
Least-Cost Air Pollution Control: A CGE Joint Production Framework

by

Deborah Vaughn Aiken*

and 

Carl A. Pasurka, Jr.**

*Occupational Safety and Health Administration
Washington, DC 

**Office of Policy, Economics and Innovation
U.S. Environmental Protection Agency (1809T)

1200 Pennsylvania Ave., N.W.
Washington, D.C. 20460

Phone: (202) 566-2275
Fax:  (202) 566-2373

E-mail: PASURKA.CARL@EPA.GOV

July 15, 2002

C:\cge-jointprod\mps104.wpd

DO NOT QUOTE OR CITE WITHOUT THE PERMISSION OF THE AUTHORS

To be presented at 14th International Input-Output Conference
Montreal, Canada in October 2002

An earlier version of this study was presented at the First World Congress of Environmental and
Natural Resource Economists in Venice, Italy (June 1998). All views expressed in this study are the
authors' and do not reflect the opinions of the Occupational Safety and Health Administration or the
U.S. Environmental Protection Agency.



Abstract

This study proposes a new, more flexible approach to modeling pollution abatement
activities within the CGE framework, one that treats the problem as an issue of the joint production
of  “good” and  “bad” outputs.  More specifically, this study employs a joint production  technology
to derive the production possibilities frontier for those industries producing both  “good” and “bad”
outputs. This avoids some of the difficulties associated with attempting to model separate
technologies for production of the good output and pollution abatement activities.  We demonstrate
an application of the CGE model by estimating the cost associated with not pursuing least-cost
strategies for abating air pollutants in the United States.



1 Throughout this study, the “good” output is the marketed output produced by an industry
and the “bad” outputs are pollutants emitted by an industry.  

I. Introduction

Application of computable general equilibrium (CGE) models to environmental policy

analysis has become commonplace (see Atkins and Garbaccio 1999, Conrad 1999, 2002).  CGE

models appeal to policymakers because of their ability to capture distributional consequences

and identify sectors disproportionately affected by environmental standards.  For example, CGE

analyses of the economic consequences of measures to reduce greenhouse gas emissions has

played a key role in understanding the potential economic consequences of policies aimed at

reducing greenhouse gas reductions. 

In this study, we develop a CGE model that extends previous work by specifying a

flexible approach to incorporating emissions and pollution abatement processes.   More

specifically, we follow a two-step process. The production technology associated with those

sectors producing both good and bad outputs are specified is modeled as a  joint production

technology through the use of distance functions.  We specify and estimate the joint production

technology as a translog distance function (see Färe et al 1993). The distance function is a multi-

output production technology that specifies the technical relationship between good outputs and

bad outputs.  Once the distance function is estimated, it can be used to calculate producer

shadow prices for emissions for any point on the production frontier.1  These shadow prices

reflect  the opportunity cost (i.e., marginal abatement costs) in terms of foregone revenue to the

producer of reducing emissions by one unit.  Using a data set for 1970 through 1996 which

consists of inputs, marketable outputs (“good” outputs), emissions of sulfur dioxide (SO2) and

particulate matter less than ten microns in diameter (PM-10), we estimate the joint production



2Studies that estimate the economic effects of environmental regulations typically use
estimates of the pollution abatement costs incurred by the manufacturing and electric utility sectors.
One difficulty associated with these data is measuring “change in production process” capital
expenditures for pollution abatement (i.e., the built-in pollution abatement features of a production
process). These expenditures for pollution abatement have become increasingly important relative
to “end-of-pipe” capital expenditures.  For example, “change in production process” as a  share of
manufacturing air pollution abatement capital expenditures increased from 17.4 percent in 1973 to
48.3 percent in 1994 (U.S. Bureau of the Census, 1976, p. 47 and 1996, p. 25).
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technology  for the manufacturing sector.  This allows us to establish a joint production

technology based on observed data as opposed to engineering data for each polluting sector.  The

important advantage of this approach is that it avoids the problem of modeling pollution

abatement technologies separately from the technologies used to produce the good output.  This

is interesting from a policy perspective because in recent years there has been an increasing use

of changes in the production process as opposed to using end-of-pipe abatement technology as a

means of reducing emissions.2  This makes modeling separate pollution abatement technologies

an increasingly difficult task. We demonstrate how to model joint production technologies

within a CGE framework by calculating the least cost policy to reducing air pollutants in the

U.S.   

