Paper for the 13th International Conference on Input-Output Technique August 21-25, 2000, Macerata, Italy

Study on Multiplier Effects of China Township and Village Enterprises on National Economy

Yang Cuihong Institute of Systems Science Chinese Academy of Sciences Beijing, 100080, P. R China

Study on Multiplier Effect of China Township and Village Enterprises on National Economy¹

Yang Cuihong Institute of Systems Science Chinese Academy of Sciences Beijing, 100080, P. R China

1. Introduction

The production and consumption of products in any sector has close interrelations with other sectors. The change of one sector will inevitably affect the production and consumption of relevant sectors and even the whole economy. Therefore, it's very meaningful both in theory and practice to study the induced effect of sectors on national economy, i.e. multiplier effect, by using input-output technique. Staffs in Input-Output Division of China State Statistical Bureau (1993) calculated that the invest multiplier is 1.27 during the Seven-five year plan by using 1987 input-output table and, combining with consumption ratio, Zhang Kai(1998) studied invest multiplier of recent years by using 1992 input-output table.

Above research is basically based on open input-output model and, moreover, doesn't consider chain effects of household consumption on economy. In addition, the multiplier effects induced by invest in Township and Village Enterprises (TVEs), up to now, haven't been systematically studied by other researchers in China. In this paper, with TVEs and non-TVEs Input-Occupancy-Output table we constructed, we give a detailed analysis of this issue by using partial-closed input-output model.

2. Partial-Closed Input-Output Model

Partial-closed input-output model is model that household sector is incorporated into the first quadrant of common input-output table. Specifically, suppose the national economy is subdivided into n sectors, now, we consider the household sector as the n+1 one and add it to the first quadrant, then partial-closed input-output model is constructed. The basic equation becomes:

$$\begin{pmatrix} I - A^* \end{pmatrix} X^* = Y^*$$

$$\begin{array}{c} h_c \\ 0 \end{pmatrix} \quad X^* = \begin{pmatrix} X \\ X_h \end{pmatrix} \quad Y^* = \begin{pmatrix} Y \\ Y_h \end{pmatrix}$$

$$(1)$$

here $A^* = \begin{pmatrix} A & h_c \\ h_r & 0 \end{pmatrix} X^* =$

where A X Y is matrix of direct input coefficients, column vector of gross output value and final use in common input-output model respectively, X_h is total household income, Y_h is exogenous household income, h_r is row vector of household income coefficient, h_c is column vector of consumption propensity of households.

From equation (1), we obtain:

$$X^* = (I - A^*)^{-1} Y^*$$
 (2)

Because of difficulty in getting data, here we denote consumption structure coefficients of households as h_c , $h_c = (h_{1c}, h_{2c}, \dots, h_{nc}, 0)'$ where h_{ic} is the proportion of household consumption expenditure for products of sector *i* in total consumption expenditure, use coefficients

¹ The author is grateful to Prof. Chen Xikang for his ideas and valuable comments. Thanks are also due to Xu Yiping, Pan Xiaoming and others for their discussions.

of employee compensations as h_r . A problem here, however, should be noted, i.e., the contents of household sector in the row don't match that in the column. As we all know, household consumption expenditure is only a part of household income. Residents also spend some of their income on savings. As to coefficient of employee compensations, it should be noted that employee compensations aren't total household income. We can see this point from input-output table. In input-output table, the sum of household consumption expenditure and household savings is larger than total employee compensations. In addition, household income also includes some welfare funds after redistribution of taxes or profits. This part of income is, however, very difficult to be divided from the redistribution, so we have to adopt indirect method. Here we regard the sum of household savings and household consumption expenditure as total household income, and then, according to the ratio of employee compensations in every sector to total employee compensations, distribute it to every sector in the row.

3. Invest Multiplier

Invest multiplier is the ratio of an induced change in level of GDP, directly and indirectly, to an initial change of per unit invest. Here we use GDP or value-added as the total volume of national economy.

We define A_{ν}^{*} as coefficient of value-added, and suppose value-added of household sector is zero, then

$$A_{v}^{*} = (a_{v1}^{*}, a_{v2}^{*}, \dots a_{vn}^{*}, 0)$$

Here a_{vj}^* is value-added included in per unit output value of sector *j*.

