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Summary 
This paper applies the multi-proportional scaling algorithm described in Cole (1992) to the 
updating of the Aruba Social Accounting Matrix presented in Cole, et al (1993). The 
method overcomes certain limitations on the widely used bi-proportional method and its 
extensions.  In particular, it permits additional partial and approximate data about clusters 
of elements on the interior of a matrix to be applied and adjusted simultaneously, with 
minimum overall loss of information. This facilitates the construction of local area input-
output tables that typically must be based on expert judgment and incomplete and ad-hoc 
data. The method is demonstrated using a challenging application – the updating of the 
1979 Aruba SAM to 1990 during which time the island faced major structural change (the 
consolidation of government, the closing of a major industry, and massive expansion of 
tourism and immigration). The final section discusses the complementary role of the 
algorithm to the expert judgment used in all scaling methods. The appendix summarizes the 
Lagrangian derivation of the scaling algorithm and discusses the conditions for the 
existence, uniqueness and convergence of the iterative solutions. 
 
1. Bi-proportional and Multi-proportional RAS 
The most common method for constructing input-output tables for a specific locality (sub- 
county or inner-city neighborhood) is to transform a previously constructed table for the 
encompassing region or a similar region, using whatever data are available from the locality 
to augment the scaling. Present extended RAS scaling techniques do not deal well with this 
kind of partial information, especially when it is represented by entries in the interior of the 
input-output table.  Bi-proportional methods, in particular, demand that information on 
individual items is taken to be precise, while data on sub-totals (or blocks of entries) cannot 
be used.  This information is therefore wasted. To avoid this requires more sophisticated 
scaling techniques. 
 
This multi-proportional method is an extension of the RAS technique introduced by 
Deming and Stephan (1940).  RAS algorithms work by eliminating inconsistencies between 
data losing as little information as possible en route.  The process may be visualized by 
remembering Leonardo de Vinci's famous "metamorphosis" cartoons in which he created 
grotesque human faces from those of animals - the features are systematically squeezed into 
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a new overall shape while keeping their mutual positions more or less unchanged. The 
algorithm similarly manipulates data into a new consistent configuration. Thus, although 
the mathematics may appear complex, it has a familiar analogue.  Of course, if the original 
data are too inconsistent, or too partial, there may be no solution possible. 
 
Since its introduction, the theoretical basis for the RAS method has been strengthened. 
Notably, Bacharach (1965, 1970) demonstrated that the solution of the simple RAS 
involves the minimum loss of information from the original matrix. Various modifications 
to the RAS approach have been suggested, not least by Lecomber (1977). The most 
significant modification is the prescribing of individual items within the matrix. The 
approach adopted by Allen (1976), for example, fixes particular elements as well as the row 
and column totals, and then allows the burden of adjustment to fall on the remaining 
non-zero entries. A major difficulty with this approach is that, if a high proportion of 
elements are fixed externally, convergence may be difficult, or even impossible. Indeed, as 
Miller and Blair (1985) have observed, this can lead to worse results in terms of the overall 
reliability across the updated matrix as a whole. 
 
Although a variety of alternative non-RAS techniques have been introduced to overcome 
these limitations of the RAS method (see eg Morisson and Thumann, 1980, Harrigan and 
Buchanan, 1984), recent empirical comparisons of updating procedures tend to favor the 
use rectangular RAS methods (see especially, St Louis, 1989). In the method described 
here, the method of Lagrange is used to derive a multi-proportional scaling algorithm which 
is a generalization of the simple RAS method.  Whereas, in the simple RAS method, 
individual items are adjusted by two constraints only - the row and column total, in this 
method, every item may adjust in response to an arbitrary number of constraints on 
individual items and sub-groups of entries. The matrix may contain an arbitrary number of 
dimensions: structure, space, and time. It need not be rectangular and so may be applied to, 
for example, the consistent scaling of multi-regional rectangular input-output tables (see eg. 
Oosterhaven et al, 1986). In this sense, the algorithm has general application for scaling to a 
wide range of social science data. 
 
2. The Scaling Algorithm 
With the simple RAS method, the elements of the matrix are adjusted successively in a 
bi-proportional manner, that is, all row elements are scaled successively in a linear fashion 
to so that their sum matches the externally given total, and then column totals are scaled in 
like fashion.  This round of adjustment is then repeated iteratively until no significant 
further adjustment takes place. In the minimum information loss interpretation of the RAS, 
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the problem addressed is how to minimize the overall distortion of individual entries in the 
matrix at each round of the updating procedure. The formal procedure for bi-proportional 
scaling is given in Macgill (1977) and Miller and Blair (1985). 
 