The remainder of this study is organized as follows.  Section II reviews previous CGE

analyses of environmental regulation and describes how they modeled emissions and pollution

abatement. Section III briefly outlines the distance function approach to specifying the joint

production technology, while Section IV describes the features of our CGE model of the U.S.

economy.  Section V presents the results of our analysis and Section VI presents conclusions.

II.  Modeling Emissions and Pollution Abatement Activities within an Applied General



3 Manufacturing emissions are produced by either fuel combustion or processes.
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Equilibrium Framework:  Review of the Literature

The first efforts to incorporate emissions and pollution abatement activities into general

equilibrium models were primarily theoretical.  Ayres and Kneese (1969) represents the first

effort to incorporate emissions and abatement activities into a theoretical general equilibrium

framework.  Empirical work on this topic originates in the input-output literature (see Leontief,

1970). Pearson (1989) surveyed environmental applications of input-output analysis and

Hafkamp (1991) surveyed studies incorporating emissions into economic models.

One class of CGE models introduces bad outputs by modeling them as a constant

proportion of the good output (see Robinson (1990), Robinson, Subramanian, and Geoghegan

(1993), Goulder (1994), Smith and Espinosa (1996), and Lee and Roland-Holst (1997)).  As a

result, this approach requires either fixed input-output coefficients or it does not allow for fuel

combustion emissions.  Hence, for a given level of production of the good output, it does not

allow for substituting away from fuel consumption toward capital may reduce emissions.  If

input-output coefficients are not fixed, modeling emissions as a constant proportion of good

output  within the CGE framework implicitly assumes all emissions are “process” emissions for

which no abatement technologies exist.3  Thus, this approach fails to allow for the possibility that

industry may respond to environmental regulations by installing equipment that reduces the

production of the bad output per unit of production of the good output (i.e., produce fewer

emissions per unit of its marketed output).  As a result, the only available abatement strategy is

to reduce production of the good output.

For a CGE analysis of Costa Rica, Dessus and Bussolo (1998) link emissions to the



4Some of these efforts rely on engineering estimates of alternative production technologies
rather than actual data; while others invoke important assumptions regarding pollution abatement
processes.
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consumption of polluting inputs.  This specification allowed for the substitution of nonpolluting

inputs for polluting inputs.  This is analogous to how CO2 emissions are modeled.

Two approaches have been employed to model pollution abatement activities within a

CGE framework.4  The first approach models pollution abatement activities separrately from the

technology associated with the production of the good output.  Bergman (1991) developed a

CGE model that specified increasing marginal abatement costs for CO2 emissions.  His strategy

was followed by Conrad and Schröder (1991a, 1991b, 1993, 1994). Robinson, Subramanian, and

Geoghegan (1994) assume fixed coefficient production functions for the abatement technologies

with identical marginal abatement costs across sectors.  Dellink (2000) and Dellink et al (2002)

extended Bergman’s approach by calibrating a pollution abatement function.  For a CGE

analysis of China, Xie and Saltzman (2000) assume production of the bad output is directly

linked with production of the good output; and abatement activities are modeled separately from

production of the good output.  For a CGE analysis of India, Nugent and Sarma (2002) also

model the production of the good output and associated generation of bad outputs separately

from pollution abatement activities.

The second approach used to model pollution abatement activities involves  modeling

pollution control costs, but excludes explicitly modeling the generation and abatement

emissions.  Jorgenson and Wilcoxen (1990a and 1990b) assume that an industry's production

function for pollution abatement directly mirrors the production function for its good output, or

equivalently, is represented in the economy as a Hicks-neutral cost increase (see Wilcoxen,
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1988, p. 35).  Hazilla and Kopp (1990) invoke a similar assumption.  Ballard and Medema

(1993) assumed that pollution abatement activities involve only purchases of capital and labor. 

Nestor and Pasurka (1995b) use detailed data on the specific inputs used for pollution abatement,

and attempt a more accurate modeling of the general equilibrium effects of pollution abatement

activities in Germany. In addition, Nestor and Pasurka (1995a) investigated the consequences of

difference assumptions about the inputs employed by the abatement technology.  This approach

has been primarily used in ex post facto analyses of regulations.

