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ABSTRACT 

Economic input-output (I-O) models are empirical realizations of general equilibrium 
economic model, which are based on the linear structure of inter-industry production 
linkages. In compact form, an I-O model can be written as x = A x + b, where x is a vector 
of sectorial outputs, A is the input-output technical coefficient matrix and b is the vector of 
final demands. From here: (I-A) x = Lx = b, where L is called the Leontief matrix. If final 
demand is known, then the amount of the goods needed to satisfy this demand can be found 
by solving the linear system Lx = b. 
 
However, the technical coefficients of the Leontief matrix are not known but must be 
estimated and therefore are subject to some level of uncertainty. Some sources of 
uncertainties in I-O models are: Source data, assumptions inherent in I-O analysis such as 
linearity or proportionality, allocation and aggregation. 
 
We can evaluate the effects of variation in both L and b on the solution x, that is, if ∆L and 
∆b are perturbation on L and b, we can evaluate what are the effects on x. 
 
This paper shows the use of Interval Arithmetic as an alternative method to calculate how 
technical coefficients uncertainties are propagated, that is how system outputs vary as input 
parameters vary.  

If we define an interval matrix L
I
 bounding L and an interval vector b

I
 bounding b, then we 

need to solve the interval system: LI xI = bI. However, the solution of interval linear 
equations is a very different proposition from the solution of ordinary linear equations. In 
general, the solution set is complicated in shape and requires solving 2n linear systems.  
 
Interval Arithmetic can consider simultaneously variation of all the technical coefficients. 
We propose the use of efficient algorithms, which are able to provide very good outer and 
inner approximations to the solution set. An example related to an economic input-output 
model is presented. Strict bounds are obtained with only one linear system evaluation.  
 
KEYWORDS: Input-Output Models, Sensitivity, Uncertainty and Interval Arithmetic 
 
 
1. Introduction  
 
Economic input-output (I-O) models are empirical realizations of general equilibrium 
economic models. An I-O is based on the linear structure of inter-industry production 
linkages and has been successfully applied in many countries for policy making (Beletskyy 
et al, 2001). 
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In compact form, an I-O model can be written as x = A x + b, where x is a vector of 
sectorial outputs, A is the input-output technical coeff icient matrix and b is the vector of 
final demands. From here: (I-A) x = Lx = b, where L is called the Leontief matrix. If f inal 
demand is known, then the amount of the goods needed to satisfy this demand can be found 
by solving the linear system Lx = b. 
 
However, the technical coeff icients of the Leontief matrix are not known but must be 
estimated and therefore are subject to some level of uncertainty. Thus we need to evaluate 
how these uncertainties are propagated.    
 
Recently Lenzen (2001) li st some sources of uncertainties in I-O models: Source data, 
assumptions inherent in I-O analysis such as linearity or proportionality, allocation and 
aggregation. As an example, the author mentions that “ the Australian Bureau of Statistics 
does not estimate uncertainties for I-O data, but keeps information on the standard error of 
source data items, which ranges mostly from 15 % to 30 %, with many being as low as 1 % 
to 2 % and the highest being 58 %”. 
 
Modeling uncertainty in input-output models can be based on two general approaches. The 
first is a probabili stic approach where probabilit y distributions for all of the uncertainties 
are assumed. The second approach is called “Unknown but bounded” in which upper and 
lower limits on the uncertainties are assumed without a probabilit y or possibilit y structure 
(Merryl et al, 1982). 
 
For examining the effects of uncertain inputs, there are various analytic and computational 
techniques. These include (Granger et al, 1990): 
 
• Methods for computing the effect of changes in inputs on model predictions, i.e. 

sensitivity analysis 
• Methods for calculating the uncertainty in the model outputs induced by the 

uncertainties in its inputs, i.e., uncertainty propagation, and 
• Methods for comparing the importance of the input uncertainties in terms of their 

relative contributions to uncertainty in the outputs, i.e., uncertainty analysis. 
 
Techniques used in sensitivity and uncertainty analysis may include (Granger et al, 1990): 
 
• Deterministic, one-at-time analysis of each factor holding all others constant at nominal 

value; 
• Deterministic joint analysis, changing the value of more than one factor at a time; 
• Parametric analysis, moving one or a few inputs across reasonably selected ranges such 

as from low to high values in order to examine the shape of the response; 
• Probabili stic analysis, using probabilit y density functions, Monte Carlo simulation, or 

other means to examine how much uncertainty in conclusions is attributable to which 
inputs. 

