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Abstract
Kop Jansen and ten Raa (1990) established a pure theoretical solution to the

model selection problem of constructing input-output technical coefficients matri-
ces using make and use tables. In an axiomatic context, these authors provide a
characterization result pertaining to the construction of input-output coefficients,
which lead to single out one of the seven models considered: the so-called commod-
ity technology model as the best one according to some desirable properties.

The aim of this paper consists of giving answer to what restrictions must be
imposed on the relevant data sets for each model to ensure fulfillment of most de-
sirable properties. We delineate regions in data space where axioms are fulfilled, for
each input-output construct.

∗The author thanks to F.M. Guerrero, T. ten Raa, E. Fedriani and E. Romero for valuable comments.
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1 Introduction

Input-output analysis concentrates its attention on a so-called input-output
matrix of technical coefficients, A = {aij},∀i, j = 1, . . . , n (with n different com-
modities), representing the direct requirements of commodity i needed per physical
unit of commodity j ’s production. For instance, if industry 1 corresponds to agri-
culture and industry 2 corresponds to chemicals, then a21 will be the amount of
chemical products consumed by agriculture per physical unit of peach, apple and so
on. In more general terms, the standard reference for a more detailed explanation
is Leontief (1966).

The matrix of technical coefficients A has been used as the point of departure
for economic analysis by means of the so-called quantity equation or material bal-
ance (supply and demand) and the value equation or financial balance (costs and
revenues). That is the following:

x = Ax + y
p = pA + v

where x is a column vector of gross outputs, y is another column vector of final
demand, p is a row vector of prices, and lastly, v is a another row vector of value-
added coefficients.

Some of the most common applications of the quantity equation are derived
from the need to develop a national or regional economic planning, which involves
more detailed studies where, for instance, the output requirements to satisfy a cer-
tain final demand level could be analysed.Furthermore, final demand could also be
influenced by an exports or investments policy. Thus, there will be a direct effect
over the output levels which will depend on the final demand variations (∆y) and
additional indirect effects that will be valued through the A technical coefficients
matrix, as it is shown in the material balance equation. With respect to the value
equation, it can be used to assess the price effects resulting from an energy shock,
which surely will bring about variations in the value-added shares of a product.

There is little doubt about the usefulness of the W. Leontief methodological
framework due to the huge quantity of books and papers related to it and its vari-
ants. Undoubtedly, the Leontief inverse (I − A)−1, which gives a solution to both
equations, is one of the most important points of reference in input-output analysis.

However, the main effort of the National and Regional Statistical Offices has
been concentrated almost exclusively on industry input-output tables instead of
commodity ones. Obviously, from a practical point of view, the varied complexity
in data compilation and its reliability make advisable to set up a so called trans-
actions table (ten Raa, 1994) T = {tij}, ∀i, j = 1, . . . , n + 1 (used for sectors or
industries).1 In such a table, each element displays the inputs requirements of sec-
tor i per unit of sector j’s production, as well as the final demand compartments
(household and government consumption, investment and net exports).

According to ten Raa (1994), if reality were to present itself through a simple

1Note that, for simplicity, we assume the same number of industries as of commodities (n).
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input-output transactions table, T , the construction of a matrix of technical coeffi-
cients, A, would be a straightforward matter of divisions:

aij = tij
n+1∑

k=1

tjk

Nevertheless, if we assume this to be true, there are some further implications
that we have to consider. They are described as follows:

1. The very existence of a transactions table presumes that commodities and
sectors can be classified in the same way.

2. It is also suggested that sectors have a multitude of inputs, but only single
outputs.

In 1967, Professor Richard Stone suggested accounting for inputs and outputs
separately in order to give solutions to both implications. Thus, let us define an USE
TABLE, U = {uij}, ∀i, j = 1, . . . , n of commodities i consumed by sector j, and a
MAKE TABLE V = {vij}, ∀i, j = 1, . . . , n where sector i will produce commodity
j (U.N., 1967; ten Raa, Chakraborty and Small, 1984; Kop Jansen and ten Raa,
1990). This kind of systems with input and output matrices has been generalized
in input-output analysis since then until nowadays thanks to the contributions of
authors like Professor Thijs ten Raa, among others. Note that, according to Kop
Jansen and ten Raa (1990) industry tables and mixed tables are not considered
here. Moreover, we will assume the same number of industries as of commodities.