While the approaches to modeling pollution abatement processes separately are varied,

increasingly they must confront the issues associated with the fact that an increasing share of 

pollution abatement activities are not “end-of-pipe.”  This makes modeling a separate pollution

abatement function an ever more difficult problem.  In addition, survey estimates of the costs

associated with pollution abatement activities are also subject to increasing scrutiny. Even when

pollution abatement activities are end-of-pipe,  Färe, Grosskopf, and Pasurka (2002)  found

substantial differences between survey (i.e., accounting) estimates of pollution abatement

operation and maintenance (O&M) costs and the opportunity costs of pollution abatement

activities that are derived from modeling the joint production of good and bad outputs.  This

study proposes a way of avoiding this problem by specifying a more flexible approach to

modeling pollution abatement within a CGE framework, one that treats the problem as an issue

of the joint production of good and bad outputs.  The following section describes the approach

specified in this study to model pollution generation and abatement activities.

III. Joint Production Model and Pollution Abatement Activities

For those industries that produce at least two outputs (one good and one bad), it is not



5 Kolstad and Turnovsky (1998, p.445, footnote #1)  expressed concern that the endogenity
and simultaneous equation bias problems associated with the econometric estimation of production
functions also apply to the LP estimation of distance functions.  However, such biases may not be
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possible to specify a traditional production function.  Instead, distance functions and directional

distance functions have been used to specify both the non-parametric and the parametric

production technologies.  In this study we calibrate the joint production technology by

estimating a translog (i.e., parametric) distance function and then using those results to calibrate

the CGE model.

There are several advantages of  modeling the joint production of good and bad outputs. 

One advantage is that it does not require information on pollution abatement technologies and

their associated costs. Hence, there is no need to estimate the inputs associated with a particular

pollution abatement activity nor is it necessary to estimate the quantity of emissions abated as a

consequence of that pollution abatement activity.  Instead, the cost of pollution abatement

activities is captured by the reduced production of the good output that occurs as a result of

inputs being reallocated to pollution abatement activities.  Another advantage of modeling the

joint production of good and bad outputs is that it avoids the difficulties encountered by survey

efforts to measure the costs associated with “change in production process” pollution abatement

techniques.  In the joint production model, the synergies in the abatement process of two or more

pollutants are automatically handled by the production technology.  Pollution abatement

functions require information on the synergies that exist among various pollution abatement

processes. Finally, the distance function methodology estimates the joint production technology

and associated producer shadow prices based on the actual behavior producers and not on

engineering estimates.5



as significant as previously believed. For example, Coelli (2000) provides evidence that the
simultaneous equation bias associated with the OLS estimation of production functions may notbe
as severe as previously believed and Coelli and Cuesta (2001) provide evidence that the
simultaneous equations bias of the econometric estimation of distance functions is no worse than
the bias associated with estimation of production functions in general. 
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There are two approaches to modeling the joint production of good and bad outputs.  One

approach assumes a non-parametric piece-wise linear production technology (see  Färe,

Grosskopf, and Pasurka (1986 and 1989)). The joint production framework was first used by

Kohn (1975, pp. 29-37) to investigate the costs of pollution abatement activities.  Brännlund, et

al. (1998) specified a non-parametric distance function (i.e., an activity analysis) within a partial

equilibrium framework in order to estimate the cost savings associated with an emissions trading

program.  Willett (1985) had already specified a theoretical general equilibrium model that

incorporated emissions into the CGE model by using an activity analysis specification of the

production technology.  Using a CGE model, Komen and Peerlings (2001) specified input-output

vectors representing three technologies (two active and one latent) that are available to the dairy

farming sector representing different mixes of good and bad outputs.

Figure 1 illustrates the simplified case where the  production process generates one good

output (Q) and one bad output (e) from a vector of inputs.   When using an activity analysis

framework, a finite number of production processes exist for a given vector of inputs. Each

process is represented by a ray from the origin that represents different combinations of good

and bad outputs which can be produced by a given technology.  In Figure 1, three processes (T1,

T2, and T3) are available to the producer. Steeper rays (e.g., T1) represent production

technologies that allocate relatively more inputs to pollution abatement activities, while a

relatively flat ray (e.g., T2) represents a production technology with  fewer inputs devoted to
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pollution abatement activities. Once the vector of inputs is known, it is possible to determine the

combination of good and bad outputs that a process can produce (i.e., points a, b, c). 