 
A tentative condensed list of reasons why and instances where sensitivity analysis should 
be considered can be found in Saltelli (2000). Traditionally, all parameters are set to 
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nominal values and each parameter is varied independently to determine its effect on the 
outcome. Those parameters that have significant effects are viewed as sensitive. In most 
cases sensitivity analysis does not deal with the possibilit y that several parameters varying 
simultaneously can cause significant variations in the output. Simultaneous variations of 
parameters model more accurately the real world situations. 
 
To perform a sensitivity analysis on Lx = b, we can study the effects of variation in both L 
and b on the solution x, that is, if ∆L and ∆b are perturbation on L and b, we want to 
evaluate what are the effects on x. 
 
Using standard error analysis, Deif (1986) shows that ∆x ≈ L-1∆b - L-1∆Ax. This 
expression is valid if perturbations are small enough, so that the first order perturbation is 
considered. 
 
Another basic technique for carrying out sensitivity analysis of the I-O model is to evaluate 
multipliers. A multiplier for an output variable shows how this variable changes as a result 
of changes in input variable. For example (Jerrel, 1996), if: 
 

iindustry in  outlays total

iindustry by  generated income household
  hi =  

then the wage income multiplier for the i-th industry is calculated by: 

[ ]
i

-1

i
h

i h)'L(  I =  

Thus, the multipliers depend on the Leontief matrix. As the coeff icients of the Leontief 
matrix have uncertainties, we need to evaluate how these uncertainties are propagated into 
the multipliers.   
 
West (1986) has derived a formal expression for the probabilit y of the multipliers assuming 
that the technical coeff icients are independent and that they can be characterized as 
probabilit y distributions with small variances. If probabilit y distributions are assumed, then 
the West’s method will generate confidence intervals. 
 
Other authors have used Monte Carlo method to perform this type of analysis (Lansen, 
2001; West 1986; Raa et al, 1994) 
 
Recently Beletskyy et al (2001) present a Leontief model and a tool for its sensitivity 
analysis, applied to the Ukrainian economy.  The tool for the investigation of the model 
sensitivity analysis is a special program that generates changes in input parameter values 
and solves linear equation systems. Basically an interval coeff icient of the technology 
matrix [parmin, parmax] is selected. Next, the algorithm forms (n+1) values of the 
coeff icient: parmin, parmin+h, parmin+2h, ...., parmax, where h = (parmax-parmin)/n, and 
solves n linear system. 
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Instead of probabilities, we usually know only estimates and accuracy for the coefficients 
of the Leontief matrix, that is we only know intervals [Lij - ∆Lij, Lij + ∆Lij]. 
 
This paper shows the use of Interval Arithmetic as an alternative method to calculate how 
system outputs vary as input parameters vary. It is shown that it is possible to perform 
sensitivity and uncertainty analysis by using Interval Arithmetic, assigning bounds to some 
or all the input parameters and observing the effect on the final interval outcome, that will 
contain all possible solutions due to the variations in input parameters. Strict bounds are 
obtained with only one linear system evaluation.  
 
2. INTERVAL ARITHMETIC 

2.1 Introduction 
 
Interval arithmetic originates from the recognition that frequently there is uncertainty 
associated with the parameters used in a computation (Moore, 1979; Neumaier, 1990). This 
form of mathematics uses interval "numbers", which are actually an ordered pair of real 
numbers representing the lower and upper bound of the parameter range (Hansen, 1992). 
For example, if we know that a technological coefficient aij is between 12 and 15 %, the 
corresponding interval number would be written as follows: aij = [12,15] %. 
 
Interval arithmetic is built upon a basic set of axioms. If we have two interval numbers 
T=[a,b] and W=[c,d] with a ≤ b and c ≤ d then (Hansen ,1992; Moore, 1979; Neumaier, 
1990):  

• T + W =    [a,b] + [c,d] = [a+c, b+d] 
• T - W  =    [a,b] +(- [c,d]) = [a-d,b-c] 
• T*W   =    [min{ac,ad,bc,bd}, max{ac,ad,bc,bd}] 
• 1/T     =    [ 1/b , 1/a ], 0 ∉[a,b] 
• T/W    =    [a,b] / [c,d] = [a,b]*[1/d,1/c],  0 ∉ [c,d] 
• kT       =    k*[a,b] = [a,b]*k = [k*a,k*b], k  a real constant 

 
Only some of the algebraic laws valid for real numbers remain valid for intervals. It is easy 
to show that interval addition and multiplication are associative as well commutative. 
However, the distributive law does not always hold for interval arithmetic (Moore, 1979). 
As an example: [0,1] (1-1) = [0,0], while  [0,1] - [0,1] = [-1,1]. 
 