Hence, the aim of this paper for the present is how to construct a technical coeffi-
cients matrix A = {aij}, ∀i, j = 1, . . . , n of commodities i needed for the production
of one physical unit of commodity j.

2 The Standard Case for the Construction of

Technical Coefficients Matrices

The standard case for the construction of technical coefficients matrices, A,
could be expressed as a particular case in terms of U and V tables. In the absence
of secondary outputs and by-products, V turns into a diagonal matrix and one sim-
ply puts:

aij(U, V ) = uij
vjj

, ∀i, j = 1, . . . , n

By this way, U will be equal to the transactions table T with only their first n
rows and columns. In conclusion, the standard case formula for the construction of
technical coefficients matrices would be as follows:

A(U, V ) = UV −1
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3 Models Description

Nevertheless, V is not necessarily diagonal because economic reality shows that
sectors have multiple outputs and productive processes which automatically gen-
erate by-products .In this sense, Kop Jansen and ten Raa (1990) deal with seven
different methods to construct an input-output coefficients matrix. They divide
them in two different groups:

1. Statistical Models; they consist basically of statistical methods which remove
secondary products from the make table.

2. Economic Models; their foundations belong to economic reasons and their
sources for motivation and derivations could be obtained by consulting ten
Raa, Chakraborty and Small (1984).

3.1 Statistical Models

1. The Lump-Sum Method (used in the japanese Input-Output Tables, 1974); it
presents the following analytical expressions2:

AL(U, V ) = U(V̂ e)−1

aL
ij(U, V ) =

{
uij

vj
∀i, j = 1, . . . , n

By the Lump-Sum method, technical coefficients could be obtained by dividing
all the entries of each of the columns from the use table by the total output of
sector j, specified in row j of the V table. Also, this total output includes not
only primary products but secondary products and by-products (n different
commodities). That is,

vj =
n∑

k=1

vjk

2. The European System Accounting method (1979) specifies the following ana-
lytical expressions:

AE(U, V ) = U(V̂ T e)−1

aE
ij(U, V ) =

{ uij

v
′
j

∀i, j = 1, . . . , n

Unlike the Lump-Sum method, here we construct the technical coefficients by
dividing all the entries of each of the columns from the use table by the total
output of commodity k, specified in the column k of the V table. Note that
this total output is not exclusively obtained by one single sector.3 That is,

2In what follows, e denotes a column vector with all entries equal to one. T denotes transposition and
−1 inversion of a matrix. Since the latter two operations commute, their composition may be denoted −T .
Also,̂ denotes a diagonal matrix either by placement of null entries instead of the off-diagonal elements
or by placement of the entries of a vector.˜ denotes, finally, a matrix with all its diagonal elements null.

3As we are assuming that commodities and sectors can be classified in the same way, in what follows,
we will use vj to denote the total output of sector j and v

′
j (= v

′
k) to denote the total output of commodity

j.
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v
′
k =

n∑

j=1

vjk

3. The Transfer method yields :

AT (U, V ) = (U + Ṽ )(V̂ e + V̂ T e− V̂ )−1

aT
ij(U, V ) =





uij

vj + v
′
j − vjj

if i = j

uij + vij

vj + v
′
j − vjj

if i 6= j

This method was first established by Professor Stone (1961) for the O.E.C.D.

3.2 Economic Models

1. The Commodity Technology Model (used in Germany and proposed in 1967
by the United Nations ); it presents the following expression:

AC(U, V ) = UV −T

The economic foundations of such a expression is easy to understand (ten Raa,
Chakraborty and Small, 1984). The Commodity Technology Model rests on the
assumption that each commodity has its own input structure independently of
what sector could produce it. Hence, if aik represents the direct requirements
of commodity i needed by sector j for the production of one physical unit of
commodity k and also, vjk stands for the total secondary output of commodity
k produced by sector j, it can be derived that the amount aikvjk is the total
inputs requirements of commodity i needed for the production of vjk units
of output k. Then, if we also assume that sector j has multiple outputs and
all different from commodity k, we finally could sum over outputs k (m < n
different kind of commodities produced by sector j) to obtain the sector j’s
total demand for input i. Thus, uij is written as:

uij =
m∑

k=1

aikvjk, ∀i, j = 1, . . . , n, ∀k = 1, . . . , m

and, therefore,

AC(U, V )V T = U

where the first expression mentioned above is easily derived.