For the multi-proportional case, a matrix Aij(∞) of dimension NxM defines the SAM to be 
constructed. The subscripts i and j label the rows and columns of the accounts represented 
in the table (production sectors, households and so on) 1.  A base matrix, Aij(0), a national 
or regional table with the same number of dimensions or an earlier version of the desired 
SAM, is used as the starting point for the new table.  
 
The new table is to be constructed using current, but partial information. These data may 
include the all or some of the row and column totals, as with the bi-proportional scaling, 
together with information about individual entries of sub-totals of entries within the matrix. 
 (This might include, for example, information on total wages or trade). If there are Z 
constraints, defined by the sub-totals Bz, then, after n adjustments, the Z constraints applied 
are given by: 
     
   Σ Aij(n) = Bz     (1)   
     ij ε z  
 
It is noted that, contrary to other updating procedures, no distinction is made a priori 
between the constraints on the row and column totals and the constraints on individual 
elements or blocks of elements on the interior of the matrix. All constraints are treated 
simply as the desired final sub-totals of specified blocks of entries.  
 
All the entries in each block are scaled by the ratio of the desired block total divided by the 
current block total as given by (1).  However, since items in one block are (in general) 
affected by the scaling of other blocks condition (1) will no longer hold and so entries will 
need to be rescaled.  
  Aij(n) = Aij(n-1)Bz/ Σ Aij(n-1)        (2) 
          ij ε z 
This rescaling of each block is repeated in order in a round-by-round fashion until the 
desired degree of convergence Cz for each bock is achieved.2   

3 

                         
1 In Cole (1992) the algorithm is presented for the multi-regional case. However, the models constructed 
are solved using the time-lagged Leontief inverse solution described in Cole (1989) that treats all entries 
as mathematically equivalent, so it is unnecessary to include the subscript for this spatial dimension.  
2 A given Cz may be interpreted a measure of confidence in the constraint, that depends, for example, on 
how recent the relevant data are. In some cases it may be useful to relax constraints as a means to 
circumvent inconsistencies that are preventing overall convergence.  

 

 
 



 
  Abs{Σ Aij(n)/ Bz –1}  < Cz     (3)  
            ij ε z  
 
Overall, the procedure parallels the alternate rescaling of rows and columns in the bi-
proportional procedure. The conditions for solutions to be possible are also similar. The 
Appendix provides a proof that this algorithm leads to a minimum information loss 
solution, and discusses the conditions for its convergence, and for the existence, and 
uniqueness of solutions.  
 
3. An Application to a Social Accounting Matrix. 
The efficacy of the scaling algorithm is now illustrated using an application to the island of 
Aruba. For reasons now summarized this presented a challenge for matrix reconstruction. A 
set of social accounts for the island had been constructed for 1979 (Cole et al, 1983). This 
SAM was based on a recent detailed Census of Business, the 1980 Census of Population, 
and current trade and public sector information. Some inter-sector transactions were scaled 
from a recent input-output table for Puerto Rica. This exercise was used in a macro-
economic plan for the then-forthcoming negotiations for independence from Holland. 
Coincident with independence (formally “status aparte” from the Netherlands Antilles) in 
1986 the major industry (oil refining) had closed suddenly and the economy was in grave 
recession. Equally dramatically, through aggressive expansion of the tourism sector, by 
1990, the island was well on the road to recovery, and in even at risk of economic 
overshoot. The economy had dramatically restructured around tourism, island and central 
government had consolidated and some public utilities were privatized. The labor force too 
had restructured through massive emigration followed by rapid immigration. This history 
provided an excellent opportunity to test the performance of several disaster planning 
models and model building techniques including the multi-proportional RAS algorithm. 
 