  The points on the frontier represent the different combinations of good and bad outputs

that can be produced with a given vector of inputs.  It is possible to construct linear combinations

of the different production processes. For the case of one good output, one bad output, and a

single input, the production unit will use the two processes to efficiently produce a given

combination of good and bad outputs. In Figure 1, process T1 can be used to produce bundle

represented by point x and process T2 can be used to produce bundle represented by point y. 

Combining these two output bundles yields point z on ray ab (adopted from Kohn, 1975).

In our model, emissions decrease as inputs are shifted from production of the good output

to pollution abatement activities. The “output” of the pollution abatement activities is the

reduced production of the bad output (i.e., emissions) for a given vector of inputs.  In Figure 1,

the line segments labeled 0abc represent the economically relevant portion of the piece-wise

linear production-possibilities frontier consisting of the good and bad outputs. A consequence

and limitation of specifying an activity analysis framework is that the production possibility

frontier for the good and bad outputs is piece-wise linear. 

 A second approach used to model the joint production of good and bad outputs specifies

a parametric production technology. Most empirical studies that specify a parametric distance

function have used a translog function (see Färe et al., 1993); however, recently a quadratic

production technology was specified (see Färe, Grosskopf, and Weber 2001) .   The advantage of

specifying a translog distance function is that  the production frontier is smooth.

While McKitrick (1998) and Perroni and Rutherford (1998) discuss the merits of



6 Rutherford (1995) provides insights into calibrating an NNCES function.

7See Shephard (1970) or Färe (1988)
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(1) Do(X, Q) = min
ω

ω: Q
ω

0 G(X)

different functional forms used in CGE models with good outputs, there is no comparable

discussion regarding the proper modeling of the joint production of good and bad outputs within

a CGE framework.   Perroni and Rutherford (1995) describe an n input production technology

can be approximated by a nonseparable nested constant elesticity of substitution (NNCES)

functional form.6  Perroni (1999) extends Perroni and Rutherford (1995) by describing an m

output n input production technology can be approximated by a NNCES / constant elasticity of

transformation (CET) restricted profit function.  Jensen, Kristensen, and Nielsen (1999)

estimated a multiple good output NNCES cost function.  However, there has been no

investigation of the feasibility of extending the NNCES technology to the case of the joint

production of good and bad outputs.

We specify a parametric translog distance function in order to obtain parameter estimates

for those industries that produce good and bad outputs (see Färe et al., 1993, for a detailed

discussion of the application of distance functions to model good and bad outputs).  In particular,

we consider a production unit that produces outputs Q = (Q1, Q2, ..., Qm) using inputs X = (X1, 

X2, ..., Xn) at each period of time t = 1, ..., T.  Of the outputs, i = 1, ..., k represent emissions (bad

outputs) while i = k+1, ..., m represent good outputs.  We assume weak disposability of outputs

and constant returns to scale.  Thus, the technology is represented as an output distance

function:7 
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(2)
MDo(X, Q)

MQi

= P (

i (X, Q), i = 1, ..., m

where G(X) is the set of technically feasible output vectors that employ input vector X and Q 0

G(X) when Do(X, Q) # 1.  The output distance function measures the greatest possible radial

expansion of output bundle Q to the production possibilities frontier for a given input bundle X. 

When Do(X, Q) = 1,  the producer is maximizing the production of the good and bad outputs for

a given level of inputs. Hence, the producer is technically efficient.  When Do(X, Q) < 1, then the

producer is producing “inside the frontier,” or is technically inefficient.  One advantage to using

the output distance function as opposed to a production function representation of technology is

that it easily models the joint production of multiple outputs.