2. The By-Product Technology Model (used in Japan and proposed by Professor
Stone in 1961) yields the following analytical expression:

AB(U, V ) = (U − Ṽ T )V̂ −1

aB
ij(U, V ) =





ujj

vjj
if i = j

uij − vji

vjj
if i 6= j
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All secondary products are considered by-products in this model. Therefore,
they can be treated as negative inputs, yielding a result that is, in a sense,
similar to those derived from the Lump-Sum method except for the net input
structure for the primary outputs and the divisor, which refers to the total
primary outputs of sector j instead of the total economy output. Let us
examine this implications in more detail. Sector j would need a net amount
uij − vji of commodity i, which is actually a secondary product of sector j,
for the production of vjj units of its primary output. Note that, necessarily
i 6= j. One of the main problems to put this model in practice is that, in some
cases, vij could be larger than uij and consequently, negative values of aB

ij will
be obtained.

3. The Industry Technology Model (used in the United States and proposed in
1967 by the United Nations) specifies the following analytical expression :

AI(U, V ) = UV̂ e
−1

V V̂ T e
−1

aI
ij(U, V ) =

n∑

k=1

(
uik

vk

)(
vkj

v
′
j

)

This model is characterized by the following two different aspects:

(a) (Industry technology assumption). Each industry or sector j has the same
inputs requirements for any unit of output (this time, measured in value).

(b) The commodity market shares of industries (or sectors) are fixed.

Let us examine in more detail the last expression written above in order to
cast light on the economic foundations of the industry technology model.

uik

vk
represents the direct requirements of commodity i needed for the production
of one physical unit of commodity k. On the contrary,

vkj

v
′
j

denotes the pro-

portion of the commodity j output produced by sector k to the total output
of such commodity. In short, this result is the so-called market share. Hence,
according to this model, the technical coefficient aij , i.e. the amount of input
i required for one unit of output j results from a (market share) weighted
average over industries k.

4. The CB-Mixed Technology Model (proposed in 1984 by ten Raa, Chakraborty
and Small and which is based on Gigantes mixed model (1970) ) yields :

ACB(U, V ) =
(
U − V T

2

)
V −T

1

where the authors split the make table V into a table V1 of primary prod-
ucts and ”ordinary secondary products”, i.e. those products which involve an
alternative activity and which are not being generated automatically by the
primary productive process, and a table V2 of by-products. For a more detailed
explanation, it is recommended ten Raa, Chakraborty and Small (1984).

4 The Choice of Model

These seven input-output constructs have not been subjected to an axiomatic
analysis until Kop Jansen and ten Raa (1990). Thus far, the choice of model has
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been made on the basis of the reasonableness of the assumptions from which they
are derived. In this sense, four desirable properties of input-output coefficients,
A(U, V ), are defined by these authors in an axiomatic context. Namely,

1. Axiom M ; it is referred to the material balance or the quantity equation which,
with the same notation as above, could be denoted as (Kop Jansen and ten
Raa, 1990):

A(U, V )V T e = Ue

In other words, the total input requirements must be equal to the observed
total input.

2. Axiom F ; it is referred to the financial balance or the value equation which,
according to the same notation as above, is represented as follows (Kop Jansen
and ten Raa, 1990):

eT A(U, V )V T = eT U

In words, the input cost of output must match the observed value of input.

3. Axiom P ; it is referred to the invariance of the resulting A-matrix with respect
to units of measurement or, in other terms, to prices. It is called the price
invariance axiom (Kop Jansen and ten Raa, 1990):

A(p̂U, V p̂) = p̂A(U, V )p̂−1 ∀p > 0

Evidently, this property tries to avoid that a change in the base year prices
could affect the technical coefficients. Variations in the internal structure of
A(U, V ) should be caused by real economic phenomena and not by those kind
of methodological changes.

4. Axiom S; or the so called scale invariance axiom (Kop Jansen and ten Raa,
1990):

A(Uŝ, ŝV ) = A(U, V ) ∀s > 0

In this sense, if every commodity inputs requirements is augmented by a certain
constant percentage, (Uŝ), the total output actually produced must match
the previous total output augmented by the same constant percentage (ŝV ).
Thereby, this basically involves the absence of technological change and that
technical coefficients will never change as a result of constant variations in
inputs requirements.

