYj uYj  + aMj uMj  j=C, I, E  (24) 
 
Such "cell-specific" error terms are necessary to ensure that the value of supply is 
equal to the value of demand for each supply component Y and M. In the case of Y 
we get that  
 
pY Y = pYCCY  + pYI IY + pYE EY (25) 
  
 = (pY +uYC) CY + (pY +uYI )IY + (pY +uYE )EY ⇔ 
 
uYCCY  + uYI IY + uYE EY = 0 (26) 
 
using (19) and (14). This condition is completely analogous to the condition for 
aggregated consistency, (7), but here it involves only the domestic supplies from Y. 
Of course, a similar condition is required for the imported supplies from M.  
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In general, there will be a condition like (26) for every supply component in the 
model, which will enable us to determine residually one of the "cell-specific" price 
error terms of the corresponding row of the input-output table. 
 
This model - (14)-(23), (26) - is termed the full residual price model.  
 
Once again we can avoid the residual determination of a "cell-specific" demand price 
by specifying a general row correction of the prices from each supply component, in 
analogy with (10)-(12). This means that (19) and (20) is replaced by 
 
pYj  = pY + uYj  + uY j=C, I, E  (27) 
pMj  = pM  + uMj  + uM  j=C, I, E  (28) 
 
where uY and uM are defined to be 0 in the historical data set; in model computations, 
such as forecasts, the general correction of the "cell-specific" prices in each row can 
be found in analogy with (13) as 
 
uY  = –(uYCCY+uYI IY+uYE EY)/Y (29) 
uM   = –(uMCCM +uMI IM +uME EM )/M (30) 
 
for arbitrary exogenous values of uYC, uYI and uYE set by the user. This model - (14)-
(18), (21)-(23), (27)-(30) - is termed the full general price correction model.  
 
 
A fairly complete yet practical solution  
 
The full adjustment methods suggested above determines, in fact, a complete, 
consistent (implicit) current price i-o matrix, which in turn ensures the current price 
identities for all supply components. In contrast, the simple adjustment models 
ensure only the aggregated identity of supply and demand and, therefore, they 
contain no such matrix. On the other hand, the full adjustments are burdensome in 
terms of space and effort, since they require the introduction of one error variable per 
cell of the i-o table; in effect, this is an extra  i-o table of variables in the data bank. 
 
There is, however, a kind of compromise solution ensuring a consistent current price 
matrix while still avoiding the abundance of error terms in the full adjustment 
models. This solution is established by redefining the (implicit) current price cells of 
the i-o matrix in such a way that 
  
pij = pi+ui+uj  (31) 
 
If such a redefinition should at first sight appear too restrictive to the reader, then 
please recall that the option of doing no adjustments at all is equivalent to setting 
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ui=uj=0 in (31), and that the simple general correction is equivalent to setting ui=u in 
(31). So, the compromise solution is still far less restrictive than those options, while 
we will see that it allows a consistent implicit current price matrix in the model. 
 
It is clear from (31) that some normalisation of ui and uj is necessary, since any single 
number can be added to every ui and subtracted from every uj to yield the same pij. 
We would suggest using (8) to normalize the demand price errors uj in the historical 
data set, which would imply that uyY+ umM =0 (using (25) for Y and M and adding 
the equations); the observed values of ui and uj in the historical data set can then be 
determined from (31), (21)-(23) and (25). In model computations, such as forecasts, 
the user should be able to set all the demand price errors uj arbitrarily, since all the ui 
can be determined in the model to ensure the current price identities such as (25). 
 
 
Another possibility: Correction of supply prices  
 
The solutions discussed so far have taken the supply prices pY and pM as given, and 
therefore, suppressed the effects on aggregated prices from changes in the 
composition of demand. Such a suppression has the advantage that the economic 
properties of any determination of supply prices in a wider model context are 
unchanged, such as e.g. homogeneity with respect to total cost. 
 
On the other hand, in some situations it could be desirable to allow the effects from a 
change in demand composition to change aggregated supply prices. This would, of 
course, require that the error terms of demand price equations had a clear 
interpretation as caused by price discrimination, rather than by unspecified 
aggregation problems with no clear interpretation. The best example probably is that 
we could want to model export prices differently from the home market prices. If 
competition is harder on the export market, the prices are likely to be lower, and a 
shift e.g. from home market supplies to export supplies would therefore decrease the 
aggregated production price. 
 