   The duality between the output distance function and the revenue function allows the

derivation of producer shadow prices for the bad outputs.  Since the distance function is

equivalent to the revenue function at the revenue maximizing output price vector, applying 

Shephard's dual lemma yields revenue deflated (i.e., normalized) output shadow prices (P*) as

follows

The undeflated (i.e., absolute) shadow prices (P) can be expressed as the product of the

revenue function and the deflated shadow price (P*). Hence, when the revenue function is

known, P can be computed.  The difficulty in computing P is the revenue function depends on P,

which are unknown.  However, if we assume the observed price for the good output is equal to

its undeflated shadow price, then the revenue function is the ratio of its undeflated and deflated

shadow prices. It is assumed  that the undeflated shadow price of Qm, which represents a good



8 To the extent that markets are not perfectly competitive, or there are subsidies or taxes, the
assumption that the price of the good output equals its shadow price is inaccurate.

9The radial projection assumes a proportional expansion of all good and bad outputs for a
given input vector until the production possibilities frontier is attained.
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(3) Pi =
Pm

P (

m(X, Q)
P (

i (X, Q) = Pm

MDo(X, Q)/MQi

MDo(X, Q)/MQm

, i = 1, ..., m-1

output, is equal to its observed market price (Pm).8  The remaining undeflated shadow prices (P1,

P2, ..., Pm-1) are calculated

Equation (3) states the undeflated shadow price of an bad output equals/is the product of the

actual product of the price of the good output (Pm) and the marginal rate of transformation

(MRT).  The MRT is the quantity of the good output that must be foregone in order to reduce the

quantity of an bad output by one unit.  The undeflated shadow price of an bad output is negative,

which reflects the opportunity cost (i.e., in terms of foregone revenue) of reducing production of

the bad output.

According to equation (3), the absolute shadow price of the bad output for an inefficient

producer is determined by making a radial projection to the production possibilities frontier from

the observation.9  The shadow prices of the bad outputs associated with that observation are

calculated at that point on the frontier.  Hence, the absolute shadow price reflects the actual

proportions of good and bad outputs produced by an inefficient producer.

Figure 2 provides a representation of these concepts for the case of the production of one

good output (Q2) and one bad output (Q1).  Figure 2 illustrates that the firm cannot decrease

production of Q1 without decreasing Q2, and that technology satisfies weak disposability.   The
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(4)

ln D t
o(X s,t, Q s,t) = α0 + j

n

j=1
βjlnX s,t

j  + 1
2j

n

j=1
j

n

j́=1
β ´jjlnX s,t

j lnX s,t
j́ + j

m

i=1
ωilnQ s,t

i

+ 1
2j

m

i=1
j
m

í=1
ω ´iilnQ s,t

i lnQ s,t
í + j

m

i=1
j

n

j=1
φijlnX s,t

j lnQ s,t
i + νtt + 1

2
νttt

2 + j
n

j=1
βjttlnX s,t

j

+ j
m

i=1
ωittlnQ s,t

i + j
s

k=1
τkDIk , s'1,...,S; t'1,...,T.

output distance function measures the proportion by which both Q1 and Q2 can be increased with

the original input vector, while using the original production process (i.e., this radial projection

maintains the initial ratio of the good to bad outputs). For the combination of output depicted by

point a, the value is given by the ratio 0a/0b.  Figure 2 illustrates the condition for optimality, or

that the ratio of the output prices P1 and P2  must equal the slope of the distance frontier.  This

condition holds even if an observation is inefficient, so the methodology for assigning shadow

prices is not sensitive to the existence of technical inefficiency.

For purposes of estimating the shadow prices, we follow Färe et al. (1993) and specify  a

translog output distance function. For a panel consisting of s=1,. . ., S industries observed over

t=1,. . ., T years the distance function has the form: 

where X1, X2, X3, represent capital, labor and an aggregate intermediate input, respectively. Q1,

Q2, Q3, represent production of the good output, PM-10 emissions and SO2 emissions,

respectively.  Finally, the industry dummy variables, DIs, capture industry-specific effects and t

is a time trend variable.  Since a single distance function is estimated, input and output

substitution possibilities are constant over time and across industries.