Kop Jansen and ten Raa (1990) develop and examine how well the seven dif-
ferent models presented above fulfill axioms M, F, P and S. More precisely, the
authors proved that the just described structure of input-output analysis, involving
the four axioms, not only imposes restrictions on the choice of model of construc-
tion, but determines it uniquely, namely the commodity technology model. That is,
either by the real sphere theorem or the nominal sphere theorem, if axioms M and
S fulfill in the former case or if axioms F and P fulfill in the latter, the A-matrix
must be constructed only by the so called commodity technology model .

It is also illustrative to show the main results from Kop Jansen and ten Raa
(1990) for the rest of the construct models and which are represented in Table 1.
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After all, the characterization theorems do not necessarily favor the commodity tech-
nology model over other alternative constructs.If, however, an alternative method
of constructing input-output matrices is used, then one must be prepared to revise
the basic structure of input-output analysis, since at least one of the properties
must be violated (Kop Jansen and ten Raa, 1990). Therefore, as we will examine
thereinafter, the commodity technology model has its own limitations which are so
important that the very ten Raa (1988) confessed to be frustrated when he proved
that the negative values yielded in the construction of the A-matrix could not be
ascribed to errors of measurement but to the initial methodological assumptions.
A few years later, ten Raa (1994) concludes that a more reasonable approach of
the problem would be to accept the possibility of coexisting technologies for the
production of one single commodity in two or more sectors.

TABLE 1: AXIOMS FULFILLMENT OF INPUT-OUTPUT
COEFFICIENTS CONSTRUCTS

Model Axiom M Axiom F Axiom P Axiom S
Lump-Sum

√
European System

√ √
Transfer

Commodity Technology
√ √ √ √

By-product Technology
√ √

Industry Technology
√

CB-Mixed Technology
√ √

Source: Kop Jansen and ten Raa (1990)

The aim of this paper consists of examining more thoroughly the Table 1 pre-
sented in Kop Jansen and ten Raa (1990). We will try not only answer to what
model and which axiom is fulfilled but to give an answer to what restrictions must
be imposed on the relevant data sets for each model to ensure fulfillment of most
desirable properties. Here, we delineate regions in data space where axioms are ful-
filled, for each input-output construct. Note that, in the absence of any additional
assumption, the fulfillment of both M and S, or F and P implies that the best
derived construct is the commodity technology model as it has been proved in Kop
Jansen and ten Raa (1990). However, we will widen the conclusions obtained by
these authors.

5 Equivalent conditions for axioms M and F

As a result of the theorems developed in the this section, two important issues
can be deduced for axioms M and F with respect to the Commodity Technology
model.

Theorem 5.1 Let A(U, V ) be a technical coefficients matrix, axiom M fulfills for
all U and non-singular V if and only if,

n∑

j=1

aijv
′
j =

n∑

j=1

aC
ijv

′
j ∀i = 1, . . . , n

which in matrix terms is,

A(U, V )V T e = AC(U, V )V T e
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Proof. Sufficiency is proved as follows. Bearing in mind that the commodity
technology model construct is defined by,

AC(U, V ) = UV −T .

by substitution,

A(U, V )V T e = UV −T V T e.

Hence, it can be derived that,

A(U, V )V T e = Ue.

which is the axiom M indeed.

For the necessary proof, since V −T V T = I it can be easily derived that,

A(U, V )V T e = UV −T V T e = AC(U, V )V T e = Ue .

¥

Theorem 5.2 Let A(U, V ) be a technical coefficients matrix, axiom F fulfills if
and only if the sum of each column of A(U, V ) match the sum of each column of
AC(U, V ) for all U and non-singular V .

n∑

i=1

aij =
n∑

i=1

aC
ij ∀j = 1, . . . , n

which in matrix terms is,

eT A(U, V ) = eT AC(U, V )

Proof. Sufficiency is proved as follows. Let us suppose that the sum of each
column of any A(U, V ) and AC(U, V ) match. That is,

eT A(U, V ) = eT AC(U, V ).

if we know that,

AC(U, V ) = UV −T .

by substitution, the former expression yields,

eT A(U, V ) = eT UV −T .

Therefore, it can be derived that,

eT A(U, V )V T = eT UV −T V T .

or

eT A(U, V )V T = eT U .
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which is the axiom F indeed.