Though such effects from demand composition to supply prices does not fit very 
well into the model, since they break the standard assumption of identical prices to 
all users, they could be accounted for by using the unmodified equations (2)-(6) and 
then, subsequently, define a modified pY to ensure (7). A similar procedure could be 
applied to each supply component using (14)-(23). They would, however, imply that 
the error terms in demand prices could be explained only by differences in the 
"mark-up" on different markets; ideally, the original supply prices should then reflect 
(marginal) cost only, not profits. The model would then determine different profits in 
the various uses. In a wider model context, the operating surplus of industries should 
be adjusted to conform to the modified prices. 
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Working with current price cells only 
 
An apparently more radical solution would be to use current price input-output tables 
only, ignoring the information of fixed price input-output coefficients. This would 
mean that the model (14)-(23) should be reformulated to use a current price input-
output table only, i. e. (using prefix v to denote current price input-output cells) 
 
Y   =  (vCY + vIY + vEY)/pY (32) 
M  =  (vCM  + vIM  + vEM )/pM (33) 
vCi = piCaiC C i=Y, M       (34) 
vIi  = piIaiI  I i=Y, M       (35) 
vEi = piEaiE  E i=Y, M (36) 
pYj  = pY + uYj  j=C, I, E (37) 
pMj  = pM  + uMj j=C, I, E  (38) 
pC  = (vCY+vCM )/C  (39) 
pI   = (vIY+vIM )/I  (40) 
pE  = (vEY+vEM )/E  (41) 
 
In effect, as some manipulation will show, this solution is equivalent to a redefinition 
of the input-output coefficients, replacing the "true" fixed price coefficients aij by 
new "pseudo-fixed price" coefficients pij aij /pi. But isn’t it a shame to discard the 
information embodied in the fixed price cells? Well, from economic theory we know 
that while the nature of the economic system imposes book-keeping constraints on 
value concepts (at current prices), there is no theoretical reason to expect that 
common fixed price indexes should satisfy such constraints as, e.g., Y+M=C+I+E. 
And on the other hand there is a wealth of expenditure models determining cost cells 
of the input-output table as a function of prices and total expenditure, with no need 
for fixed price cell information. So, if there is a problem in using current price input-
output tables only, it may be nothing else than our unwillingness to depart from 
established professional tradition. 
 
 

3. Experience 
 
The simple and the “compromise” general price correction models, in their 
multiplicative versions as listed in appendix 2, have been tested in the Danish model 
ADAM; the "Annual Danish Aggregate Model" has been used by the government for 
economic policy analysis, budgeting and forecasting purposes for more than 20 
years. The model is in the econometric tradition of Tinbergen and Klein, but it 
contains an integrated, structural form static input-output system for determination of 
production and prices, in the way outlined in (2)-(6). This system uses 19 industry 
branches, 14 types of primary inputs and 27 categories of final demands (the 
numbers of primary inputs and final demands include 11 components of imports and 
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7 components of exports, respectively, with commodities broadly by 1-digit SITC). 
 
As an example, the (relative) demand price error on consumption of durables from 
ADAM is shown in figure 2. The error term is 1 in 1995, since this is the base year 
of the national accounts fixed price indexes. It displays, however, considerable drift 
over time in a way more compatible with a hypothesis of aggregation problems than 
with any clear hypothesis of price discrimination. The sudden drop below 0.9 at the 
end of the period is likely to be due to the recently adopted practice of using hedonic 
computer price indexes in the deflation of the Danish national accounts; while such 
computer price indexes fall at dramatic rates in the nineties, the conventional price 
indexes on other durables develop more slowly; in turn, this price split exposes the 
differences in product composition of the final demand categories in the model, since 
consumption of durables contains relatively more computers than other demand 
categories supplied from the same ADAM supply sources.

4
 

 
 
Figure 2. Relative price error on consumption of durables in ADAM 

 
 
 
 
The simple general price correction, in the multiplicative version as in (2.10)-(2.13) 

                                                 
     4Except, perhaps, investment in machinery, which shows a similar pattern of price errors. 
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in appendix 2, has been implemented in ADAM versions of March 1995 onwards 
(however, the general correction has been limited to influence only domestic final 
demand components, to avoid interference with production price formation and with 
external competitiveness). The established procedure in ADAM forecasts is that the 
forecasted value of every (relative) demand price error is set equal to the most recent 
observed value, to avoid price jumps in the first forecast year. Figure 3 shows a quite 
typical forecast profile of the general demand price correction factor resulting from 
this procedure.  
 
In the first year of the forecast period the general correction factor jumps by 0.06 pct 
from its historical value of 1, due to a twist in the demand components towards 
components with a relative error lower than 1. Such movements in the first few years 
of the forecast period are quite typical reflecting the phase of the business cycle 
embodied in the data for the most recent historical period; this is because the model 
tends to adjust the cycle fairly quickly towards equilibrium. From app. 2013 the 
business cycle fades out, and the model solution enters a steady state path, causing 
the general correction factor to drift slowly, which reflects differences in sectoral 
steady state growth rates. 
 