Now we will calculate full value-added. Two methods can be used to get full value-added included in per unit output of sector *j*:

1. Calculating it item by item

$$b_{vj}^{*} = a_{vj}^{*} + \sum_{i=1}^{n+1} a_{vi}^{*} a_{ij}^{*} + \sum_{k=1}^{n+1} \sum_{i=1}^{n+1} a_{vk}^{*} a_{ki}^{*} a_{ij}^{*} + \sum_{s=1}^{n+1} \sum_{i=1}^{n+1} \sum_{i=1}^{n+1} a_{vs}^{*} a_{st}^{*} a_{ii}^{*} a_{ij}^{*} + \dots$$
(3)
(j=1,2,n)

Here b_{vj}^* is full value-added included in per unit output of sector *j*, a_{ij}^* is input of product *i* absorbed by per unit output of sector *j*.

Equation (3) can be written as form of matrix:

$$B_{\nu}^{*} = A_{\nu}^{*} + A_{\nu}^{*}A^{*} + A_{\nu}^{*}A^{*}A^{*} + A_{\nu}^{*}A^{*}A^{*}A^{*}A^{*} + \cdots = A_{\nu}^{*}(I + A^{*} + A^{*}A^{*} + A^{*}A^{*}A^{*} + \cdots) = A_{\nu}^{*}(I - A^{*})^{-1}$$

Note: $(I - A^*)(I + A^* + A^*A^* + A^*A^*A^* + \dots) = I, I$ is identity matrix. 2. Directly use full input coefficients

$$b_{vj}^* = a_{vj}^* + \sum_{i=1}^{n+1} a_{vi}^* b_{ij}^* \quad (j=1,2,\dots,n)$$
(4)

Here b_{ij}^* is full volume of product *i* per unit output value of sector *j*.

Express equation (4) as matrix, we have:

$$B_{\nu}^{*} = A_{\nu}^{*} + A_{\nu}^{*}B^{*} = A_{\nu}^{*}(I + B^{*}) = A_{\nu}^{*}(I - A^{*})^{-1}$$
(5)

Where $B^* = (I - A^*)^{-1} - I$ is matrix of full input coefficient.

Suppose invest structure as k, and $k = (k_1, k_2, \dots, k_n, 0)^T$, k_i is the proportion of invest in sector *i* to total invest. Here $0 \le k_i < 1$ then the effect on GDP induced by per unit invest, M_i , is as follows:

 $M_I = B_v^* \cdot k \tag{6}$

 M_{I} is the invest multiplier we want to get, i.e., increment of GDP due to per unit invest.

Here it should be noted that, equation (6) won't be applicable until every sector in national economy has full idle production capacity. If economic system is in a state of full employment or exists only structural idle production capacity, increased invest can't completely combine with production factors. In consequence, it won't substantively cause the increment of GDP. Even worse, it may bring about negative effects, such as inflation.

The above is common method calculating invest multiplier. Now, we will discuss the invest multiplier of TVEs and non-TVEs.

Define A_{ν}^{*} as value-added coefficient

$$A_{\nu}^{*} = (A_{\nu}^{1^{*}}, A_{\nu}^{2^{*}}) = (a_{\nu 1}^{1}, a_{\nu 2}^{1}, \dots a_{\nu n}^{1}, 0, a_{\nu 1}^{2}, a_{\nu 2}^{2}, \dots a_{\nu n}^{2}, 0)$$

Here A_{ν}^{1*} , A_{ν}^{2*} is row vector of value-added coefficient of TVEs and of non-TVEs under partialclosed model respectively, $a_{\nu j}^{1}$, $a_{\nu j}^{2}$ is value-added included in per unit output value of sector *j* of TVEs and of non-TVEs respectively.

Denote
$$A^* = \begin{pmatrix} A^{11^*} & A^{12^*} \\ A^{21^*} & A^{22^*} \end{pmatrix} R^* = \begin{pmatrix} R^{11^*} & R^{12^*} \\ R^{21^*} & R^{22^*} \end{pmatrix}$$

Here A^*, R^* is input coefficient matrix and full input coefficient matrix of TVEs and of non-TVEs under partial-closed model respectively.