The scaling algorithm uses two sets of data – the initial 1979 SAM and incomplete data at 
varying levels of aggregation for the economy around 1990. Some of the 1990 data are 
aggregates for the macro-economic structure of the island (primarily the Central Bank of 
Aruba National Accounts), with estimates of GDP, total wages, and foreign transactions. 
Others are meso-level economic data such as wage income by sector, household income, 
tourism, and commodity trade by broad category, while more detailed micro-level data 
refer to individual corporations, notably the lifeline sectors (water and electricity and 
distribution). 
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within the detailed SAM. For clarity, the multi-proportional scaling algorithm was applied 
by introducing the three levels of information in order - macro, meso, then micro. Before 
this rescaling, the original 1979 SAM was modified to account for the new institutional 
structure, and the loss of the oil sector. As a final step in the rescaling the table was 
balanced to match the total expenditures and income for each account. The overall 
procedure for scaling the 1990 SAM for Aruba is summarized in Figure 1. The details of 
the steps are as follows:   
 
The modified 1979 SAM used as the base matrix for rescaling after island and central 
government and investment accounts have been consolidated is shown in Table 1. The 
modified table showing the loss of the oil refinery is given in Table 2. This table is 
unbalanced in that the income and expenditure of each account are not equal.  This is 
relatively unimportant since the majority of entries are subsequently re-scaled using sector 
specific data. (The "Rest of the World" accounts, the block of entries 21-23 in the bottom 
right corner of the matrix, were approximately balanced). 
 
The first consolidated table in Table 3 shows the current totals for the blocks to be scaled. 
The second aggregate matrix shown in Table 3 provides the overall macro-economic targets 
for 19903.  The ratios of these data compared to the corresponding 1979 data typically are 
between 2 and 3. These ratios are used for first round scaling. This provides an approximate 
SAM for 1990, measured in current AFl million and consistent with the aggregate national 
accounts. 
 
Table 4 shows the use of the meso-level information. This is based on IMF estimates of the 
contribution to GDP from industry, tourism, commerce and construction (IMF, 1990) and 
CBA data on tourism revenues and commodity and service exports.  Information on 
imports by sector are not known. Data on wage rates by sector (construction and tourism) 
are used to sub-divide the factor payments by sector between their wage and non-wage 
components. Again, the ratios shown are for the first round scaling. 
 
The micro-level information on "lifeline" systems shown in Table 5 is based on the annual 
accounts of the water and electricity production and distribution companies. This includes 
information on intermediate expenditures on raw materials, maintenance and services, 
wages, subsidies and taxes. Typically, these data correspond to individual entries in the 
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3 The national accounts do not specify the extent of inter-industry transactions, or even aggregate 
intermediate consumption by sector. Consequently, initially these entries are scaled en bloc using the 
average ratio of 2.6. In the original matrix, for example, imports of capital goods were treated as a direct 
import, whereas in the new table these are treated as an indirect import via production sectors. 

 

 
 



accounts. 
  
Finally, for accounts where the total expenditures or income are unknown, totals are fixed 
by scaling the columns and then the rows of every account so that first the column total and 
then the row total equal their current average. 
 
Table 6 shows the final 1990 SAM. Satisfactory convergence - taken here to mean that all 
targets are met to within one percent is achieved after about 20 iterations of the above 
procedure. The path to convergence for the account totals is shown in Figure 2. The income 
and expenditure totals are in good agreement for all accounts, and the table conforms well 
to the target data at all levels.  
 
4. Some Comments on Application of Scaling Algorithms. 
Overall, the matrix scaling method presented in this paper appears to provide a robust 
algorithm for data matrices such as input-output tables. It enables additional data and 
constraints, including cross-regional data, to be introduced. It therefore represents a useful 
advance on previous RAS type methods since it overcomes what has been viewed a major 
limitation of the approach (Morrison and Thumann, 1980), and has the advantage over 
other non-RAS methods of retaining the intuitive appeal of the RAS approach. 
  
Han and Kim (1988), in reviewing the use of information systems distinguish between 
"expert" and "decision support" systems. The former attempt to incorporate the judgement, 
experience, intuition and "rules of thumb" of human experts into problem solving, a 
heuristic rather than an algorithmic approach. The latter access structured data bases using 
clear-cut decision rules, so as to provide selected information from a large and complex 
data base. In effect they are a means for filtering out and manipulating relevant information. 
Matrix building, in practice, requires a considerable degree of expertise and judgement 
(familiarity with data sources and accounting conventions, elimination of irregularities and 
reconciling of inconsistences). The method sought here obviously is closer to the decision 
support system but it will necessarily embody the experiences of practical "hands-on" 
matrix construction. 
 
