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ABSTRACT

Economic input-output (1-O) models are empirical realizations of general equilibrium
economic model, which are based on the linear structure of inter-industry production
linkages. In compact form, an I-O model can be written asx = A x + b, where x is a vector
of sectorial outputs, A is the input-output technical coefficient matrix and b is the vector of
final demands. From here: (I-A) x = Lx = b, where L is called the Leontief matrix. If fina
demand is known, then the amount of the goods needed to satisfy this demand can be found
by solving the linear system Lx = b.

However, the technical coefficients of the Leontief matrix are not known but must be
estimated and therefore are subject to some level of uncertainty. Some sources of
uncertainties in I-O models are: Source data, assumptions inherent in [-O analysis such as
linearity or proportionality, allocation and aggregation.

We can evaluate the effects of variation in both L and b on the solution x, that is, if AL and
Ab are perturbation on L and b, we can evaluate what are the effects on x.

This paper shows the use of Interval Arithmetic as an alternative method to cal culate how
technical coefficients uncertainties are propagated, that is how system outputs vary as input
parameters vary.

If we define an interval matrix L' boundi ng L and an interval vector b' boundi ng b, then we
need to solve the interval system: L' x' = b'. However, the solution of interval linear
equations is a very different proposition from the solution of ordinary linear equations. In
general, the solution set is complicated in shape and requires solving 2" linear systems.

Interval Arithmetic can consider simultaneoudly variation of all the technical coefficients.
We propose the use of efficient algorithms, which are able to provide very good outer and
inner approximations to the solution set. An example related to an economic input-output
model is presented. Strict bounds are obtained with only one linear system evaluation.
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1. Introduction

Economic input-output (I-O) models are empirical realizations of genera equilibrium
economic models. An I-O is based on the linear structure of inter-industry production
linkages and has been successfully applied in many countries for policy making (Beletskyy
et a, 2001).



In compad form, an 1-O model can be written as x = A X + b, where x is a vedor of
sedoria outputs, A is the inpu-output technicd coefficient matrix and b is the vedor of
final demands. From here: (I-A) X = Lx = b, where L is cdled the Leontief matrix. If final
demand is known, then the anourt of the goods needed to satisfy this demand can be found
by solving the linea system Lx = b.

However, the technicd coefficients of the Leontief matrix are not known bu must be
estimated and therefore ae subjed to some level of uncertainty. Thus we neel to evaluate
how these uncertainties are propagated.

Recently Lenzen (2001) list some sources of uncertainties in 1-O models: Source data,
asumptions inherent in 1-O anaysis such as lineaity or propationality, alocaion and
aggregation. As an example, the aithor mentions that “the Australian Bureau of Statistics
does nat estimate uncertainties for 1-O data, but kegps information onthe standard error of
source data items, which ranges mostly from 15 % to 30%, with many being aslow as 1 %
to 2% and the highest being 58 %" .

Modeling uncertainty in inpu-output models can be based ontwo general approaches. The
first is a probabili stic goproach where probability distributions for all of the uncertainties
are aumed. The seand approadch is cdled “Unknowvn bu bounded” in which upper and
lower limits on the uncertainties are aumed withou a probability or possbility structure
(Merryl et a, 1982.

For examining the dfeds of uncertain inpus, there ae various analytic and computational
tedhniques. These include (Granger et a, 1990:

* Methods for computing the dfed of changes in inpus on model predictions, i.e.
sensitivity analysis

 Methods for cdculating the uncetainty in the modd outputs induced by the
uncetaintiesinitsinpus, i.e., uncertainty propagation, and

* Methods for comparing the importance of the inpu uncertainties in terms of their
relative contributions to urcertainty in the outputs, i.e., uncertainty analysis.

Tedniques used in sensitivity and urcertainty analysis may include (Granger et a, 1990:

* Deterministic, one-at-time analysis of ead fador holding all others constant at nominal
value;

» Deterministic joint analysis, changing the value of more than orefador at atime;

» Parametric analysis, moving one or afew inpus aadossreasonably seleded ranges sich
asfrom low to high valuesin arder to examine the shape of the resporse;

* Probabili stic analysis, using probability density functions, Monte Carlo simulation, o
other means to examine how much urcertainty in conclusions is attributable to which
inpus.