According to formula discussed above, full value-added coefficient is as follows

$$B_{\nu}^{*} = (B_{\nu}^{1^{*}}, B_{\nu}^{2^{*}}) = (A_{\nu}^{1^{*}}, A_{\nu}^{2^{*}}) \cdot \begin{pmatrix} I - A^{11^{*}} & -A^{12^{*}} \\ -A^{21^{*}} & I - A^{22^{*}} \end{pmatrix}^{-1} = \begin{pmatrix} A_{\nu}^{1^{*}}, A_{\nu}^{2^{*}} \end{pmatrix} \cdot \begin{pmatrix} R^{11^{*}} & R^{12^{*}} \\ R^{21^{*}} & R^{22^{*}} \end{pmatrix}$$
(7)

Here $B_{\nu}^{1^*}, B_{\nu}^{2^*}$ is row vector of full value-added coefficient of TVEs and of non-TVEs under partialclosed model respectively.

Given invest structure, $k = k^1 k^2 T$, here $k^1 k^2$ is column vector of invest structure coefficient of TVEs and of non-TVEs.

With formula (7), invest multiplier of TVEs is

$$M_{I}^{1} = (A_{v}^{1*}, A_{v}^{2*}) \cdot \begin{pmatrix} R^{11*} & R^{12*} \\ R^{21*} & R^{22*} \end{pmatrix} \cdot \begin{pmatrix} k^{1} \\ 0 \end{pmatrix} = (A_{v}^{1*} R^{11*} + A_{v}^{2*} R^{21*}) \cdot k^{1}$$
(8)
Similarly invest multiplier of non-TVEs is

Similarly, invest multiplier of non-TVEs is

$$M_{I}^{2} = (A_{v}^{1*}, A_{v}^{2*}) \cdot \begin{pmatrix} R^{11*} & R^{12*} \\ R^{21*} & R^{22*} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ k^{2} \end{pmatrix} = (A_{v}^{1*}R^{12*} + A_{v}^{2*}R^{22*}) \cdot k^{2}$$
(9)

According to formula (8) and (9), we get invest multiplier of TVEs and non-TVEs in 1995 invest structure. The results are 3.44 and 2.94 respectively, i.e. when we increase one unit invest in TVEs and keep invest in non-TVEs unchanged in the meantime, value-added of the whole country will raise 2.44 times as much. Similar is that of non-TVEs. From the results, we can see that per unit invest in TVEs produces more effect than that in non-TVEs. In addition, we also computed increments of total value-added induced by increase of per unit invest in every industry (but with no change of invest in other industries)(see table 1).

Obviously, the larger the invest multiplier is, the stronger the effect of one certain industry on national economy produces. In table 1, TVEs industries that have larger invest multiplier are mainly:

sewing and leather products 3.62, smelting and pressing of metals 3.59, electric equipment and machinery 3.57, transport equipment 3.55, metal products 3.52, textile industry 3.52 and chemical industry 3.51. On the whole, they mainly focus on some fast rising manufacturing industry. Nonmetal Mineral products has a large proportion in total output value, but its invest multiplier is very small. In addition, tertiary industry of TVEs, including that of non-TVEs, such as commerce, catering trade, has smaller invest multiplier. This is because tertiary industry belong to final consumption field, chain effect caused by invest is much weaker. In addition, the average effect of invest in TVEs is larger than that in non-TVEs, which further prove the above conclusion.

	Invest Multiplier	
	TVEs	Non-TVEs
Sewing and Leather products	3.62359	3.44305
Smelting and Pressing of Metals	3.59031	2.91358
Electric Equipment and Machinery	3.56632	3.18179
Transport Equipment	3.54575	3.29494
Metal Products	3.52362	3.15531
Textile Industry	3.52103	3.34396
Chemical Industry	3.51346	3.05240
Electronic and Telecommunications Equipment	3.48108	3.16936
Machinery Industry	3.46298	3.08188
Papermaking, Cultural and Educational Products	3.43932	3.11993
Construction	3.36807	2.95466
Timber Processing and Furniture Manufacturing	3.34940	2.93536
Instruments, Meters, Cultural and Office Machinery	3.33884	2.90217
Machinery Repairing Industry	3.31644	2.97816
Other Industry	3.27296	3.29458
Nonmetal Mineral Products	3.21474	2.50959
Other Nonmetals Mining and Dressing	3.07333	2.06255
Metals Mining and Dressing	3.04705	2.46761
Coking, Coal Gas and Coal Products	3.01545	3.37060
Food Production	3.00716	2.29710
Petroleum and Natural Gas Extraction	2.89146	2.11211
Petroleum Processing	2.85250	2.61386
Elect. Power, Steam and Hot Water Prod. and Supply	2.84048	2.26526
Agriculture	2.80977	1.93542
Coal Mining and Dressing	2.79945	2.09941
Catering Trade	2.76891	2.30533
Commerce	2.65095	1.96134
Freight and Postal Services	2.51277	2.07215
Other Service	2.41783	2.20629
Average	3.16603	2.72758