Figure 3. A forecast profile of the general demand price correction factor. 

 
 
 
Though, as expected, the price movements caused by the general price correction are 
quite small, the users have found them annoying. One reason for this is that the 
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political demand for inflation convergence embodied in the EMU, in conjunction 
with the very low rates of inflation in the Euro countries, creates public interest in 
even small deviations in consumer prices. Another reason is that the model users 
sometimes want to turn the model "upside down" in order to use flash indicators of 
export and consumer prices to compute early estimates of domestic inflation; such a 
procedure becomes technically more difficult when the general price correction is 
present. 
 
Therefore, the main users have adopted a complicated procedure, which is, in effect, 
equivalent to the simple residual price model. They have chosen the price on 
investment in inventories as the residual demand price. In most cases, this price is a 
relatively harmless one to determine residually; however, since (fixed price) 
investment in inventories can sometimes be negative, or zero, the correction has to 
be carefully formulated to function properly in such cases. 
 
The “compromise” general price correction, derived from (2.31) in appendix 2, has 
been implemented in tests only. It works in a way quite similar to the simple 
correction, and therefore the simple correction was preferred. 
 
Current work is aimed at changing the formulation of the input-output system to use 
current price input-output cells only. While simultaneously solving the problem with 
the current price identities it is expected that this solution will ease the transition to 
the use of chained quantity indexes recommended by the SNA93/ESA95 manuals. 
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Appendix 1: Formulations including error terms in the quantity relations 
 
 
If, in addition, the quantity equations contain error terms, the equations from the 
main text should be modified as follows, using quantity error terms qj and qij 
 
Y  = aYCC + aYI I + aYE E + qY (1.2) 
M  = aMCC + aMI I + aME E + qM  (1.3) 
uCC+uI I+uE E– pY qY –pM  qM  = 0 (1.8) 
uI   = ( pY qY+ pM  qM –uCC–uEE )/I (1.9) 
u   = ( pY qY+ pM  qM –uCC–uI I–uE E )/(C+I+E)  (1.13) 
Ci  = aiC C+qiC             i=Y, M (1.16) 
Ii   = aiI  I+qiI             i=Y, M (1.17) 
Ei  = aiE  E+qiE             i=Y, M (1.18) 
vCi = piC (aiCC+qiC )           i=Y, M       (1.33) 
vIi  = piI (aiII+qiI )            i=Y, M       (1.34) 
vEi  = piE (aiEE+qiE )            i=Y, M (1.35) 
 
All other formulae, including (26), (29) and (30), are unchanged; though, of course, 
in this case Ci, Ii and Ei are determined by the modified formulae (1.16)-(1.18). 
 
 
Appendix 2: Formulations with multiplicative error terms 
 
In this appendix the formulae are quite analogous to those in the main text, except 
that multiplicative error terms are used instead of additive error terms. Such 
multiplicative error terms are perhaps the most common type in practice. The 
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treatment of them is slightly more technical. Only formulae that differ from the main 
text are shown, and they carry the same numbers as their analogues, preceded with a 
’2.’. 
 
 
pC = (pYaYC + pM aMC) kC  (2.4) 
pI  = (pYaYI  + pM aMI ) kI  (2.5) 
pE  = (pYaYE  + pM aME ) kE  (2.6) 
 
 

 The value of total supply equals the value of total demand for arbitrary 
exogenous C, I, E, pM  og pY if and only if 
 
  (kC –1)pCC/kC + (kI –1)pI I/kI +(kE –1)pE E/kE =0 
 
i.e. that the deviations of multiplicative error terms in the demand price equations 
from 1, weighted with the appropriate uncorrected demand components at current 
prices, must sum to 0. 

 
Proof: The condition that the value of total supply equals the value of total demand is  
 
pY Y+pM M = pCC+pI I+pE E (2.7) 
 
    = (pY aYC + pM aMC) kCC + (pY aYI  + pM aMI ) kI I + (pY aYE  + pM aME ) kE E  ⇔ 
 
0    = (kc–1)pCC/kC + (kI–1)pI I/kI  + (kE–1)pE E/kE  (2.8) 
 
(using (2.2)-(2.6) and collecting terms). 
 