A tentative condensed list of reasons why and instances where sensitivity anaysis sioud
be cnsidered can be found in Sdtelli (2000. Traditionally, all parameters are set to



nomina values and eat parameter is varied independently to determine its effed on the
outcome. Those parameters that have significant effeds are viewed as snsitive. In most
cases engitivity analysis does not ded with the paosshility that several parameters varying
simultaneously can cause significant variations in the output. Simultaneous variations of
parameters model more acairately the red world situations.

To perform a sensitivity analysison Lx = b, we can study the dfeds of variationin bah L
and b on the solution x, that is, if AL and Ab are perturbation onL and b, we want to
evaluate what are the dfedsonx.

Using standard error analysis, Deif (1986 shows that Ax = L™'Ab - L?AAx. This
expresson is valid if perturbations are small enough, so that the first order perturbation is
considered.

Ancther basic technique for carrying out sensitivity analysis of the I-O model is to evaluate
multipliers. A multiplier for an ouput variable shows how this variable danges as a result
of changesin inpu variable. For example (Jerrel, 19969, if:

_ householdncomegeneratedby industryi
totaloutlaysin industryi

hi

then the wage income multi plier for the i-th industry is cdculated by:

(]
hi

Thus, the multipliers depend onthe Leontief matrix. As the wefficients of the Leontief
matrix have uncertainties, we neel to evaluate how these uncertainties are propagated into
the multipliers.

West (1986 has derived aformal expresson for the probability of the multi pliers assuming
that the tedhnicd coefficients are independent and that they can be daraderized as
probability distributions with small variances. If probability distributions are assumed, then
the West’s methodwill generate mnfidenceintervals.

Other authors have used Monte Carlo method to perform this type of analysis (Lansen,
2001, West 1986 Raa e a, 1999

Receitly Beletskyy et a (2001 present a Leontief model and a tod for its sensitivity
analysis, applied to the Ukrainian emnamy. The tod for the investigation d the model
sengitivity analysis is a speda program that generates changes in input parameter values
and solves linea equation systems. Basicdly an interva coefficient of the techndogy
matrix [parmin, parmax] is sleded. Next, the dgorithm forms (n+1) values of the
coefficient; parmin, parmin+h, parmin+2h, ...., grmax, where h = (parmax-parmin)/n, and
solves n linea system.



Instead of probabilities, we usually know only estimates and accuracy for the coefficients
of the Leontief matrix, that iswe only know intervals [Lj; - ALj;, Lij + AL;;].

This paper shows the use of Interval Arithmetic as an alternative method to calculate how
system outputs vary as input parameters vary. It is shown that it is possible to perform
sensitivity and uncertainty analysis by using Interval Arithmetic, assigning bounds to some
or al the input parameters and observing the effect on the final interval outcome, that will
contain all possible solutions due to the variations in input parameters. Strict bounds are
obtained with only one linear system evaluation.

2. INTERVAL ARITHMETIC

2.1 Introduction

Interval arithmetic originates from the recognition that frequently there is uncertainty
associated with the parameters used in a computation (Moore, 1979; Neumaier, 1990). This
form of mathematics uses interval "numbers’, which are actually an ordered pair of red
numbers representing the lower and upper bound of the parameter range (Hansen, 1992).
For example, if we know that a technological coefficient g; is between 12 and 15 %, the
corresponding interval number would be written as follows: &; = [12,15] %.