Table 1. Comparison of invest multiplier between TVEs and non-TVEs

Note: The industry is in order of invest multiplier of TVEs

4. Household Income Multiplier

Production procedure consumes not only raw material, energy, but also man power. The consumption of man power during production is expressed in employee compensations in input-output table, i.e. people get income by doing work. With the increase of production, household income increases too. Household income multiplier is the ratio of an induced change in household income of all industry, directly and indirectly, to an initial change of per unit increase of final products or service in a certain industry.

In common partial-closed input-output model, the formula of computing household income multiplier is

$$M_{s} = \sum_{i=1}^{n} a_{si} b_{ij}^{*} = A_{s} B^{*} \quad j=1,2....n+1$$

Here a_{s_i} is coefficient of employee compensations of sector *i*, b_{ij}^* is elements of Leontief inverse matrix under partial-closed model.

When national economy is divided into TVEs and non-TVEs, household income multiplier is given as follows:

$$(M_{s}^{1}, M_{s}^{2}) = (A_{s}^{1^{*}}, A_{s}^{2^{*}}) \cdot \begin{pmatrix} R^{11^{*}} & R^{12^{*}} \\ R^{21^{*}} & R^{22^{*}} \end{pmatrix}$$

Here M_s^1, M_s^2 is row vector of household income multiplier of TVEs and of non-TVEs respectively, A_s^{1*}, A_s^{2*} is row vector of coefficients of employee compensations of TVEs and of non-TVEs respectively.

So, household income multiplier of TVEs is $M_s^1 = A_s^{1*} R^{11*} + A_s^{2*} R^{21*}$

Similarly, household income multiplier of non-TVEs is $M_s^2 = A_s^{1*} R^{12*} + A_s^{2*} R^{22*}$

From the results(see table 2.), we can see that the average income multiplier of TVEs is 1.373, a little larger than that of non-TVEs with 1.350. TVEs industries that have larger income multiplier are mainly: agriculture 1.97, textile industry 1.86, coke-making industry 1.70, sewing and leather products 1.66 other industry 1.57, papermaking industry 1.53, food processing 1.52, etc. Other industries, such as machinery manufacturing, metal mining and dressing, coal mining and dressing, catering trade, also have larger income multiplier. Those that have larger income multiplier in non-TVEs mainly distribute in coal mining and dressing, textile industry, food production industry, other services, construction, catering trade. From the distribution of larger income multiplier industries, it's easy to see most of them are labor intensive industries, no matter in TVEs and non-TVEs. What we should pay more attention is that income multiplier of other services in non-TVEs is the largest, which has close correlation with too large scale of administrative department.

5. Employment Multiplier

Employment multiplier is the ratio of an induced change in employment of all industries, directly and indirectly, to an initial change of per unit increase of final products in a certain industry. With the increase of final demands, production scale expands correspondingly, and expanding scale, in turn, drives the demands of national economy for labor force, which produces multiplier effect. Household sector also has great influence on employment multiplier. Specifically, output value of each sector increases with the increment of final demands, and accordingly, employee compensations rise with output value. The increasing employee compensations bring about new consumption demands, which, in turn, drive the increase of output value and produce new employment. So, when we compute employment multiplier we should fully consider the influence of household consumption.