 
The formula determining the residual error term, analogous to (9) is simple, but 
tedious and it is not shown here. Instead we will show the simple form of the 
multiplicative general price correction model. First a general correction term k, 
defined to be 1 in the historical data set, is added to (2.4)-(2.6): 
 
pC = (pY aYC + pM aMC) kC k  (2.10) 
pI  = (pY aYI  + pM aMI ) kI  k (2.11) 
pE  = (pY aYE  + pM aME ) kE  k (2.12) 
 
In model computations the general correction term k is determined using (7) which, 
after some term collection, yields the unsurprising formula 
 
k  = (pyY + pM M)/(pCC + pII + pEE) (2.13) 
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obviously ensuring the aggregated identity (7). 
 
 
To ensure all the current price identitites the extended framework of (14)-(23) is 
needed. In the multiplicative case we need only to modify (19) and (20) as 
 
pYj  = pY kYj              j=C, I, E (2.19) 
pMj  = pM  kMj             j=C, I, E (2.20) 
 
In the case of the supply component Y we find that (25) yields  
 
pY Y = pYCCY + pYI IY + pYE EY  
  = pY kYC CY + pY kYI IY + pY kYE EY ⇔ 
 
kYCCY/Y + kYI IY/Y + kYE EY/Y = 1 ⇔ 
 
kYI = (Y–kYC CY–kYE EY)/IY 
 
A similar condition applies to supply component M. 
 
The multiplicative version of the full general price correction model is found from 
(14)-(18), (21)-(23) and the modified formulae 
 
pYj  = pY kYj  kY           j=C, I, E (2.27) 
pMj  = pM kMj  kM            j=C, I, E (2.28) 
 
where ki are defined to be 1 in the historical data set. In model computations, ki will 
ensure the identity of supply and demand for supply component i. From (25), (2.27) 
and (2.28) we can determine such correction factors for Y and M using 
 
kY  = Y/(kYCCY+kYI IY+kYE EY) (2.29) 
kM   = M/(kMCCM +kMI IM +kME EM ) (2.30) 
 
The multiplicative analogue of the compromise solution (31) becomes 
 
pij = pi ki kj (2.31) 
 
It is clear from (2.31) that some normalisation of ki and kj is necessary, since either of 
them can be multiplied and the other one divided with some scalar number to yield 
the same pij. We would propose using (2.8) for such a normalization of kj. This is, 
however, tedious. Instead, we would suggest the following algorithm: In step one, 
compute kj for ki=1, which is equivalent to the use of (2.4)-(2.6); then compute ki as 
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in (25) using (2.31). Repeat this procedure iteratively using the new ki as start values, 
until ki and kj converges. In effect, this is the well-known biproportional rAs 
procedure used here to determine an implicit, consistent current price matrix; 
however, only the factors ki and kj need to be used in the model, since the current 
price cells can be derived from (2.31) subsequently. The procedure makes (25) and 
(21)-(23) hold in the historical data set. In model computations, such as forecasts, the 
kj factors should be set exogenously by the user, while the factors ki should be 
determined in the model as in (25) to preserve all current price identities. 
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The Working Paper Series 
 
The Working Paper Series of the Economic Modelling Unit of Statistics Denmark 
documents the development of the two models, DREAM and ADAM. DREAM 
(Danish Rational Economic Agents Model) is a relatively new computable general 
equilibrium model, whereas ADAM (Aggregate Danish Annual Model) is a Danish 
macroeconometric model used by e.g. government agencies. 
 
The Working Paper Series contains documentation of parts of the models, topic 
booklets, and examples of using the models for specific policy analyses. Further-
more, the series contains analyses of relevant macroeconomic problems – analyses 
of both theoretical and empirical nature. Some of the papers discuss topics of com-
mon interest for both modelling traditions. 
 
The intention is to publish about 10-15 working papers on a yearly basis, and the 
papers will be written in either English or Danish. Danish papers will contain an 
abstract in English. If you are interested in back numbers or in receiving the Wor-
king Paper Series, phone the Economic Modelling Unit at (+45) 39 17 32 02, fax us 
at (+45) 39 17 39 99, or e-mail us at dream@dst.dk or adam@dst.dk. Alternatively, 
you can also visit our Internet home pages at http://www.dst.dk, and download the 
Working Paper Series from there. 
 
The following titles have been published previously in the Working Paper Series, 
beginning in January 1998. 
 
 
 ****************** 
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[ADAM]. 
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1998:5 Lars Haagen Pedersen, Nina Smith and Peter Stephensen: Wage Formation 

and Minimum Wage Contracts: Theory and Evidence from Danish Panel 
Data. [DREAM] 
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1999:3 Lars Haagen Pedersen and Peter Stephensen: Earned Income Tax Credit in 
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crowding-out i makroøkonometriske modeller. (Wage-price spirals and 
crowding out in macroeconometric models). [ADAM] 
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in ADAM and DREAM - a comparative analysis). 
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