An important property referred to as subdistributivity does hold. It is given mathematically 
by the set inclusion relationship: T(W + Z) ⊆ TW + TZ . The failure of the distributive law 
often causes overestimation. It is also interesting to note that T-T ≠ 0, and T/T ≠ 1. In 
general, when a given variable occurs more than once in an interval computation, it is 
treated as a different variable in each occurrence. Thus T-T is the same as T-W with W 
equal to but independent of T and causes the widening of computed interval. This effect is 
called the "dependency problem" (Moore, 1979). However, there are expressions where 
dependence does not lead to overestimation. For example, T + T (Neumaier, 1990).  
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2.2 LINEAR SYSTEMS 
 
Interval Arithmetic can also be applied to evaluate the effect of uncertain parameters in 
Linear Systems (Deif, 1986; Neumaier, 1990). 

Let L be a real matrix with elements lij and let L
I be an interval matrix with interval 

elements Li,j. We say "L is contained in L
I
 (L ⊆ L

I )" if and only if lij ⊆ Lij, (Neumaier, 

1990). Consider the real equation:   
Lx = b                                                              (1) 

 

If we know an interval matrix L
I
 bounding L and an interval vector b

I
 bounding b, we can 

replace (1) by  
LI xI = bI                       (2) 

 
The interval solution to (2) will contain the solution to (1). 
 
However, the solution of interval linear equations is a very different proposition from the 
solution of ordinary linear equations. The solution set is not generally an interval vector.  
 
Figure 1 illustrates the solutions set for the system (Hansen, 1992): 
 

[2,3] x + [0,1] y = [  0,120] 
  (3) 

[1,2] x + [2,3] y = [60,240] 
 

(-120,240)

(-12,24) (0,20)

(30,0)

(90,-60)

(60,0)

(60,90)

(0,120)

100

200

100-100

-100

x

y

 
 

Figure 1: The solution set for equation (3) (Hansen, 1992) 
 
The inner region is the exact solution set. In general, the solution set is complicated in 
shape and requires solving 2n linear systems (Rossier, 1982). Kreinovich et al (1991) prove 
that the solution of the interval system is NP-hard. 
 
For this reason, it is common practice to seek an interval vector xI containing the solution 
set: the hull of the solution set (Alvarado et al, 1992). The hull of the solution set associated 
to (3) is the interval vector:  

xI = [[-120,90], [-60,240]]t 
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The hull contains, in addition to the entire solution set, many non-solutions. 
 
Solving interval li near equations means obtaining the hull of the solution set. By analogy 
with the real cases, we try to solve (2) by Gaussian elimination or by the Gauss-Seidel 
iterative method (Burden et al, 1985). That means that we have only to change every real 
operation by an interval operation, using for example object-oriented techniques (Hyvönen 
et al, 1994) or calli ng special interval routines (Kearfott et al, 1994).  
 
But ordinary forward and back substitutions result in considerable overestimation of the 
solution, due to the dependency problem and failure of the distributive law. Some ordering 
scheme may improve the solution (Alvarado et al, 1993). Simply replacing a real Gaussian 
elimination algorithm by an interval one cannot be recommended in practice (Hansen, 
1992). However, an algorithm, which obtains excellent results, can be obtained by doing 
some extra work (Neumaier, 1990; Hansen, 1992). 
 
In order to obtain the hull of the solution set, interval methods requires that the matrix LI be 
an M-matrix. M-matrices are defined as:  
 

An n x n interval matrix LI is an M-matrix if Lij  ≤ 0 for all i ≤j and LIu > 0 for 

some positive vector u ∈ Rn (Ning et al, 1997). 
 
If LI is an M-Matrix and bI ≥ 0, interval Gaussian elimination computes the hull . For 
example, let the interval equation system LI xI = bI be (Ning et al, 1997): 
 

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

[ ]
[ ]
[ ] 















=

















−−
−−−−

−−

0,3

0,9

0,14

 

3.4,7.35.0,5.10,0

5.0,5.13.4,7.35.0,5.1

0,05.0,5.13.4,7.3
Ix     (4) 

 
Using interval Gaussian elimination, we obtain the box: 
 

xI =

[ ]
[ ]
[ ]
















40.3,0

40.6,0

38.6,0

 

As the matrix is an interval M-matrix and bI ≥ 0, this box is the smallest one containing the 
solution set.  
 