It is not difficult to conceive of a "hybrid" approach, such as a computer software package 
which would facilitate the speedy construction of local-area social accounting matrices, 
even as a post-event exercise, by small teams of experts with some prior experience in the 
construction of input-output tables, or by less sophisticated local officials over a longer 
time-frame, as part of pre-event strategy development. The hybrid system would have an 
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algorithm at its core, but would be backed up by a system for monitoring the results of the 
procedure (checking for inconsistencies, unreasonable parameters, and so on), and suggest 
alternative data sources and matrix construction procedures (for example, using a 
hierarchical "hyper-text" approach). From the technical point of view this appears to be a 
feasible goal. In particular, the method described and applied in this paper appears to 
provide a means of constructing social accounting matrices for natural disaster event 
accounting, and also a potentially useful core algorithm for a hybrid expert system. 

 
Appendix 
This appendix discusses the limitations of the method and the necessary conditions for a 
solution to be possible. 
 
 If target data are inconsistent the iteration will not work - individual entries in the input-
output table will oscillate (i.e. alternate between two sets of values), or drift (i.e. change 
incrementally in a non-convergent fashion), or become negligible (even those known to be 
substantial), or diverge (i.e. become very large). As with other scaling procedures, negative 
entries may lead to spurious results, and it may be necessary to transform these to positive 
entries. For example, large negative indirect taxes (i.e. subsidies) or negative saving by 
government (i.e. a deficit on current account) in expenditure accounts may be moved to the 
income account (in each case, requiring an adjustment to the calculation of sector value 
added or income). The causes and results of non-convergence are reasonably clear in any 
practical situation, and so warnings as to potentially troublesome data may be built into the 
construction procedure, and these in turn may trigger suggested corrections or alternative 
procedures. The necessary and sufficient conditions for convergence are not known 
precisely for this multi-proportional scaling.  Nevertheless, it may be shown formally that if 
the procedure does converge, then the result is unique. 
 
A1. Minimum Information Loss 

The constraints are applied in order to the matrix, so that after one full round of adjustments, 
the information distance of Aij(Z)  from the original matrix Aij(0) is:     
 
  D[A(Z):A(0)] =  Σ Aij(Z)log[Aij(Z)/Aij(0)]     (A1)   
       ij 
 These constraints are imposed repeatedly so that each is applied once in any full round of Z 
adjustments. After an arbitrary number of adjustments, the nth adjustment will apply the 
same constraint as the (n-Z)th adjustment. Thus,  
     
  D[A(n):A(n-Z)] =Σ Aij(n)log[Aij(n)/Aij(n-Z)]  (A2)   
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            ij    for all Aij ╪ 0.  
  
That the algorithm leads to a minimum information loss solution may be demonstrated 
using the method of Lagrange. The Lagrangian for the problem is given by:  
     

   L = D + Σ lz(Bz - Σ Aij(n))        (A3) 
         z      ij ε z  

     
where lz are the Z Lagrangian parameters, and Bz is given by Equation (1). 
 
The first necessary condition for a minimum is that the first order partial derivatives of L 
with respect to Aij(n) are zero.  
     
  dD/dAij(n) = {1 + log [Aij(n)/log{Aij(n-Z)]} - Σ lz = 0 
       z ε ijk   (4)  
  
The second condition for the solution to be a minimum is that the second order partial 
derivatives should be positive.  
     
      i.e.    d2/dAij(n)2 = 1/Aij(n).  
     
This shows that the solution is always a minimum since Aij(n) >0. Rewriting (A4) gives: 
     
  Aij(n) = Aij(n-Z) exp(-1) II exp(lz)     (5)  
     z ε ij  
   
Substitution of (A5) into (1) gives:  
     
   Bz =  Σ [Aij(n-Z) exp(-1) II exp(lz')]  
   ij ε z  z'ε ij  
     
This expression may be rewritten, by separating the term in lz, after setting rz' = exp (lz'), 
giving:  
     
   rz = exp(1) Bz /{ Σ [Aij(n-Z) II rz']}    (6)  
   ij ε z       z'ε ij  
          z'╪ z 
  
 
Using (A5) and (A6), the problem may be solved in an iterative manner by repeated 
calculation and substitution of the lz and the Aij(n) so as to obtain acceptably precise values 
for Aij(∞) in terms of Aij(0) and the constraints Bz.  This general algorithm is 
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straightforward to program and converges rapidly provided there is a feasible solution. The 
conditions for solutions to exist and a unique convergence to be attained are now 
considered.   
 