	Household Income Multiplier	
	TVEs	Non-TVEs
Agriculture	1.97108	1.42687
Textile	1.86433	1.51192
Coking, coal gas and coal products	1.69800	1.35306
Sewing and leather products	1.65925	1.46087
Other industry	1.56937	1.32160
Papermaking, Cultural and Educational Pro-ducts	1.53449	1.44173
Machinery repairing	1.53322	1.29204
Food processing	1.52471	1.55831
Machinery industry	1.45992	1.25164
Metals Mining and Dressing	1.44550	1.36366
Coal mining and dressing	1.43808	1.55488
Instruments, meters, cultural and	1.42337	1.39644
Catering trade	1.41273	1.48163
Construction	1.40688	1.50742
Timber Processing and Furniture Manufacturing	1.40504	1.35799
Transport Equipment	1.39130	1.24126
Chemical industry	1.38487	1.28856
Metal products	1.32454	1.33915
Other services	1.31845	1.79468
Smelting and Pressing of Metals	1.31652	1.23271
Electric Equipment and Machinery	1.30291	1.27797
Other Nonmetals Mining and Dressing	1.25055	1.35434
Freight and postal services	1.21241	1.37473
Electronic and Telecommunications Equipment	1.13579	1.16181
Nonmetal Mineral Products	1.13036	1.38461
Commerce	1.00569	1.43123
Petroleum processing	0.94752	0.79429
Elect. Power, Steam and Hot Water Prod. and Supply	0.92312	1.19131
Petroleum and Natural Gas Extraction	0.81975	1.01212
Average	1.37275	1.35030

Table 2. Comparison of household income multiplier between TVEs and non-TVEs

We use occupancy coefficient for labor force (labor force per ten thousand output value) to express the demands of national economy for labor force when final products increase. Then

$$(M_L^1, M_L^2) = (A_L^{1*}, A_L^{2*}) \cdot \begin{pmatrix} R^{11*} & R^{12*} \\ R^{21*} & R^{22*} \end{pmatrix}$$

Here $A_L^{1^*}, A_L^{2^*}$ is row vector of occupancy coefficient for labor force of TVEs and of non-TVEs under partial-closed model respectively, $M_L^{1^*}, M_L^{2^*}$ is employment multiplier of TVEs and non-TVEs respectively.

Then employment multiplier of TVEs is $M_L^1 = A_L^{1^*} R^{11^*} + A_L^{2^*} R^{21^*}$ (10) Similarly, employment multiplier of TVEs is $M_L^2 = A_L^{1^*} R^{12^*} + A_L^{2^*} R^{22^*}$ (11) Using formula (10) and (11), we can get employment multiplier of each sector (see table 3). In addition, we also calculate the average multiplier.

	Employment Multiplier	
	TVEs	non-TVEs
Other service	4.25392	2.71400
Food production	3.81398	2.78423
Catering trade	3.60354	2.98522
Agriculture	3.32606	5.41776
Other industry	3.26041	3.87765
Textile industry	3.11967	3.38419
Coal mining and dressing	3.18777	3.26787
Commerce	2.99815	2.10926
Construction	2.86419	2.55308
Papermaking, cultural and educational products	2.85402	2.75772
Sewing and leather products	2.84986	2.93394
Freight and postal services	2.76543	2.52710
Nonmetal mineral products	2.70806	2.11994
Timber processing and furniture manufacturing	2.64248	2.60744
Other nonmetal mining and dressing	2.61111	2.48187
Instruments, meters, cultural and office machinery	2.64392	2.67578
Machinery repairing	2.30071	2.83260
Metal mining and dressing	2.54799	2.81046
Coking, coal gas and coal products	2.50010	3.26996
Chemical industry	2.39951	2.37080
Metal products	2.35760	2.27685
Electric Equipment and Machinery	2.20749	2.16142
Elect. Power, Steam and Hot Water Prod. and Supply	2.21830	1.60157
Machinery industry	2.18509	2.59906
Transport equipments	2.14388	2.34081
Smelting and Pressing of Metals	2.10606	2.21303
Electronic and telecommunications equipment	1.96749	1.78025
Petroleum and natural gas extraction	1.83571	1.37148
Petroleum processing	1.35920	1.51041
Average	2.77653	3.19958

 Table 3. Comparison of employment multiplier between TVEs and non-TVEs

Denote M_L^{-1} as average employment multiplier of TVEs, then $M_L^{-1} = M_L^{-1} \cdot k_Y^{-1}$ Here $k_Y^{-1} = (k_{Y_1}^{-1}, k_{Y_2}^{-1}, \dots, k_{Y_n}^{-1}, 0)$ is row vector of structure coefficient of final demands of TVEs, $k_{Y_i}^{-1} = \frac{Y_i^{-1}}{\sum_{i=1}^n Y_i^{-1}} \quad Y_i^{-1}$ is final demands of sector *i* of TVEs.