Let LI = [ L ,L ]. Ning et al (1997) show that:  
 
1. If L  and L are M-matrices then: (L-1)I = [ L -1, L -1] 
2. If L  and L are M-matrices and bI ≥ 0 then xI  = [ L -1 b, L -1 b] 
 
In the previous system (4): 



7 

LI = 

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]
 

3.4,7.35.0,5.10,0

5.0,5.13.4,7.35.0,5.1

0,05.0,5.13.4,7.3

















−−
−−−−

−−
 

L  and L  matrices are:  
 

L =
















−
−−

−

7.35.10

5.17.35.1

05.17.3

 and L  = 
















−
−−

−

3.45.00

5.03.45.0

05.03.4

 

with the following inverses: 
 

L -1 = 
















3364.016322.006617.0

16322.040261.016322.0

06617.016322.033644.0

 and  L -1 = 
















235789.002779.000323.0

02779.023902.002779.0

00323.002779.023578.0

 

 
Then, (L-1)I is given by: 
 

(L-1)I = 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

 

3364.0,235789.016322.0,02779.006617.0,00323.0

16322.0,02779.040261.0,23902.016322.0,02779.0

06617.0,00323.016322.0,02779.033644.0,23578.0
















 

 
Jerrel (1996) shows that Leontief matrix is an M-matrix and proposes an algorithm to 
obtain the inverse of LI based on the use of an interval version of Gaussian elimination 
method. 
 
Shary (1996) presents a different approach to find the hull of a linear interval system, based 
on an algorithm that combines high computational eff iciency, good adaptabilit y to various 
specific interval li near systems and high quality enclosures of the solution set.  
 
The approach is based on the fact that the solution set of the interval system LI xI = bI 
coincides with the solution set of the interval system xI = CI xI + bI, if CI = II - LI. In order 
to avoid the dependence problem, the proposed approach is based on an iterative algorithm 
(sub-differential Newton method) that solves the original problem using one non-interval 
equation in the Euclidean space of double dimension R2n. Details of the algorithm can be 
found in (Shary, 1996; Shary, 1997). 
 
The idea in our paper is to use the approach proposed by Jerrel (1996), changing the 
interval Gaussian elimination with the Shary’s method. For the interval li near system (4), 
the Shary’s method also finds the hull of the solution but in one iteration. 
 
2.3 Inner box 

The hull of the solution set contains points that have nothing to do with the solution of the 
system LI xI = bI for some L∈ LI and b∈bI, and due to this, such a problem statement may 
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turn out unacceptable in many practical situations. However, this “box” gives information 
of minimum and maximum values independently. 
 
We can avoid this problem by definining an internal box. In this case we can guarantee that 
any point selected within the box complies with the problem. 
 
Therefore the problem we shall address is: Find an interval vector that is included in the 
solution set of the interval linear system. This problem is the identification problem for the 
interval algebraic system (Shary, 1997). 
 
The algorithm proposed by Shary (1996) to obtain the hull of the solution can also be 
applied to the problem of inner interval estimation, using some concepts related to the 
identification problem for the interval algebraic system and an extension of the interval 
arithmetic.  
 
An interval vector xa is said to be an algebraic solution to the interval system of equations if 
substituting it into the system and execution of all interval arithmetic operations result in a 
valid equality.  
 
For example, consider the following interval system of equation: 
 







−
−

=





−

−
]2,2[

]2,2[

]4,2[]2,1[

]1,2[]4,2[
Ix                                                 (5) 

The algebraic solution is xa= 























−





−

3

1
,

3

1
3

1
,

3

1

. Figure 2 shows the algebraic solution 

 

-4

-3

-2

-1

1

2

3

4

-5 -4 -3 -2 -1 1 2 3 4 5

Algebraic Solution

 
 

Figure 2: Algebraic solution for (5)  
 

2.4 Extended Interval Arithmetic 

Extended Interval Arithmetic (Kaucher, 1980; Gardenes et al, 1980)) is made up by adding 
improper interval [a-,a+],  a- ≥ a+, to the set of proper interval [a-,a+],  a- ≤ a+. Additionally 
the Dual operator is defined as: Dual [a,b] = [b,a]. 
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Using the Dual operator, Shary (1997) proves that if xa is an algebraic solution to the 
system LI xI = Dual bI, and all its components are improper, then dual xa is a solution to the 
interval linear identification problem. 
 