Interval arithmetic is built upon a basic set of axioms. If we have two interval numbers
T=[a,b] and W=[c,d] with a< b and ¢ < d then (Hansen ,1992; Moore, 1979; Neumaier,
1990):

 T+W= [ab] +[cd] =[atc, b+d]

e T-W = [ab] +(-[c,d]) =[ad,b-]

« T*W = [min{ac,ad,bc,bd}, max{ac,ad,bc,bd}]

 UT = [lb,Val],00abh]

e T/W = [J[ab]/[cd] =[ab]*[1/d,Lc], 0O][cd]

o KT k*[a,b] =[ab]*k =[k*ak*b], k areal constant

Only some of the algebraic laws valid for real numbers remain valid for intervals. It is easy
to show that interval addition and multiplication are associative as well commutative.
However, the distributive law does not always hold for interval arithmetic (Moore, 1979).
Asan example: [0,1] (1-1) =[0,0], while [0,1] - [0,1] =[-1,1].

An important property referred to as subdistributivity does hold. It is given mathematically
by the set inclusion relationship: T(W + Z) O TW + TZ . The failure of the distributive law
often causes overestimation. It is aso interesting to note that T-T # 0, and T/T # 1. In
general, when a given variable occurs more than once in an interval computation, it is
treated as a different variable in each occurrence. Thus T-T is the same as T-W with W
equal to but independent of T and causes the widening of computed interval. This effect is
called the "dependency problem" (Moore, 1979). However, there are expressions where
dependence does not |ead to overestimation. For example, T + T (Neumaier, 1990).



22LINEAR SYSTEMS

Interval Arithmetic can also be applied to evaluate the effect of uncertain parameters in
Linear Systems (Deif, 1986; Neumaier, 1990).

Let L be areal matrix with elements ljj and let L' be an interval matrix with interval
elements Lj . We say "L is contained in L' (L O L' )" if and only if Ijj O Ljj, (Neumaier,
1990). Consider the real equation:

Lx=Db (1)

If we know an interval matrix L' bounding L and an interval vector bI bounding b, we can
replace (1) by
L'x'=b' 2)

Theinterval solution to (2) will contain the solution to (1).

However, the solution of interval linear equations is a very different proposition from the
solution of ordinary linear equations. The solution set is not generally an interval vector.

Figure 1 illustrates the solutions set for the system (Hansen, 1992):
[2,3] x +[0,1] y=[ 0,120]

©)
[1,2] x +[2,3] y = [60,240]

Figure 1: The solution set for equation (3) (Hansen, 1992)

The inner region is the exact solution set. In general, the solution set is complicated in
shape and requires solving 2" linear systems (Rossier, 1982). Kreinovich et al (1991) prove
that the solution of the interval system is NP-hard.

For this reason, it is common practice to seek an interval vector X' containing the solution
set: the hull of the solution set (Alvarado et al, 1992). The hull of the solution set associated
to (3) istheinterval vector:

X' = [[-120,90], [-60,240]]t



The hull contains, in additionto the entire solution set, many nortsolutions.

Solving interval linea equations means obtaining the hull of the solution set. By analogy
with the red cases, we try to solve (2) by Gaussan elimination a by the GaussSeidel
iterative method (Burden et al, 1985. That means that we have only to change every red
operation by an interval operation, wsing for example objed-oriented techniques (Hyvonen
et a, 1999 or cdling spedal interval routines (Keafott et al, 1994.

But ordinary forward and badk substitutions result in considerable overestimation d the
solution, die to the dependency problem and fail ure of the distributive law. Some ordering
scheme may improve the solution (Alvarado et al, 1993. Simply repladng ared Gaussan
elimination algorithm by an interval one caana be recommended in pradice (Hansen,
1992. However, an algorithm, which oltains excdlent results, can be obtained by doing
some extrawork (Neumaier, 199Q Hansen, 1993.

In order to oktain the hull of the solution set, interval methods requires that the matrix L' be
an M-matrix. M-matrices are defined as:

Annx ninterval matrix L' is an M-matrix if Ljj < Ofor all i <j andL'u > 0 for
some positive veaor u O R"(Ning et a, 1997.

If L' is an M-Matrix and b' = 0, interval Gaussan elimination computes the hull. For
example, let the interval equation system L' x' = b' be (Ning et a, 199%:

[3743] [-15-05] [o0] 0,1A]E
-15-05 [3743] [-15-05]' =0[0.9 € (4)

H [00] [-15-05] [3743H HpodFE

Using interval Gaussgan elimination, we obtain the box:

§0,6.38]E
x' =fo,6.40|¢
Ho,3.40]F

As the matrix is an interval M-matrix and b' = 0, this box is the small est one mntaining the
solution set.