Similarly, we can calculate average employment multiplier of non-TVEs $M_L^2 = M_L^2 \cdot k_Y^2$, k_Y^2 is row vector of structure coefficient of final demands of non-TVEs.

From table 3, we can see that TVEs industries that have larger employment multiplier are mainly: other services 4.25, food processing 3.81, catering trade 3.60, agriculture 3.33, other industry 3.26, textile industry 3.12, coal mining and dressing 3.09, commerce 3.00 and construction 2.86. In addition, other industries, such as sewing and leather products, papermaking industry and freight and postal services, also have large employment multiplier. All of these industries have a common property that they are labor-intensive. Almost all tertiary industry have larger employment multiplier, but those with high technology, such as electric equipment, electronic and telecommunication, are very small in employment multiplier. Similar to that of TVEs, those with larger employment multiplier of non-TVEs generally focus on labor intensive industries. It's a little different in non-TVEs from that in TVEs, however, the employment multiplier of agriculture rises to the first.

The employment multiplier we get above statically reflect the influence of output value increment on employment when employment structure is fixed, it can't dynamically show how many occupations each industry can supply when employment structure changes in a certain period. So, we use *new labor force occupied by per unit increase of output value* instead of *labor force occupied by per unit output value* to denote the demands of national economy for labor force when final products increase, i.e.

$$l_i^1 = \frac{\Delta L_i^1}{\Delta X_i^1} \qquad l_i^2 = \frac{\Delta L_i^2}{\Delta X_i^2}$$

Here $\Delta L_i^1 \quad \Delta L_i^2$ is increment of labor force of sector *i* of TVEs and of non-TVEs in a certain period respectively, $X_i^1 \quad X_i^2$ is increment of output value of sector *i* of TVEs and of non-TVEs in certain period respectively, $l_i^1 \quad l_i^2$ is employment elasticity of sector *i* of TVEs and of non-TVEs in a certain period respectively.

Denote $l^{1^*} = (l_1^1, l_2^1, \cdots, l_n^1, 0)$ $l^{2^*} = (l_1^2, l_2^2, \cdots, l_n^2, 0)$, then the new employment multiplier is given as follows:

	Considering Structure Change	
	TVEs	non-TVEs
Coal mining and dressing	0.66192	-0.01900
Machinery repairing	0.65736	0.18411
Freight and postal services	0.62961	0.25367
Catering trade	0.59694	0.70335
Coking, coal gas and coal products	0.51379	0.47825
Petroleum processing	0.50340	0.44050
Instruments, meters, cultural and office machinery	0.50307	0.86384
Commerce	0.47059	0.74941
Other industry	0.43589	-0.62773
Construction	0.41939	0.31297
Other service	0.37913	0.24455
Metal mining and dressing	0.37147	0.23044
Petroleum and Natural Gas Extraction	0.37058	0.74387
Nonmetal Mineral Products	0.36877	0.29395
Transport Equipment	0.32454	0.36536
Smelting and Pressing of Metals	0.31642	0.28352
Electric Power, Steam and Hot Water Production and Supply	0.31737	0.24729
Electric Equipment and Machinery	0.31368	0.30455
Timber Processing and Furniture Manufacturing	0.30556	0.23308
Metal products	0.29529	0.29881
Other nonmetals mining and dressing	0.24470	0.16413
Electronic and telecommunications equipments	0.21266	0.26063
Machinery industry	0.18906	0.19453
Chemical industry	0.18576	0.19941
Agriculture	0.12917	-0.41954
Sewing and leather products	0.10599	0.16980
Papermaking, cultural and educational products	-0.01324	0.05240
Textile industry	-0.08638	0.06722
Food processing	-0.09919	-0.08096
Average	0.27922	0.11502

Table 4. Comparison of employment multiplier between TVEs and non-TVEs

Employment multiplier of TVEs is $M_l^1 = l^{1^*} R^{11^*} + l^{2^*} R^{21^*}$ (12)

Similarly, employment multiplier of non-TVEs is $M_{l}^{2} = l^{1*}R^{12*} + l^{2*}R^{22*}$ (13)