A2. Existence of Solutions, Uniqueness, and Convergence 
The uniqueness of any solutions to the multi-proportional adjustment may be argued in the 
same manner as for the bi-proportional solution given by Evans (1973) and Bacharach 
(1965 and 1970) and adopted by Macgill (1977).  These authors show that provided the bi-
proportional calculation converges, the step-wise solution will provide a unique result. 
They also demonstrate the conditions for convergence. Evans (1973) has shown that the 
solution for the Aij resulting from the minimization of the strictly convex objective function 
will be unique.  For the multi-proportional case, it was shown above that, because the Aij 
>0, the derivatives of the Lagrangian provide local minima. It follows also that, because the 
constraints given by (1) are all linear, the objective function (2) is strictly convex. 
Consequently, the solutions of the multi-proportional algorithm, if they exist, will be 
unique. 
 
Conditions for the existence of solutions are less straightforward than those for uniqueness, 
but minimum conditions (or "only-just-sufficient" conditions), similar to those discussed by 
Macgill (1977) for the bi-proportional case may be stated. For the bi-proportional RAS, 
there is an obvious minimum condition - the sum of the row totals must equal the sum of 
the column totals Xi and Yj of the matrix.  
     
   i.e.  Σ Xi   =  Σ Yj        
     i     j  
 
Unless this accounting identity is satisfied, there is no solution which will simultaneously 
satisfy all the external constraints.  With the multi-proportional method, the equivalent 
condition to (7) would be that the sum of the row and column totals must be equal.  
     
      i.e. Σ B'z   = Σ B'z  
   rows   columns      
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The primed B'z here are the explicit or implicit constraints on the row and column totals.  
This condition may be relaxed provided the constraints on the interior of the matrix 
pre-determine the row and column totals. In addition to this, there are minimum conditions 
on the internal elements - basically, that if a row or column contains zero elements, then 
there must be sufficient latitude for the adjustment of the elements within the remaining 
degrees freedom implied by the constraints. For this, the conditions placed on the row and 
column containing any non-zero element Aij in the matrix are that:     
 
   Xi' ≤ Σ Yj     and Yj' ≤ Σ Xi   (8)  
       j╪j'  i╪i'    
     
These only-just-sufficient conditions lead to boundary solutions that are fully determined 
by the externally given row and column totals, so that the original matrix provides no 
information on the magnitude of the non-zero entries in the final matrix. Corresponding 
conditions exist for the multi-proportional case, for example, for an internal block within a 
matrix. The violation of these conditions would mean that one or more elements of the 
matrix present an inconsistent adjustment, in the sense described by Macgill (1977). The 
reasons for these conditions again can be demonstrated in the manner used by Macgill 
(1977) for the bi-proportional case.   
 
The demonstration that the bi-proportional solution is convergent, first proven by 
Bacharach (1965), consists of showing  that, after many iterations, the incremental shift to 
the individual elements of the matrix in successive row and column  adjustments falls  
monotonically  to zero, provided conditions (7) and (8) above are fulfilled. As noted above, 
the constraints define the bounds on allowable row, column and block totals such that 
accounting identities are not violated. In this respect, there is the obvious requirement that 
the sum of all nested blocks and elements cannot exceed the sum of the blocks 
encompassing them.  
     
     i.e.     Σ Bz  ≤   Σ Bz       
     inner    encompassing  
     blocks   blocks  
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This determines that a fixed element or block must not be larger than the row or column, or 
block containing it. A block spanning one or more rows or columns must be smaller than 
the row and column totals, and so on. A scaling algorithm cannot, of course, eliminate 
absolute inconsistencies, for example, when values of particular Aij are so over-determined 
that the various conditions they are required to meet can never be reconciled. Practically, in 
an expert system, these problems may be reduced before the final mechanical adjustment 

 

 
 



process is begun, for example, by prefacing the adjustment procedure with checks ensuring 
that the sub-totals of nested constraints do not exceed the constrained blocks within which 
they reside, as indicated by (9) above. 
 
The reason that the approach avoids the major problem of the earlier extended RAS 
methods for including additional data (such as that adopted by Allen, 1977) is that the 
multi-proportional scaling algorithm does not impose such rigid constraints on the 
adjustment process. With the multi-proportional adjustment, the constraints are not applied 
in an absolute fashion at the outset. Instead, the burden of adjustment is distributed across 
the matrix, or a particular internal block, until some degree of convergence is attained by 
balancing the information loss from all constraints. Empirical tests with the 
multi-proportional scaling algorithm using data from Cole (1987) and Cole (1990b) show it 
to have good convergence properties provided there are no inconsistencies which cannot be 
localized.  This test for convergence is directly comparable to those applied by both 
Harrigan and McNicholl (1986) and Morrison and Thumann (1980) to their non-RAS 
methods. 
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