We estimate (11) as a linear programming (LP) problem.  Specifically, for observations t 

= 1, ..., T, and s = 1,..., S, we maximize:



-13-

(5) j
T

t=1
ln D t

o(X s,t, Q s,t) 

subject to the following constraints: 

(6i) ln D t
o(X s,t, Q s,t) # 0, s ' 1,...,S; t ' 1,...,T

(6ii) i = 1, ..., k;   s = 1,...,S;  t = 1,...,T
Mln D t

o(X s,t, Q s,t)

Mln Q s,t
i

# 0,

(6iii) i = k+1, ...m;   s = 1,...,S;  t = 1,...,T
Mln D s,t

o (X t, Q s,t)

Mln Q s,t
i

$ 0,

(6iv) j = 1, ...n;   s = 1,...,S;  t = 1,...,T
Mln D s,t

o (X t, Q s,t)

Mln X s,t
j

# 0,

(6v) i=1,...,m;   j=1,...,n;   t = 1,...,T j
m

i=1
ωi = 1, j

m

i=1
ωii ) = j

m

i=1
βij = j

m

i=1
ωit = 0,

(6vi)  
βjj ) = βj )j , j ' 1,...,n, j ) ' 1,...,n
ωii ) = ωi )i , i ' 1,...,m, i ) ' 1,...,m

The first constraint forces observations to fall on or within the production frontier. 

Constraint (6ii) restricts the shadow prices of the bad outputs must be non-positive while

constraint (6iii) restricts the shadow prices of the good outputs to be nonnegative.  

The constraints in (6iv) impose monotonicity on each input for all observations. Because the

output distance function exhibits monotonicity when it is non-increasing in the inputs, for fixed

quantities of the good and bad outputs, more inputs decreases the value of the distance function



    10The details of the formal model and data sources are provided in an appendix available upon
request from the authors.  
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(i.e., decreases technical efficiency).  The constraints in (6v) impose homogeneity of +1 in the

outputs.  This assures that as outputs expand proportionately for a given input vector and

technology, the value of the distance function increases in the same proportion.  This ensures the

outputs are weakly disposable.  The constraints in (6vi) impose the usual symmetry conditions. 

The specification of (4) allows for neutral and biased technical change.  The effect of neutral

technical change is captured by the νt and νtt parameters.  The extent of biased technical change

is estimated by the βjt parameters, and the effect of changes in output (i.e., scale augmenting

technical change) is estimated by the ωit parameters.

In the next section, we specify a simple CGE model of the United States.

IV. The CGE Model 

In many respects, our model is a standard CGE model of an open economy.10  The United

States is assumed to be a small country and there is a flexible exchange rate.  We use the

standard Armington assumption that imports are imperfect substitutes in both production and

consumption.  Elasticities of primary factor substitution and elasticities between domestic and

imported goods are constructed on the basis of the elasticities presented in Harrison, Rutherford,

and Wooton (1991).  The economy is comprised of  producing sectors, a household sector,

government, and a foreign sector.  All markets operate under conditions of perfect competition.  

Given income from the sale of capital and labor, households choose a consumption

bundle consisting of foreign and domestically produced good output and maximize utility subject

to a budget constraint.  We assume that environmental quality does not enter the representative
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household's utility function.  The allows us to avoid issues involved with incorporating the

benefits of pollution abatement activities into the model.

Nested Cobb-Douglas and CES functions are specified for the energy, materials, and

services components of the estimated KLEMS production technology for each sector of the

economy.  Wilcoxen (1988, pp. 122-123) discusses which intermediate input industries are

contained in the energy and materials components of the KLEM model specified in his study.

The energy, materials, and services sectors consist of nested Cobb-Douglas and CES functions.

For non-polluting sectors, production is represented as a hierarchy of Cobb-Douglas and

CES production functions.  The distinguishing feature of our CGE model is calibrating distance

functions to model the joint production of good and bad outputs.  As with Willett (1985), we

specify a model in which each polluting sector has available a production technology that allows

different combinations of good and bad outputs to be produced by a given vector of inputs.

However, Willett assumed a piece-wise linear production technology in which difference

processes are represented by different coefficients associated with the inputs and outputs.  In this

study, we employ a translog distance function in order to accomplish the same effect.

In addition to modifying the production technology, a separate constraint establishes

limits on production of the bad output whose production is regulated.  These constraints show

the maximum amount of the bad output that the economy is allowed to produce. Initial

ownership of permits can be established by either grandfathering ownership of the permits or

allowing the government to auction the permits to polluters and then distribute the revenues to

the representative household as a lump-sum transfer.