Necessity is proved as follows. Let us assume that axiom F is fulfilled. This
implies that,

eT A(U, V )V T = eT U .

which is the same as,

eT A(U, V )V T V −T = eT UV −T .

and consequently,

eT A(U, V ) = eT AC(U, V ).

which, strictly speaking, is,
n∑

i=1

aij =
n∑

i=1

aC
ij ∀j = 1, . . . , n

¥

Indeed, all the statistical and economic methods considered so far match the
standard case when V is a diagonal matrix. In fact, when there are no secondary
products and by-products the problem of the off-diagonal elements of V really does
not exist and consequently, the standard case would be the most adequate method
for constructing the A-matrix. It is also straightforward that all axioms fulfill if
A(U, V ) = UV −1.

6 Some other additional assumptions

6.1 The Lump-Sum Method

Corollary 6.1 The Lump-Sum method fulfills the material balance axiom if the
total output of sector j matches the total output of commodity j, for all U and V
such that vj = v

′
j ,∀j.

Proof. Under the Lump-Sum method the A-matrix is defined as:

AL(U, V ) = U(V̂ e)−1

and, therefore, if we assume that V e = V T e, namely vj = v
′
j , ∀j we can obtain:

AL(U, V )V T e = U(V̂ e)−1V T e = U(V̂ T e)−1V T e = Ue

since V T e =
(
V̂ T e

)
e.

So, we can conclude that axiom M will be fulfilled in the Lump-Sum model if the
total output of e.g. sector j is equal to the total output of commodity j (vj = v

′
j).

On the contrary, in case axiom M is fulfilled, this does not imply that always vj = v
′
j .

The Lump-sum model fulfills the invariance scale axiom S as it is demonstrated
in Kop Jansen and ten Raa (1990). Indeed, it is the only axiom which holds under
the assumptions made by these authors.
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6.2 The Commodity Technology Model

The Commodity Technology model fulfills all axioms or desirable properties
established in Kop Jansen and ten Raa (1990), which is recommended for a more
detailed analysis. In short, there is no need to assume any additional hypothesis in
order to achieve the fulfillment of axioms M , P , F and S.

6.3 The By-Product Technology Model

Corollary 6.2 The By-Product Technology model fulfills the financial balance ax-
iom for all U and V when for any secondary production (or by-product), say vjk, the
sector which primary output corresponds to this secondary product (sector k) does
not have positive value-added since the total inputs requirements of sector k would
match the total sector k’s outputs.That is,

eT V T = eT U

Proof. Under the financial balance axiom, the By-Product Technology model
should verify,

eT AB(U, V )V T = eT U

with the left-hand side of this equality such as,

eT (U − Ṽ T )V̂ −1V T = (eT U − eT Ṽ T )V̂ −1V T = eT UV̂ −1V T − eT Ṽ T V̂ −1V T

Moreover, since Ṽ T = V T − V̂ T and V̂ T = V̂ it yields,

eT UV̂ −1V T − eT Ṽ T V̂ −1V T = eT UV̂ −1V T − eT V T V̂ −1V T + eT V̂ T V̂ −1V T

which is the same as,

eT AB(U, V )V T = (eT U − eT V T )V̂ −1V T + eT V T

So, let us assume now that eT U = eT V T then,

eT AB(U, V )V T = eT V T = eT U

¥

With respect to price and scale invariance axioms it is easily verified that the By-
Product Technology model fulfills both of them without any additional assumption.
As a result, it yields

AB(p̂U, V p̂) = p̂AB(U, V )p̂−1 =





uij

vjj
if i = j

pi(uij − vji)
pjvjj

if i 6= j

and,

AB(Uŝ, ŝV ) = AB(U, V ) =





uij

vjj
if i = j

uij − vji

vjj
if i 6= j
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6.4 The Mixed Technology Model

Kop Jansen and ten Raa (1990) demonstrate that each of axioms M and F
holds if and only if the CB-Mixed Technology model reduces to the Commodity
Technology model. In other words, both axioms hold only when the V2 table is null,
i.e. when there are no by-pruducts, although according to ten Raa, Chakraborty
and Small (1984), the so-called ordinary secondary products are included in table
V1.

But, what happens when indeed there exist by-products? Under what restric-
tions on the data do axioms M and F still hold?. We will take some preliminary
results from Kop Jansen and ten Raa (1990) as our point of departure in order to
cast light on these issues.

Corollary 6.3 The CB-Mixed Technology model fulfills the material balance axiom
M for all U and non-singular V1 when U and V T match, which is the same that
AC(U, V ) = I.