LetL'=[L,L].Ningeta (1997 show that:

1. If L and L areM-matricesthen: (L)' =[L %, LY
2. If L and LareM-matricesand B = Othenx' =[L b, L b]

In the previous g/stem (4):



[3743] [-15-05] [00]
L'=d-15-05] [3743] [-15-05]0
H [00o] [-15-05] [37.4.3 H
L and L matrices are:

137 -15 0L  [43 -05 O
L=+15 37 -15randL =105 43 -05C
Ho -15 37F Ho -o05 43Ff
with the foll owing inverses:
33644 016322 0.06617 23578 0.02779 0.00323
L= 016322 040261 0.16322 and L™= [0.02779 0.23902 0.02779[
H0.06617 0.16322 0.3364fF H.00323 0.02779 0.23578%

Then, (L™ isgiven by:

0.235780.33644 [0.027790.16329 [0.003230.06617
(L™ = 0.027790.16329 [0.239020.4026] [0.027790.16324
H0.003230.06617 [0.027790.1632d [0.2357890.3364H

Jerrel (1996 shows that Leontief matrix is an M-matrix and propcses an agorithm to
obtain the inverse of L' based onthe use of an interval version d Gausdan elimination
method.

Shary (1996 presents a diff erent approach to find the hull of alinea interval system, based
on an algorithm that combines high computational efficiency, good adaptability to various
spedficinterval linea systems and high quality enclosures of the solution set.

The gproac is based on the fad that the solution set of the interval system L' x' = b'
coincides with the solution set of the interval system x' = C' x' + b', if C'=1'- L' In order
to avoid the dependence problem, the propased approadch is based onan iterative dgorithm
(sub-differential Newton method) that solves the origina problem using one noninterval
equation in the Euclidean spaceof doulde dimension R2N. Detail s of the dgorithm can be
foundin (Shary, 1996 Shary, 1997.

The ideain ou paper is to use the gproach proposed by Jerrel (1996, changing the
interval Gaussan elimination with the Shary’s method. For the interval linea system (4),
the Shary’ s methodalso finds the hull of the solution bu in ore iteration.

2.3 Inner box

The hull of the solution set contains points that have nothing to dowith the solution d the
system L' X' = b' for some LO L' and HJb', and de to this, such a problem statement may



turn out unacceptable in many practical situations. However, this “box” gives information
of minimum and maximum values independently.

We can avoid this problem by definining an internal box. In this case we can guarantee that
any point selected within the box complies with the problem.

Therefore the problem we shall address is. Find an interval vector that is included in the
solution set of the interval linear system. This problem is the identification problem for the
interval algebraic system (Shary, 1997).

The algorithm proposed by Shary (1996) to obtain the hull of the solution can also be
applied to the problem of inner interval estimation, using some concepts related to the
identification problem for the interval algebraic system and an extension of the interva
arithmetic.

Aninterval vector X, is said to be an algebraic solution to the interval system of equationsiif
substituting it into the system and execution of all interval arithmetic operations result in a
valid equality.

For example, consider the following interval system of equation:

24 [-21 2,2
(24] [-21] .:% ]E -

-12] [24] —2,2]

The algebraic solution is Xa= E%

OO|H OO|H

% Figure 2 shows the algebraic solution

ooll—\ ool

Algebraic Solution

Figure 2: Algebraic solution for (5)
2.4 Extended Interval Arithmetic
Extended Interval Arithmetic (Kaucher, 1980; Gardenes et al, 1980)) is made up by adding

improper interval [a,a’], a = &', to the set of proper interval [a,a’], a < a’. Additionally
the Dual operator is defined as: Dual [a,b] = [b,al.



Using the Dual operator, Shary (1997) proves that if X, is an algebraic solution to the
system L' x' = Dual b', and all its components are improper, then dual x5 is a solution to the
interval linear identification problem.