As an example, let us consider the interval linear system (5). The algebraic solution of the 
system: 







−
−

=





−
−

=





−

−
]2,2[

]2,2[

]2,2[

]2,2[

]4,2[]2,1[

]1,2[]4,2[
I Dualx  

is 

xa = 





−
−

]1,1[

]1,1[
 

From here: 

Dual xa = 





−
−

]1,1[

]1,1[
 

provides a good inner approximation for the united solution set. Figure 3 shows the inner 
and outer boxes, along with the solution set.  
 

-4

-3

-2

-1

1

2

3

4

-5 -4 -3 -2 -1 1 2 3 4 5

Inner Box

Outer Box
 

 
Figure 3: Solution set and its inner and outer approximation for the interval system (5) 

 
The algebraic approach to the inner estimation has been advanced also by Kupriyanova 
(1995). Indeed she shows that the algebraic solution of interval linear algebraic systems 

Dual {A
I
} xI = bI is the maximum inner box. However, in this case, the dual operator is 

applied to each element of the matrix while in the Shary’s approach the dual operator is 
applied to the righ-hand side, therefore requiring less operations.  
 
As an example, let us consider the following interval linear system (Kupriyanova, 1995):  
 







=





−

−
]2,0[

]2,0[

]4,2[]1,1[

]1,1[]4,2[ I

x      (6) 

 
The algebraic solution to the system:  
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





=















−

−
]2,0[

]2,0[

]4,2[[]1,1[

]1,1[]4,2[ I

xDual  

 
provides the inner box. Using the Dual operator, we obtain: 
 

[ ] [ ]
[ ] [ ] 





=





−

−
]2,0[

]2,0[

2,41,1

1,12,4
Ix  

The algebraic solution is:  

xa = 





]1,0[

]1,0[
 

 
Using the Shary’s approach, first we have to obtain the algebraic solution of:  
 















=





−

−
]2,0[

]2,0[

]4,2[]1,1[

]1,1[]4,2[
I Dualx  

That is: 

xa = 





]0,1[

]0,1[
 

The inner box is then:  







=















]1,0[

]1,0[

]0,1[

]0,1[
Dual  

Figure 4 shows the inner box. 
 

-1

1

2

-1 1 2

-2/3

-2/3 1 1/3

1 1/3

 
 

Figure 4: Inner Box for system (6) 
 

3. EXAMPLE 

Table 1 presents the 1987 Washington State direct purchase coefficient table estimated 
from an aggregated model (Chase et al, 1993). To evaluate the total economic impact of a $50 
million increase in manufacturing exports, the author solved the system Lx = b, where L is the 
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Leontief matrix and b = (0,50,0,0)t MM$. The vector x obtained is: (3.0,60.0,27.0,42.0)t 
MM$ (Base Case). That means, for example, that a $50 million increase in manufacturing 
exports is expected to result in a $3 million production increase in natural resource 
industries (Chase et al, 1993).  
 
Let us consider that the coefficient matrix has an uncertainty of ± 10 %. Table 2 shows the 
interval technology matrix. 
 

Table 1: 1987 Washington State Direct Purchase Coefficient Table  
(Chase et al, 1993) 

 
 Natural 

Resource 
Manu- 

Facturing 
Trade and 
Services 

Personal 
Consumption 

Natural Resource 0.10453 0.04279 0.00287 0.00305 
Manufacturing 0.08263 0.10870 0.05835 0.03212 

Trade and Services 0.08667 0.10188 0.20319 0.35550 
Personal Consumption 0.62531 0.34483 0.61063 0.07981 

 

Table 2: 1987 Washington State Input-Output Study: 
Direct Purchase Coefficient Table with ± 10 % uncertainty 

 
 Natural 

Resource 
Manu- 

Facturing 
Trade and 
Services 

Personal 
Consumption 

Natural Resource [0.0947, 0.115] [0.0385, 0.04707] [0.00258, 0.00316] [0.00274, 0.00336] 
Manufacturing [0.0743,0.0910] [0.097,0.1196] [0.0525,0.0642] [0.0289,0.03534] 

Trade and Services [0.0780,0.0953] [0.091692,0.1121] [0.1828,0.2235] [0.3199,0.3911] 
Personal 

Consumption 
[0.5627,0.6879] [0.3103,0.3794] [0.5495,0.6717] [0.0718,0.0878] 

 
Table 3 shows the Leontief interval matrix, obtained using the approach proposed by Shary 

(1996). This matrix represents a standardized solution for impact analysis (Chase et al, 
1993). For example, the table shows that for every dollar of natural resource industry, the 
output required from manufacturing is between $0.1564 and $0.2686. Without considering 
uncertainty, the amount required is $0.202 (Chase et al, 1993).  