Proof. Under the CB-Mixed Technology model construct, the axiom M should
verify that,

ACB(U, V )V T e =
(
U − V T

2

)
V −T

1 V T e = Ue

where V1 stands for the primary outputs and those secondary products consid-
ered as ”ordinary” according to ten Raa, Chakraborty and Small (1984) definition,
and V2, for the by-products.

Since we are assuming that U = V T = V T
1 + V T

2 it can be shown that,

(U − V T
2 )V −T

1 V T e = V T
1 V −T

1 V T e = V T e = Ue

¥

Corollary 6.4 The CB-Mixed Technology model fulfills the financial balance ax-
iom when for any secondary production (or by-product), say vjk, the sector which
primary output corresponds to this secondary product (sector k) must not have pos-
itive value-added since the total inputs requirements of sector k would match the
total sector k’s outputs.That is,

eT V T = eT U

Proof. As Kop Jansen and ten Raa (1990) demonstrate, under the CB-Mixed
Technology model construct the axiom F should verify that,

eT ACB(U, V )V T = eT
(
U − V T

2

)
V −T

1 V T = eT U

This can also be expressed as,

eT ACB(U, V )V T = eT
(
U − V T

2

)
V −T

1 V T = (eT U − eT V T
2 )V −T

1 V T

and substituting eT U = eT V T , it yields,
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eT ACB(U, V )V T = (eT V T − eT V T
2 )V −T

1 V T =

eT (V T − V T
2 )V −T

1 V T = eT V T
1 V −T

1 V T = eT V T = eT U

¥

With respect to the price and scale invariance axioms, it can be seen in Kop
Jansen and ten Raa (1990) how the CB-Mixed Technology model fulfills both of
them.

7 Summary and conclusions

In view of the theorems and corollaries enunciated thus far, we can group the
most relevant additional assumptions needed to improve the level of fulfillment of
all axioms in each one of the technical coefficients constructs together into:

1. General assumptions with respect to the Commodity Technology Model (The-
orems 5.1 and 5.2)
Perhaps, the most interesting conclusion is referred to the fact that axioms M
and F will be always fulfilled under some certain restrictions which relate any
technical coefficients matrix construct to the Commodity Technology model.

2. Equivalence of sectors and commodities productions (Corollary 6.1)
This restriction involves somehow that commodities and sectors could be clas-
sified in the same way. Since this is not unusual to find in several input-output
tables published to date, it seems reasonable assume this hypothesis in order
to improve the fulfillment of axiom M .

3. Null value-added. (Corollaries 6.2 to 6.4)
The assumption related to the absence of value added in certain sectors have
little real and economic sense. Therefore, it should be certainly neglected.

4. Absence of secondary products and by-products.
This assumption is certainly nonsense due to the fact that the motivation

of the several input-output technical coefficients constructs developed in this
paper relies on a make table V which is actually not diagonal.

Now, it is presented in the Appendix a brief summary of the main results (Table
2) classified according to models and axioms. It is shown, as well, that the Transfer
and the Industry Technology model are the ones which need more restrictive con-
ditions in order to fulfill all axioms. Moreover, since axioms P and S are defined
for all p and s respectively, they will never hold under those input-output technical
coefficients construct models which actually do not fulfill them.

Universidad Pablo de Olavide, Spain
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Appendix

TABLE 2: ADDITIONAL ASSUMPTIONS OVER AXIOMS ACCORDING TO MODELS.

Model Axiom M Axiom F Axiom P Axiom S

Lump-Sum AL(U, V )V T e = eT AL(U, V ) = Never
√

AC(U, V )V T e eT AC(U, V )
or V e = V T e

European System
√

eT AE(U, V ) =
√

Never
eT AC(U, V )

Transfer AT (U, V )V T e = eT AT (U, V ) = Never Never
AC(U, V )V T e eT AC(U, V )

Commodity Technology
√ √ √ √

By-Product Technology AB(U, V )V T e = eT AB(U, V ) =
√ √

AC(U, V )V T e eT AC(U, V )
or eT V T = eT U

Industry Technology
√

eT AI(U, V ) = Never Never
eT AC(U, V )

CB-Mixed Technology ACB(U, V )V T e = eT ACB(U, V ) =
√ √

AC(U, V )V T e eT AC(U, V )
or U = V T or eT V T = eT U

Source: own elaboration
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