As an example, let us consider the interval linear system (5). The algebraic solution of the

system:
[24] [-2] ':DuaIE_Z’Z]E: EZ’_Z]E
-12] [24] -2,2] 2,-2]
is
_ HL-Y
e %L—l]%
From here:

Dual x5 = %_LI]E
-17]

provides a good inner approximation for the united solution set. Figure 3 shows the inner
and outer boxes, along with the solution set.

Outer Box

Figure 3: Solution set and itsinner and outer approximation for the interval system (5)

The algebraic approach to the inner estimation has been advanced aso by Kupriyanova
(1995). Indeed she shows that the algebraic solution of interval linear algebraic systems

Dual {AI} x' = bl is the maximum inner box. However, in this case, the dual operator is
applied to each element of the matrix while in the Shary’s approach the dual operator is
applied to the righ-hand side, therefore requiring less operations.

As an example, let us consider the following interval linear system (Kupriyanova, 1995):

24] [-1Q, %O,Z]E

11 (24 Ho2 ©

The algebraic solution to the system:
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al%2,4] [-11] |:%0,2]E
-1 [[24] 0.2]

provides the inner box. Using the Dual operator, we obtain:
[42] [L-do, _ %0,21
El—l] [4.2] 0, 2]%

0]
Xa=
%0,1] E

Using the Shary’s approach, first we have to obtain the algebraic solution of:

214] [_111] %(| = Dual %012]
-11] [2/4] 0,2]

B %J,O] E

Xa=
1,0]
oua 1B 103
10] 0]

The algebraic solutionis:

Thatis:

Theinner box is then;

Figure 4 shows the inner box.

Figure 4: Inner Box for system (6)

3. EXAMPLE

Table 1 presents the 1987 Washington State direct purchase coefficient table estimated
from an aggregated model (Chase et al, 1993). To evaluate the total economic impact of a $50
million increase in manufacturing exports, the author solved the system Lx = b, where L is the
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Leontief matrix and b = (0,50,0,0)' MM$. The vector x obtained is: (3.0,60.0,27.0,42.0)'
MM$ (Base Case). That means, for example, that a $50 million increase in manufacturing
exports is expected to result in a $3 million production increase in natura resource
industries (Chase et a, 1993).

Let us consider that the coefficient matrix has an uncertainty of + 10 %. Table 2 shows the
interval technology matrix.

Table 1: 1987 Washington State Direct Purchase Coefficient Table
(Chase et a, 1993)

Natural Manu- Tradeand Per sonal

Resource Facturing Services Consumption
Natural Resour ce 0.10453 0.04279 0.00287 0.00305
M anufacturing 0.08263 0.10870 0.05835 0.03212
Tradeand Services 0.08667 0.10188 0.20319 0.35550
Per sonal Consumption 0.62531 0.34483 0.61063 0.07981

Table 2: 1987 Washington State Input-Output Study:
Direct Purchase Coefficient Table with + 10 % uncertainty

Natural M anu- Tradeand Per sonal
Resource Facturing Services Consumption
Natural Resource | [0.0947,0.115] | [0.0385, 0.04707] | [0.00258, 0.00316] | [0.00274, 0.00336]
M anufacturing [0.0743,0.0910] [0.097,0.1196] [0.0525,0.0642] [0.0289,0.03534]
Tradeand Services| [0.0780,0.0953] |[0.091692,0.1121] | [0.1828,0.2235] [0.3199,0.3911]
Per sonal [0.5627,0.6879] | [0.3103,0.3794] [0.5495,0.6717] [0.0718,0.0878]
Consumption

Table 3 shows the Leontief interval matrix, obtained using the approach proposed by Shary
(1996). This matrix represents a standardized solution for impact analysis (Chase et d,
1993). For example, the table shows that for every dollar of natura resource industry, the
output required from manufacturing is between $0.1564 and $0.2686. Without considering
uncertainty, the amount required is $0.202 (Chase et a, 1993).