V.  Data and Results



11 There are actually twenty two-digit SIC manufacturing industries; however, the U.S.
Bureau of Labor Statistics (BLS) does not publish productivity data for SIC 21 (tobacco products).
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In order to provide greater flexibility in our specification of the joint production

technology, we specify and estimate a translog distance function for nineteen two-digit SIC

manufacturing industries using data from 1970 to 1996.11  Aiken and Pasurka (2002) estimated

translog distance functions with two bad outputs (SO2 and PM-10) and three inputs: capital,

labor, and an aggregate intermediate input.  In this study, we estimate a translog distance

function with two bad outputs (SO2 and PM-10) and the three inputs: capital, labor, and an

aggregate intermediate input consisting of energy, materials, and services. A translog distance

function is estimated using panel data for nineteen of the twenty two-digit SIC manufacturing

industries for 1970 to 1996.  The parameters of translog distance function are used to calibrate

the joint production technology of those industries producing good and bad outputs in the CGE

model.

Aiken and Pasurka (2002) discuss the estimation of the translog distance function in greater

detail.

The 1992 benchmark input-output table and the associated SO2 and PM-10 emissions

serve as the basis of the CGE model calibrated in this study.  For sectors that emit SO2 and PM-

10, translog production technologies are specified.  Non-polluting sectors are assumed to

produce the good output using nested Cobb-Douglas and CES production functions as described

above.  In the simulations, it is assumed that ownership of the permits to pollute are given to the

representative household which sells the permits to the polluting sectors.  An alternative

distribution of the permits is to grandfather ownership of the permits based on observed level of



12We solve the model using GAMS (see Rutherford 1999).
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emissions.  The industries would then be allowed to buy and sell the permits among themselves. 

Since there is no connection between emissions and consumer welfare, there households have no

demand function for the permits.

Table 2 presents the results.12  

VI.  Summary and Directions for Future Research

The study represents an initial investigation into the feasibility of  modeling the joint

production of good and bad outputs within a CGE framework.  The translog distance function

specification provides flexibility in modeling the production technologies  while avoiding the

somewhat arbitrary nature of specifications of the production technology employed by previous

studies.   As an increasing percentage of pollution abatement efforts involve change in

production processes, the advantages associated with specifying a joint production model in

order to depict the production technology for a sector becomes apparent.

In order to provide insights into the consequences of specifying an alternative production

technology, we could estimate the least cost solution when we assume a fixed bad-good output

ratios for all polluting sectors and a CES production technology for all sectors are employed to

determine the least cost results.  The results of this simulation is representative of previous

modeling efforts and provides a means of comparing the results of the model employed in this

study with an alternative specification of the joint production technology.

 The joint production modeling approach allows us to undertake a retrospective study of

the cost of environmental regulations without using survey estimates of pollution abatement

costs.  We accomplish this by solving the model under the assumption “bad” outputs are freely
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disposable.  We calculate the cost of environmental regulations in terms of the reduction in the

level of the “good” output. In addition, we use the model to compare that cost with the good

output lost due to the allocative inefficiency of environmental regulations. Allocative

inefficiency is the increased cost of attaining a given level of emissions using a command and

control strategy instead of a least cost strategy (i.e., through permits).  This provides an estimate

of the percentage reduction in pollution abatement costs that can be achieved simply by pursing

a least-cost strategy.

This study demonstrates pollution abatement activities and emissions can be incorporated

into a CGE model.  In fact, the joint production of good and bad outputs has been specified in

CGE models such as Jensen and Rasmussen (2000) to estimate the costs associated with

proposed reductions in CO2 emissions. The treatment of CO2 emissions in CGE models are

revealed to be a special case of the more general model specified in this study.

Incorporating a translog parametric distance function that represents the joint production

technology presents problems for the solution of CGE models.  Unfortunately, solutions to CGE

models with translog distance functions are not guaranteed. In order to make this approach

practical, it will be necessary to determine which parametric specification of the production

function will be well behaved and will allow CGE models to converge to meaningful results. 

One possible solution to the convergence problem is extending Peronni (1999) to develop

nonseparable nested CES (NNCES) functions for the case when multiple outputs includes good

and bad outputs.  This  would allow GAMS/MPSGE to solve the joint production CGE model

developed in this study. 
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Piece-wise Linear Joint production Technology
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Figure 2

Shadow Price of Bad Output