 
Table 3: 1987 Washington State Input-Output study: 
 Inverse Coefficient Matrix with ± 10 % uncertainty  

 
[1.1152,1.1548] [0.0522,0.0731] [0.0133,0.0268] [0.0095,0.0186] 
[0.1564,0.2686] [1.1561,1.2440] [0.1293,0.2328] [0.0810,0.1490] 
[0.5327,1.0733] [0.3886,0.7578] [1.6398,2.1992] [0.5789,0.9760] 
[1.0439,1.7727] [0.6483.1.1304] [1.022,1.7363] [1.4530,1.8909] 

 
Let us evaluate the economic impact of a $50 million increase in manufacturing exports 
taking into account the uncertainty on the coefficient matrix. Using [ L -1b, L -1b], and the 
vector b: (0,50,0,0)t MM$,  we obtain the following interval production vector:  
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 Production 
 in MM$ 

Natural Resource [2.61,3.66] 
Manufacturing [57.81,62.20] 

Trade and Services [19.43,37.89] 
Personal Consumption [32.41,56.52] 

 

The effects on the production due to changes in the model input are known as swing 
weights (Shooman, 1990). A practical form of interpreting swing weights is by means of a  
"Tornado" graph, as shown in Figure 5.   
 

-40% -20% Base +20% +40% +60%

Manufacturing

Natural Resource

Personal Consumption

Trade and Services

 

Figure 5: Tornado diagram: Effects on the production due to ± 10 % uncertainty on the 
coefficient matrix for the 1987 Washington State Input-Output study  

 
This figure shows relative swing weights in percent ordered in ascending magnitude. For 
example, uncertainty on the coefficient matrix causes more impact on Trade and Services 
production than on Manufacturing production. 
 
Let us evaluate the economic impact of a $50 ± 10 % million increase in manufacturing 
exports. Using [ L -1 b , L -1 b ], we obtain the following interval production vector:  
 

 Production 
 in MM$ 

Natural Resource [2.35,4.02] 
Manufacturing [52.03,68.42] 

Trade and Services [17.49,41.68] 
Personal Consumption [29.17,62.17] 

 
Thus, according to the model, a $50 ± 10 % million increase in manufacturing exports 
along with a ± 10 % uncertainty on the coefficient matrix, is expected to result in a 
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$[2.35,4.02] million production increase in natural resource industries. Figure 6 shows the 
Tornado graph related to uncertainty in both coefficient matrix and b vector.  
 

-40% -20% Base +20% +40% +60%

Manufacturing

Natural Resource

Personal Consumption

Trade and Services

 

Figure 6: Tornado diagram: Effects on the production due to ± 10 % uncertainty on the 
coefficient matrix and demand vector for the 1987 Washington State Input-Output study  

 
The interval vector previously obtained corresponds to the outer box and there are points in 
that box that do not belong to the solution set. Using the approach proposed by Shary 
(1997), we obtain the following inner box (only 2 iterations): 
 

 Production 
 In MM$ 

Natural Resource [3.02,3.06] 
Manufacturing [53.15,66.19] 

Trade and Services [24.26.,28.67] 
Personal Consumption [40.97,42.24] 

 

Figure 7 compares the swing weights for the outer and inner boxes.  

5. Conclusions 

There is a general agreement to perform systematic sensitivity and uncertainty analysis in 
order to structure incomplete knowledge. Decision-makers need a full display of the 
sources and magnitudes of the uncertainties before making an informed judgement. 
 
Among the techniques, we presented Interval Arithmetic as an alternative to performing 
sensitivity/uncertainty analysis in Input-Output models. Interval Arithmetic can be used 
when uncertainty can not be expressed as a probabilistic or possibilistic function. 
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-40% -20% Base +20% +40% +60%

Trade and Services
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Natural Resource

Manufacturing
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Figure 7: Swing weights for outer and inner production boxes, due to ± 10 % uncertainty 
on the coefficient matrix and demand vector for the 1987 Washington State Input-Output 

study   
 
We have shown that it is possible to perform sensitivity/uncertainty analysis by using 
Interval Arithmetic, assigning bounds to some or all of the input parameters and observing 
the effects on the final interval outcome, that will contain all possible solutions due to the 
variations in input parameters. Among the techniques to solve linear interval system, we 
selected the approach presented by Shary, as it has high computational efficiency and can 
be used to obtain both outer and inner boxes to the solution set. 
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