Employment multiplier of each industry with new formula are given in table 4. It's very different from table 5.3 that those can absorb new labor force in TVEs change a lot. They are coal mining and dressing 0.66 machinery repairing 0.657 freight ad postal services 0.63, catering trade 0.60, coke making 0.51, petroleum processing 0.50 and instruments, meters equipment 0.50 and in addition, commerce and construction, etc. Those with higher employment multiplier without considering

structural changes, such as food processing, textile, sewing and leather products, can't enroll new labor force when employment structure changes, which indicates that the scale of these industries has been too big and labor force surplus has been very serious. Tertiary industry, such as freight and postal services, commerce, catering trade, is completely different. They not only can enroll a large amount of labor force, but also can absorb plenty of new labor force. So, these industries have great potentialities, and we should fully support their development.

6. Conclusions

In this paper, the main objective is to study the influence of China TVEs on national economy. We calculate three kinds of multiplier of TVEs and non-TVEs. It's easy to see that China TVEs not only account for a large proportion in national economy, but also play important role in absorbing labor force, especially those in countryside, and increasing household income. Also, we can use the results as reference to policy making.

From invest multiplier and household income multiplier, we can see that those having larger influence on economy focus on textile industry, sewing and leather products, timber processing, food processing, construction. As far as employment multiplier is concerned, those can absorb a large amount of labor force are mainly coal mining and dressing, and tertiary industry, such as commerce, catering trade, freight and postal services. So, when we take measure to adjust the industry structure of TVEs, we must consider it comprehensively. Here, it should be noted that large multiplier shows that the industry has a key status in national economy, it's not necessarily indicate that, however, we should give priority to its development. Take textile industry as a example, in the past following years, textile industry played great role in improving people's living standard, increasing foreign exchange reserve. Now, production capacity of textile industry is seriously excessive, causing enormous waste of resources. So, in order to optimizing industry structure, we should limit the development of this industry.

Taking multiplier effect and other factors into consideration, we should give priority to the development of food processing, timber processing and furniture manufacturing, sewing and leather products, building materials, electric machinery and construction in TVEs. In addition, development of tertiary industry that can absorb plenty of surplus labor force, such as commerce, catering trade, freight and postal services, should be given energetic support.

References

Abdul Qayyum(1994), Inclusion of Environmental Goods in National Income Accounting, *Economic Systems Research*, 6(2), pp159-166.

Adam Rose & William Miernyk (1989) Input-Output Analysis: The first fifty years, Economic Systems Research, 1,

pp229-271.

- Alan M. Wolsky (1984), Disaggregation of Input-output Models, *The Review of Economics and Statistics*, 66, pp283-290.
- Li Qiang, Liu Qiyun(1998), Practice and Study of Input-output Technique in China (Beijing, China Statistical Publishing

House).

Li Yiyuan (1992), Macro-economic Analysis(Beijing, Tsinghua University Press).

- National Economy Accounting Division of SSB(1997), *Input-output Table of China of the year 1995* (Beijing, China Statistical Publishing House).
- National Economy statistical Division and Input-Output Office in State Statistical Bureau (1993), Input-Output and Macroeconomic Analysis (Beijing, China Statistical Publishing House).
- Peter W. J. Batey & Melvyn J. Weeks, The effects of Household Disaggregation in Extended Input-Output Models, in: Ronald E. Miller, Karen R. Polenske & Adam Z. Rose (1989) *Frontiers of Input-Output Analysis* (New York,

Oxford University Press), pp119-133.

Solomon, I. Cohen, Multiplier Analysis in Social Accounting and Input-Output Frameworks: Evidence for Several Countries, in: Ronald E. Miller, Karen R. Polenske & Adam Z. Rose (1989) *Frontiers of Input-Output*

Analysis (New York, Oxford University Press), pp79-102. Xu Yiping, On the Study of China Industry Structure and Employment, in: National Condition Analysis Group of

Chinese Academy of Sciences, *Employment and Development*, Liaoning People's Press, 1998 Zhong Qifu, Chen Xikang & Liu Qiyun (1993), *Input-output Analysis* (Beijing: China Financial and Economic Publishing House).

Zhang Kai, Study on Invest multiplier of China, Invest Research, No.7(1997).

Tang Zhong, Kong Xiangzhi (1994), Township and Village Enterprises in China (Beijing, People's Press).

National Condition Analysis Group of Chinese Academy of Sciences (1994), City and Countryside (Beijing, Science

press).