Table 3: 1987 Washington State Input-Output study:
Inverse Coefficient Matrix with £ 10 % uncertainty

[1.1152,1.1548] | [0.0522,0.0731] [0.0133,0.0268] [0.0095,0.0186]
[0.1564,0.2686] | [1.1561,1.2440] [0.1293,0.2328] [0.0810,0.1490]
[0.5327,1.0733] | [0.3886,0.7578] [1.6398,2.1992] [0.5789,0.9760]
[1.0439,1.7727] | [0.6483.1.1304] [1.022,1.7363] [1.4530,1.8909]

Let us evaluate the economic impact of a $50 million increase in manufacturing exports
taking into account the uncertainty on the coefficient matrix. Using [L b, L b], and the
vector b: (0,50,0,0)' MM$ we obtain the following interval production vector:
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Production

inMM$

Natural Resource [2.61,3.66]
Manufacturing [57.81,62.20]
Trade and Services [19.43,37.89]
Per sonal Consumption [32.41,56.52]

The effects on the production due to changes in the model input are known as swing
weights (Shooman, 1990). A practical form of interpreting swing weights is by means of a
"Tornado" graph, as shown in Figure 5.

Trade and Services

Personal Consumtion

Natural Resource

Manufacturing

T T

-40% -20% Base +20% +40% +60%

Figure 5: Tornado diagram: Effects on the production due to + 10 % uncertainty on the
coefficient matrix for the 1987 Washington State Input-Output study

This figure shows relative swing weights in percent ordered in ascending magnitude. For
example, uncertainty on the coefficient matrix causes more impact on Trade and Services
production than on Manufacturing production.

Let us evaluate the economic impact of a $50 + 10 % million increase in manufacturing
exports.Using[L b, L ™*b], we obtain the following interval production vector:

Production

in MM$

Natural Resource [2.35,4.02]
Manufacturing [52.03,68.42]
Trade and Services [17.49,41.68]
Per sonal Consumption [29.17,62.17]

Thus, according to the model, a $50 + 10 % million increase in manufacturing exports
aong with a + 10 % uncertainty on the coefficient matrix, is expected to result in a
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$[2.35,4.02] million production increase in natural resource industries. Figure 6 shows the
Tornado graph related to uncertainty in both coefficient matrix and b vector.

Trade and Services

Personal Consumtion

Natural Resource

Manufacturing

T T

-40% -20% Base +20% +40% +60%

Figure 6: Tornado diagram: Effects on the production due to + 10 % uncertainty on the
coefficient matrix and demand vector for the 1987 Washington State Input-Output study

The interval vector previously obtained corresponds to the outer box and there are pointsin
that box that do not belong to the solution set. Using the approach proposed by Shary
(1997), we obtain the following inner box (only 2 iterations):

Production
InMM$

Natural Resource

[3.02,3.06]

Manufacturing

[53.15,66.19]

Trade and Services

[24.26.,28.67]

Per sonal Consumption

[40.97,42.24]

Figure 7 compares the swing weights for the outer and inner boxes.

5. Conclusions

There is a general agreement to perform systematic sensitivity and uncertainty analysis in
order to structure incomplete knowledge. Decision-makers need a full display of the
sources and magnitudes of the uncertainties before making an informed judgement.

Among the techniques, we presented Interval Arithmetic as an aternative to performing
sensitivity/uncertainty analysis in Input-Output models. Interval Arithmetic can be used
when uncertainty can not be expressed as a probabilistic or possibilistic function.
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Manufacturing

- Outer

== Inner

Personal Consumption

Trade and Services

-40% -20% Base +20% +40% +60%

Figure 7: Swing weights for outer and inner production boxes, due to £ 10 % uncertainty
on the coefficient matrix and demand vector for the 1987 Washington State Input-Output

study

We have shown that it is possible to perform sensitivity/uncertainty analysis by using
Interval Arithmetic, assigning bounds to some or al of the input parameters and observing
the effects on the final interval outcome, that will contain all possible solutions due to the
variations in input parameters. Among the techniques to solve linear interval system, we
selected the approach presented by Shary, as it has high computational efficiency and can
be used to obtain both outer and inner boxes to the solution set.
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